CN208044515U - A kind of gradient type radiator - Google Patents

A kind of gradient type radiator Download PDF

Info

Publication number
CN208044515U
CN208044515U CN201820132964.5U CN201820132964U CN208044515U CN 208044515 U CN208044515 U CN 208044515U CN 201820132964 U CN201820132964 U CN 201820132964U CN 208044515 U CN208044515 U CN 208044515U
Authority
CN
China
Prior art keywords
cooling fin
heat
height
along
conducting plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201820132964.5U
Other languages
Chinese (zh)
Inventor
高阳
杨作兴
巫跃凤
郭海丰
刘子熹
罗应华
张晓霆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Bit Microelectronics Technology Co Ltd
Shenzhen MicroBT Electronics Technology Co Ltd
Original Assignee
Shenzhen Bit Microelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63954308&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN208044515(U) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shenzhen Bit Microelectronics Technology Co Ltd filed Critical Shenzhen Bit Microelectronics Technology Co Ltd
Priority to CN201820132964.5U priority Critical patent/CN208044515U/en
Application granted granted Critical
Publication of CN208044515U publication Critical patent/CN208044515U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

This application discloses a kind of gradient type radiators, including:Heat-conducting plate, one side surface are bonded with heater element, and to absorb the heat of heater element, the shape of heat-conducting plate is corresponding with the shape of heater element;Multiple cooling fins are formed in another side surface of heat-conducting plate, and multiple cooling fins are arranged along first direction parallel interval, and each cooling fin extends along the second direction vertical with the first direction on another side surface of heat-conducting plate;Wherein, the height of each cooling fin is along second direction linear change.What the height of the cooling fin of the utility model was not constant between on the extending direction of cooling fin, but change in gradient formula, it is variation that the difference of height at the different location of cooling fin, which leads to cooling fin area in their extension direction, the heat dissipation area (being realized by adjusting the height of cooling fin) for so corresponding to the variation adjustment cooling fin of the environment temperature in apparatus casing, to realize the effect of the environment temperature in equalizing equipment shell.

Description

A kind of gradient type radiator
Technical field
The utility model is related to technical field of heat dissipation, more particularly, to a kind of gradient for block chain server Type radiator.
Background technology
The heat dissipation effect of block chain server depends greatly on the size and structure of radiator, with block Youngster's chain server single machine calculates steeply rising for force and work consumption, and single machine size and weight are controlled again in more reasonable range, The structure optimization of block chain server internal radiator is just important at one of the optimization of block chain server radiating performance Direction.
The calculation power module of block chain server internal is made of the repetition parallel connection of a large amount of mutually isostructural element circuits , only when all element circuits are all operated under optimal environment temperature, block chain server competence exertion goes out most Big computing capability.But the cooling fin for the radiator being distributed in current block chain server throughout positional structure phase Together, then cause temperature at the air intake vent of block chain server low, temperature is high at air outlet, and bulk temperature is uneven to lead to block Youngster's chain server can not play maximum capacity.
Utility model content
The purpose of this utility model is to propose a kind of gradient type radiator for block chain server, according to block The Temperature Distribution feature of youngster's chain server internal takes gradient Linear to be distributed, to realize the temperature of block chain server internal Portfolio effect.
Embodiment according to the present utility model proposes a kind of gradient type radiator, including:
Heat-conducting plate, one side surface are bonded with heater element, to absorb the heat of the heater element, the heat-conducting plate Shape is corresponding with the shape of the heater element;
Multiple cooling fins, the multiple cooling fin are formed in another side surface of the heat-conducting plate, the multiple cooling fin It is arranged along first direction parallel interval, each cooling fin is along the second direction vertical with the first direction in the heat-conducting plate Extend on another side surface;
Wherein, the height of each cooling fin is along the second direction linear change.
Preferably, the heater element is located in a shell, and the shell has air intake vent and air outlet, the second party To being cooling medium from the air intake vent towards the flow direction of the air outlet.
Preferably, the height of each cooling fin is linearly increasing along the second direction.
Preferably, the height change of each cooling fin has at least one linear variation coefficient along the second direction.
Preferably, the height change of each cooling fin has at least two linear variation coefficients along the second direction.
Preferably, each cooling fin has the region that one section of linear variation coefficient is zero.
Preferably, further comprise interconnecting piece, the interconnecting piece is bonded another side surface of the heat-conducting plate, the multiple Cooling fin is formed on the interconnecting piece.
Preferably, the interconnecting piece along length and the heat-conducting plate of the second direction along the second direction Length is identical, and the interconnecting piece is less than width of the heat-conducting plate along the first direction along the width of the first direction Degree, the both ends along the first direction of the heat-conducting plate are respectively provided with the edge part at the both ends for protruding from the interconnecting piece.
Preferably, in this second direction, the front end of each cooling fin is concordant or uneven with the front end of the interconnecting piece Together.
Preferably, the height of the interconnecting piece and the height of the heat-conducting plate are equal or unequal.
It can be seen from the above technical proposal that the height of the cooling fin in the present embodiment on the extending direction of cooling fin not It is invariable, but changes linearly, the difference of the height at the different location of cooling fin causes cooling fin area at it It is variation on extending direction, then the heat dissipation area of the variation adjustment cooling fin corresponding to the environment temperature in apparatus casing (being realized by adjusting the height of cooling fin), to realize the effect of the environment temperature in equalizing equipment shell.
Specifically, for the lower region of coolant temperature, the height of cooling fin is smaller, the area of corresponding cooling fin It is smaller, then cool down the speed that the temperature that the heat that medium is absorbed from cooling fin reduces, and then slows down heater element in the region declines Degree;And for the higher region of coolant temperature, the height of cooling fin is larger, and the area of corresponding cooling fin is larger, then cold But the heat that medium is absorbed from cooling fin increases, and then the speed that the temperature for accelerating heater element in the region declines.Pass through this Sample, on the extending direction of cooling fin, that is, on the flow direction of cooling medium, the temperature changing speed of cooling medium is compared It is substantially reduced for the cooling fin of constant height so that the Temperature Distribution equalization in apparatus casing so that heater element Heat dissipation effect on the flow direction of cooling medium evenly, temperature difference smaller.
Description of the drawings
The following drawings only does schematic illustration and explanation to the utility model, does not limit the scope of the utility model.
Fig. 1 is the structural schematic diagram of the gradient type radiator of the utility model embodiment.
Fig. 2 is the vertical view of the gradient type radiator of the utility model embodiment.
Fig. 3 is the side view of the gradient type radiator of the utility model embodiment.
Specific implementation mode
In order to which the technical features, objects and effects to utility model are more clearly understood, now control illustrates this The specific implementation mode of utility model, in the various figures identical label indicate identical part.
It is succinct and intuitive in order to what is described, hereafter by describing several representative embodiments come to the utility model Scheme be illustrated.A large amount of details is only used for helping to understand the embodiment of the utility model in embodiment.However, it will be apparent that The technical solution of the utility model can be not limited to these details when realizing.It is new in order to avoid unnecessarily having obscured this practicality The scheme of type, some embodiments are not described meticulously, but only give frame.Hereinafter, " comprising " refers to " packet Include but be not limited to ", " according to ... " refer to " according at least to ..., but be not limited to according only to ... ".Since the language of Chinese is practised It is used, when being hereinafter not specifically stated the quantity of an ingredient, it is meant that the ingredient is either one or more, or can It is interpreted as at least one.
Fig. 1 is the structural schematic diagram of the gradient type radiator of the utility model embodiment.As shown in Figure 1, the present embodiment A kind of gradient type radiator, including:
Heat-conducting plate 10, one side surface are bonded with heater element (not shown), to absorb the heat of heater element, heat-conducting plate 10 shape is corresponding with the shape of heater element, fully absorbs heat so that heater element is completely covered, such as heat-conducting plate 10 can It is bonded with heater element with lower surface shown in Fig. 1;With
Multiple cooling fins 20, cooling fin 20 are formed in another side surface of heat-conducting plate 10, the consistent multiple cooling fins of shape 20 arrange along first direction X parallel intervals, and each cooling fin 20 is along the second direction Y vertical with first direction X in heat conduction Extend on another side surface of plate 10, which is the side surface relative to the surface being bonded with heater element;
Wherein, the height of each cooling fin 20 is changed linearly along second direction Y.
In the present embodiment, the heat that 10 spontaneous thermal element of heat-conducting plate absorbs is distributed by cooling fin 20, multiple cooling fins It is alternatively arranged on 20 first direction X shown in Fig. 1, cooling medium (for example, moving air in air cooling way) is along scattered The extending direction Y-direction of backing 20, the gap between cooling fin 20 are passed through, and realize that heat is handed over by the contact with cooling fin 20 It changes.
Wherein, although the heating temperature of heater element is equally distributed, in the flow direction of cooling medium --- In second direction Y-direction, Temperature Distribution is non-uniform, and in the upstream portion of second direction Y, i.e., cooling medium initial contact dissipates When backing 20, the temperature of cooling medium is relatively low, and in the downstream part of second direction Y, with cooling medium and cooling fin The heat of 20 contact area and the increase of time of contact, cooling Absorption of Medium increases, and causes the temperature of cooling medium higher.It is logical In the case of often, heater element is located in the shell of equipment, and the non-uniform Temperature Distribution of cooling medium leads to the temperature of enclosure interior Spend it is uneven, to which the operating ambient temperature for influencing heater element is uneven, so influence heater element operating temperature.
What the height of the cooling fin 20 in the present embodiment was not constant between in the extending direction Y-direction of cooling fin 20, But change in gradient formula, the difference of the height at the different location of cooling fin 20 causes 20 area of cooling fin in its extending direction It is variation in Y-direction, then (logical corresponding to the heat dissipation area of the variation adjustment cooling fin 20 of the environment temperature in apparatus casing Cross the height of adjustment cooling fin 20 and realize), to realize the effect of the environment temperature in equalizing equipment shell.
Specifically, for the lower region of coolant temperature, the height of cooling fin 20 is smaller, corresponding cooling fin 20 Area is smaller, then cools down the heat that medium is absorbed from cooling fin 20 and reduce, and then slow down in the region at a temperature of heater element The speed of drop;And for the higher region of coolant temperature, the height of cooling fin 20 is larger, the area of corresponding cooling fin 20 It is larger, then cool down what the temperature that the heat that medium is absorbed from cooling fin 20 increases, and then accelerates heater element in the region declined Speed.In this way, in the extending direction of cooling fin 20 --- on second direction Y, that is, on the flow direction of cooling medium, The temperature changing speed of cooling medium for the cooling fin of constant height compared to being substantially reduced so that the temperature in apparatus casing Distributing equilibrium so that the heat dissipation effect of heater element on the flow direction of cooling medium evenly, temperature difference smaller.
In the present embodiment, the height of cooling fin 20 changes linearly, and has the characteristics that sustained continuous variation, energy So that the heat exchange between cooling fin 20 and cooling medium is had the characteristics that consecutive variations, increases the uniformity of heat dissipation effect. Wherein it is possible to understand, the linear variation coefficient of linear change is adjustable.
The radiator of the present embodiment especially suitable for the data with high operational capability of such as block chain server at Device is managed, in such a device, there is the densely arranged a large amount of operation chip being carried on printed circuit board (PCB), PCB Plate is the heater element of an entirety, is evenly or unevenly distributed multiple small heater elements thereon, then uneven inside equipment Even heat distribution can cause different operation chips that may be operated under different environment temperatures, and then lead to operation chip Working performance it is inconsistent.And the radiator of the present embodiment passes through change cooling fin 20 on the flow direction of cooling medium The heat dissipation area for highly changing cooling fin 20 and cooling media contact, to realize the heat to cooling fin and cooling Medium Exchange The adjustment of amount and heat exchange speed.
Specifically, the lower region of coolant temperature by reduce cooling fin heat dissipation area by reduce cooling fin with The heat of cooling Medium Exchange, the speed for reducing heat exchange, and radiated in the higher region of coolant temperature by increasing The heat dissipation area of piece and increase the heat of cooling fin and cooling Medium Exchange, improve the speed of heat exchange so that be situated between cooling In the heat exchanging process of matter and cooling fin, temperature change tends towards stability, and heat dissipation effect is more uniform, temperature difference smaller, to be more The small heater element of a dispersion provides consistent working environment.
Specifically, as described above, heater element is located in a shell (not shown), which has air intake vent and outlet air Mouthful, second direction Y is flow direction of the cooling medium from air intake vent towards air outlet.Correspondingly, as shown in figures 1 and 3, each The height of cooling fin 20 is linearly increasing along second direction Y, i.e., cooling fin 20 is in the height at the position of the air intake vent of shell It is smaller, highly larger at the position of the air outlet of shell.
According to the profiling temperatures of different heater elements, the height change of cooling fin 20 can carry out as the case may be Adjustment.Specifically, in order to realize that the higher adjusting of susceptibility, the height change of each cooling fin 20 have along second direction Y At least one linear variation coefficient.It shows that each cooling fin 20 has on second direction Y in Fig. 1 to Fig. 3 there are two linear to become The case where changing coefficient, but it can only have there are one linear variation coefficient or have three or more linear variation coefficients.
Correspondingly, in order to realize the adjustment of the heat dissipation area to cooling fin 20, two adjacent lines of each cooling fin 20 Property variation coefficient can increase or reduce on second direction Y, and each cooling fin 20 has different linear change systems Length of several two neighboring regions on second direction Y is identical or different.
Specifically, by taking tool shown in Fig. 3 is there are two the cooling fin 20 in the region of different linear variation coefficients as an example, the The linear variation coefficient in one linear change portion 21 is a1, and the height of front end is H1, and the height of rear end is H2, in second direction Y On length be L1;The linear variation coefficient in the second linear change portion 22 is zero, and the length on second direction Y is L2, at this In, since linear variation coefficient is zero, the constant height in the second linear change portion 22 is constant, height and the first linear change The rear height in change portion 21 is all mutually H2;Certainly, the linear variation coefficient in the second linear change portion 22 can also be not zero, based on scattered The height of backing 20 is linearly increasing along second direction Y, the linear change of the first linear change section 21 and the second linear change portion 22 Change coefficient to be all higher than equal to zero, and the height in the second linear change portion 22 is on the basis of the rear end of the first linear change section 21 It is upper increased.Wherein, the height H1 of the front end of the first linear change section 21 can be as shown in Figure 1 zero or be more than zero, L1, L2 can It is mutually the same or different from each other, it is distributed with obtaining different heat dissipation areas on second direction Y.
Further, as depicted in figs. 1 and 2, the gradient type radiator of the present embodiment further comprises interconnecting piece 30, connection Portion 30 is bonded another side surface of heat-conducting plate 10, and multiple cooling fins 20 are formed on interconnecting piece 30.
Further, interconnecting piece 30 along second direction Y length L ' and heat-conducting plate 10 along second direction Y length L Identical, the width W ' of the X along a first direction of interconnecting piece 30 is less than the width W of the X along a first direction of heat-conducting plate 10, heat-conducting plate 10 The both ends of X are respectively provided with the edge part 11 at the both ends for protruding from interconnecting piece 30 along a first direction.
Interconnecting piece 30 formed cooling fin 20 support platform, one of cooling fin 20 may be formed at interconnecting piece 30 along The edge of first direction X, and due to the presence of edge part 11, the cooling fin 20 and be not formed in heat-conducting plate 10 along first The edge of direction X, so that there are cooling in the cooling fin both sides for being formed in the edge of the X along a first direction of interconnecting piece 30 Medium passes through, and influences its performance to radiate to avoid due to being formed in marginal position, and simplification is formed in interconnecting piece 30 The positioning difficulty of the cooling fin of the edge of X in process along a first direction.
Wherein, on second direction Y, the front end of each cooling fin 20 is concordant with the front end of interconnecting piece 30 or not concordant.This In so-called front end be close to equipment air intake vent one end.When the front end of cooling fin 20 is concordant with the front end of interconnecting piece 30, i.e., Situation as shown in figures 1 and 3, cooling fin 20 extend in the upper surface of entire interconnecting piece 30.And when cooling fin 20 front end with When the front end of interconnecting piece 30 is not concordant, the front end of interconnecting piece 30 is formed as the step that height is less than cooling fin 20, leads to Heat exchange is realized with media contact is cooled down in the upper surface for crossing interconnecting piece 30.Although being not shown in figure front end and the company of cooling fin 20 The not concordant situation in the front end of socket part 30, but its effect is similar with Fig. 1 and situation shown in Fig. 3.Specifically, interconnecting piece 30 Height is equal or unequal with the height of heat-conducting plate 10.
The height of the cooling fin of the utility model be can be seen that by above-mentioned specific embodiment in the extension side of cooling fin It is not constant between, but changes in gradient formula upwards, the difference of the height at the different location of cooling fin leads to cooling fin Area is variation in their extension direction, then the variation corresponding to the environment temperature in apparatus casing adjusts dissipating for cooling fin Hot area (being realized by adjusting the height of cooling fin), to realize the effect of the environment temperature in equalizing equipment shell.
Specifically, for the lower region of coolant temperature, the height of cooling fin is smaller, the area of corresponding cooling fin It is smaller, then cool down the speed that the temperature that the heat that medium is absorbed from cooling fin reduces, and then slows down heater element in the region declines Degree;And for the higher region of coolant temperature, the height of cooling fin is larger, and the area of corresponding cooling fin is larger, then cold But the heat that medium is absorbed from cooling fin increases, and then the speed that the temperature for accelerating heater element in the region declines.Pass through this Sample, on the extending direction of cooling fin, that is, on the flow direction of cooling medium, the temperature changing speed of cooling medium is compared It is substantially reduced for the cooling fin of constant height so that the Temperature Distribution equalization in apparatus casing so that heater element Heat dissipation effect on the flow direction of cooling medium evenly, temperature difference smaller.
Tool of the series of detailed descriptions listed above only for the feasible embodiment of the utility model Body explanation, and not to limit the scope of protection of the utility model, it is all without departing from made by the utility model skill spirit etc. Effect embodiment or change should be included within the scope of protection of this utility model such as the combination, segmentation or repetition of feature.

Claims (10)

1. a kind of gradient type radiator, which is characterized in that including:
Heat-conducting plate (10), one side surface are bonded with heater element, to absorb the heat of the heater element, the heat-conducting plate (10) shape is corresponding with the shape of the heater element;
Multiple cooling fins (20), the multiple cooling fin (20) is formed in another side surface of the heat-conducting plate (10), described more A cooling fin (20) arranges along first direction (X) parallel interval, and each cooling fin (20) is along vertical with first direction (X) Second direction (Y) extends on another side surface of the heat-conducting plate (10);
Wherein, the height of each cooling fin is along the second direction (Y) linear change.
2. gradient type radiator as described in claim 1, which is characterized in that the heater element is located in a shell, described It is to cool down medium from the air intake vent towards the air outlet that shell, which has air intake vent and air outlet, the second direction (Y), Flow direction.
3. gradient type radiator as claimed in claim 2, which is characterized in that the height of each cooling fin (20) is along described the (Y) is linearly increasing in two directions.
4. the gradient type radiator as described in any claim in claims 1 to 3, which is characterized in that each cooling fin (20) height change has at least one linear variation coefficient along the second direction (Y).
5. gradient type radiator as claimed in claim 4, which is characterized in that the height change of each cooling fin (20) is along institute Stating second direction (Y) has at least two linear variation coefficients.
6. gradient type radiator as claimed in claim 5, which is characterized in that each cooling fin (20) has one section of linear change The region that coefficient is zero.
7. the gradient type radiator as described in any claim in claims 1 to 3, which is characterized in that further comprise connecting Socket part (30), the interconnecting piece (30) are bonded another side surface of the heat-conducting plate (10), and the multiple cooling fin (20) is formed On the interconnecting piece (30).
8. gradient type radiator as claimed in claim 7, which is characterized in that the interconnecting piece (30) is along the second direction (Y) length is identical along the length of the second direction (Y) as the heat-conducting plate (10), and the interconnecting piece (30) is along described The width of first direction (X) is less than width of the heat-conducting plate (10) along the first direction (X), the heat-conducting plate (10) The edge part (11) at the both ends for protruding from the interconnecting piece (30) is respectively provided with along the both ends of the first direction (X).
9. gradient type radiator as claimed in claim 8, which is characterized in that in the second direction (Y), each cooling fin (20) front end is concordant with the front end of the interconnecting piece (30) or not concordant.
10. gradient type radiator as claimed in claim 7, which is characterized in that the height of the interconnecting piece (30) is led with described The height of hot plate (10) is equal or unequal.
CN201820132964.5U 2018-01-26 2018-01-26 A kind of gradient type radiator Active CN208044515U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820132964.5U CN208044515U (en) 2018-01-26 2018-01-26 A kind of gradient type radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820132964.5U CN208044515U (en) 2018-01-26 2018-01-26 A kind of gradient type radiator

Publications (1)

Publication Number Publication Date
CN208044515U true CN208044515U (en) 2018-11-02

Family

ID=63954308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820132964.5U Active CN208044515U (en) 2018-01-26 2018-01-26 A kind of gradient type radiator

Country Status (1)

Country Link
CN (1) CN208044515U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210127524A1 (en) * 2019-10-23 2021-04-29 Lumentum Operations Llc Progressive heatsink
CN113483362A (en) * 2021-08-18 2021-10-08 中国联合重型燃气轮机技术有限公司 Flame tube and gas turbine
CN113552392A (en) * 2020-04-24 2021-10-26 鸿劲精密股份有限公司 Temperature conduction device, crimping mechanism and test classification equipment thereof
CN113552391A (en) * 2020-04-24 2021-10-26 鸿劲精密股份有限公司 Temperature conduction device and crimping mechanism, precooler and test classification equipment thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210127524A1 (en) * 2019-10-23 2021-04-29 Lumentum Operations Llc Progressive heatsink
US11937403B2 (en) * 2019-10-23 2024-03-19 Lumentum Operations Llc Progressive heatsink
CN113552392A (en) * 2020-04-24 2021-10-26 鸿劲精密股份有限公司 Temperature conduction device, crimping mechanism and test classification equipment thereof
CN113552391A (en) * 2020-04-24 2021-10-26 鸿劲精密股份有限公司 Temperature conduction device and crimping mechanism, precooler and test classification equipment thereof
CN113483362A (en) * 2021-08-18 2021-10-08 中国联合重型燃气轮机技术有限公司 Flame tube and gas turbine

Similar Documents

Publication Publication Date Title
CN207927116U (en) A kind of step type radiator
CN208044515U (en) A kind of gradient type radiator
US8154869B2 (en) Method and device for cooling heat-generating computer components
CN2696124Y (en) Heat sink
US8982559B2 (en) Heat sink, cooling module and coolable electronic board
JPH0629683A (en) Heat pipe type heat dissipation unit for electronic apparatus
WO2020062253A1 (en) Circuit board, computing device and cooling case
TW201143590A (en) Heat dissipation device
US7248479B2 (en) Thermal management for hot-swappable module
CN103369932A (en) Layout method for radiating fins of power device radiator and radiator
US20050063159A1 (en) Heat-dissipating fin module
US11129303B1 (en) Cooling of server high-power devices using double-base primary and secondary heat sinks
CN113892307A (en) Decoupled conduction/convection dual heat sink for on-board memory microcontroller
CN207133758U (en) A kind of frivolous radiator
CN202473901U (en) Plate-band-type integrated circuit water cooling heat radiating assembly
CN104898813B (en) Radiator and server
CN207909067U (en) A kind of computer server radiator
TW202124903A (en) Fluid diverting heat sink
CN205750682U (en) Server
US7929306B2 (en) Circuit pack cooling solution
JPH0727677Y2 (en) Refrigerant flow guide mechanism for heat sink
US10324506B2 (en) Thermal management apparatus
JPH0412559A (en) Cooling structure of electronic device
CN208047130U (en) A kind of high-efficient heat-dissipating communication machine box
CN210247322U (en) Radiator, radiating system with radiator and medical equipment

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant