JPS62232411A - Production of propylene copolymer - Google Patents

Production of propylene copolymer

Info

Publication number
JPS62232411A
JPS62232411A JP7426086A JP7426086A JPS62232411A JP S62232411 A JPS62232411 A JP S62232411A JP 7426086 A JP7426086 A JP 7426086A JP 7426086 A JP7426086 A JP 7426086A JP S62232411 A JPS62232411 A JP S62232411A
Authority
JP
Japan
Prior art keywords
propylene
copolymer
ethylene
halide
titanium trichloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7426086A
Other languages
Japanese (ja)
Other versions
JP2501557B2 (en
Inventor
Tadashi Asanuma
正 浅沼
Shigeru Kimura
茂 木村
Shinryu Uchikawa
進隆 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP61074260A priority Critical patent/JP2501557B2/en
Publication of JPS62232411A publication Critical patent/JPS62232411A/en
Application granted granted Critical
Publication of JP2501557B2 publication Critical patent/JP2501557B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To produce a propylene copolymer which is improved in transparency and can give a molding free of surface clouding and stickiness, by bulk- polymerizing propylene and ethylene in the presence of an aromatic hydrocarbon compound by using the propylene itself as a liquid medium and using modified titanium trichloride and a specified dialkylauminum halide. CONSTITUTION:A propylene copolymer is produced by bulk-polymerizing propylene and ethylene by using the propylene itself as a medium and using titanium trichloride modified with an oxygen-containing organic compound and a dialkylaluminum halide. Said copolymerization is performed by using a dialkylaluminum halide having a halide to aluminum atomic ratio of 0.90-1.10 in the presence of 1-20vol%, based on the entire volume of the liquid medium, 6-10 C aromatic hydrocarbon compound so that ethylene and/or its mixture with a 4-6 C alpha-olefin may account for 10wt% based on the total copolymer. The copolymer slurry is washed countercurrently with propylene to obtain a propylene copolymer of excellent transparency.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はプロピレンの共重合体の製造方法に関する。詳
しくは透明性に優れ、しかも成形品とした時表面がくも
ったり、べたついたりすることがなくしかもヒートシー
ル性に優れたプロピレンの共重合体の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a process for producing copolymers of propylene. Specifically, the present invention relates to a method for producing a propylene copolymer that has excellent transparency, does not have a cloudy or sticky surface when molded, and has excellent heat sealability.

従来の技術 食品容器用ブローグレード又はシートグレード、或いは
食品包装用フィルムグレードとして、或はラミはグレー
ドとして、低温耐衝撃性、剛性、透明性に優れたプロピ
レンの結晶性共重合体が広く用いられており、その製造
方法としては例えば特公昭43−11230、特公昭4
4−4992 、特開昭53−35788が知られてい
る。プロピレンの共重合体の低温耐衝撃性、ヒートシー
ル性を改良する目的でプロピレンの共重合体中のエチレ
ン含量を増加させるとか、エチレンとブテン−1などの
高級α−オレフィンを使用すること(特開昭49−35
487、特開昭51−79195、特開昭52−165
88、特開昭54−26891)が知られているが、エ
チレンとか高級α−オレフィンの含量を増加させると重
合媒体に可溶なものが多(生じる。これに対しては重合
反応を塊状重合で行い、成形品の外観をそこなう成分だ
けをできるだけ選択的に溶解除去する方法が知られてい
る(例えば特開昭57−149309 、特開昭58−
136607 、特開昭59−129209など)。
Conventional technology Propylene crystalline copolymers with excellent low-temperature impact resistance, rigidity, and transparency are widely used as blow grades or sheet grades for food containers, film grades for food packaging, and laminated grades. For example, the manufacturing method is described in Japanese Patent Publication No. 43-11230 and Special Publication No. 43-11230.
4-4992 and JP-A-53-35788 are known. In order to improve the low-temperature impact resistance and heat sealability of a propylene copolymer, it is possible to increase the ethylene content in the propylene copolymer, or to use ethylene and higher α-olefins such as butene-1 (especially Kaisho 49-35
487, JP-A-51-79195, JP-A-52-165
88, JP-A-54-26891) is known, but when the content of higher α-olefins such as ethylene is increased, more olefins become soluble in the polymerization medium. There are known methods for selectively dissolving and removing only the components that impair the appearance of the molded product (for example, JP-A-57-149309, JP-A-58-
136607, JP-A-59-129209, etc.).

発明が解決しようとする問題点 しかしながら、上記方法でも高沸点の不活性炭化水素を
用いて重合媒体に可溶な部分を多量に除去(即ち製品収
率の悪い方法)する方法で得たプロピレンの共重合体に
比較して外観、透明性等で不良であり、また融点が高く
ヒートシール性に劣るという問題があった。
Problems to be Solved by the Invention However, even with the above method, it is difficult to obtain propylene obtained by using a high boiling point inert hydrocarbon to remove a large amount of the portion soluble in the polymerization medium (i.e., a method with poor product yield). Compared to copolymers, it has poor appearance, transparency, etc., and also has a high melting point and poor heat sealability.

問題点を解決するための手段 本発明者らは上記問題点を解決する方法について鋭意検
討し本発明を完成した。
Means for Solving the Problems The present inventors have completed the present invention by intensively studying methods for solving the above problems.

即ち、本発明は含酸素有機化合物で変性した三塩化チタ
ンとジアルキルアルミニウムハライドを用いてプロピレ
ン自身を媒体とする塊状重合法でプロピレンの共重合体
を製造する方法において、液状媒体の全量に対して1−
20容量%の炭素数6−10の芳香族炭化水素化合物の
存在下に、ジアルキルアルミニウムハライドとしてハラ
イドとアルミニウムの比率が0.90〜1.10原子比
のものを用いてエチレン及び/又はエチレンと炭素数4
〜6のα−オレフィンの総和が全共重合体中の15重量
%以下となるように共重合を行い、次いで共重合スラリ
ーをプロピレンで向流洗浄することを特徴とする透明性
に優れたプロピレンの共重合体の製造方法である。
That is, the present invention provides a method for producing a propylene copolymer by a bulk polymerization method using titanium trichloride modified with an oxygen-containing organic compound and a dialkyl aluminum halide, using propylene itself as a medium. 1-
In the presence of 20% by volume of an aromatic hydrocarbon compound having 6 to 10 carbon atoms, a dialkyl aluminum halide with an atomic ratio of halide to aluminum of 0.90 to 1.10 is used to react with ethylene and/or ethylene. Carbon number 4
Propylene with excellent transparency characterized by copolymerizing so that the sum of α-olefins in ~6 is 15% by weight or less in the total copolymer, and then washing the copolymer slurry in countercurrent with propylene. This is a method for producing a copolymer.

本発明において含酸素有機化合物で変性した三塩化チタ
ンは以下のようにして製造される。即ち四塩化チタンを
アルミニウム、水素又は有機アルミニウムで還元して得
た三塩化チタン又は三塩化チタンと塩化アルミニウムの
共晶体を含酸素有機化合物と共粉砕する方法、或は含酸
素有機化合物と接触処理する方法、さらに炭化水素化合
物で洗浄する方法があり、三塩化チタン触媒を製造する
工程で含酸素有機化合物と接触する工程があるものであ
れば良い。含酸素有機化合物としてはエーテル、エステ
ル、オルソエステル、アルコキシケイ素、リン酸エステ
ル、ケトン、アルデヒドカルボン酸、無水カルボン酸類
が挙げられる。
In the present invention, titanium trichloride modified with an oxygen-containing organic compound is produced as follows. That is, a method of co-pulverizing titanium trichloride obtained by reducing titanium tetrachloride with aluminum, hydrogen, or organoaluminium, or a eutectic of titanium trichloride and aluminum chloride with an oxygen-containing organic compound, or a contact treatment with an oxygen-containing organic compound. There are methods of washing with a hydrocarbon compound, and any method that includes a step of contacting with an oxygen-containing organic compound in the step of producing a titanium trichloride catalyst is sufficient. Examples of oxygen-containing organic compounds include ethers, esters, orthoesters, alkoxy silicones, phosphoric esters, ketones, aldehyde carboxylic acids, and carboxylic anhydrides.

具体的な製造法としては例えば特公昭43−10065
、特公昭43−15620で示されているように金属ア
ルミニウムで還元した三塩化チタン、塩化アルミニウム
を粉砕し次いでエーテル或いはケトン、エステルとを添
加し共粉砕して得た触媒、或は特公昭49−23591
、特公昭49−2021で示されているようにさらに不
活性炭化水素で洗浄した触媒。又上記共晶体と有機アル
ミニウムをオレフィンの存在下に共粉砕し次いでエーテ
ルと接触処理、さらに四塩化チタンで処理した後不活性
炭化水素で洗浄処理して、三塩化チタン触媒を得る方法
がある。さらには特開昭47−34478に示されてい
る四塩化チタンを有機アルミニウムで還元処理し次いで
エーテルと接触処理し次いで四塩化チタン及び/又はヨ
ウ素で処理し次いで洗浄して得た三塩化チタンなどが挙
げられる。
As a specific manufacturing method, for example, Japanese Patent Publication No. 43-10065
, a catalyst obtained by grinding titanium trichloride or aluminum chloride reduced with metallic aluminum and then adding ether, ketone, or ester and co-pulverizing the catalyst as shown in Japanese Patent Publication No. 43-15620, or a catalyst obtained by co-pulverizing titanium trichloride reduced with metallic aluminum, or co-pulverizing with the addition of ether, ketone, or ester. -23591
, a catalyst further washed with an inert hydrocarbon as shown in Japanese Patent Publication No. 49-2021. Alternatively, there is a method in which the above eutectic and organoaluminum are co-pulverized in the presence of an olefin, then contacted with ether, further treated with titanium tetrachloride, and then washed with an inert hydrocarbon to obtain a titanium trichloride catalyst. Furthermore, titanium trichloride disclosed in JP-A No. 47-34478 is obtained by reducing titanium tetrachloride with organoaluminium, contacting it with ether, treating it with titanium tetrachloride and/or iodine, and washing it. can be mentioned.

ジアルキルアルミニウムハライドとしてはAI(CJs
)zcI 5Al(CJs)Br1Al(CJs)I 
、AI(C3Ht)zcl 、 AI(CsHy)Jr
 、 AI(CJt)zl、 AI(C4■q)zcl
、AI (C4119) tBr 、 AI (C4+
19) tlなどが挙げられる中でもAI (CJs)
 zclが好ましく用いられる。
AI (CJs) is a dialkyl aluminum halide.
)zcI 5Al(CJs)Br1Al(CJs)I
, AI(C3Ht)zcl, AI(CsHy) Jr
, AI(CJt)zl, AI(C4■q)zcl
, AI (C4119) tBr , AI (C4+
19) AI (CJs) among tl etc.
zcl is preferably used.

本発明において肝要なのは上記ジアルキルアルミニウム
ハライドとしてハライドとアルミニウムの比率が0.9
0〜1.10原子比、好ましくは 0.92〜1.08
、特に好ましくは0.94〜1.04であるもりのを使
用することである。
What is important in the present invention is that the dialkyl aluminum halide has a halide to aluminum ratio of 0.9.
0-1.10 atomic ratio, preferably 0.92-1.08
It is particularly preferable to use a Morino of 0.94 to 1.04.

ハライドとアルミニウムの比率が上記範囲をはずれる場
合は三塩化チタン触媒当たりの活性が不充分である上に
得られるプロピレンの共重合体を成形した時表面がべた
ついたり、(もったりし好ましくない。
If the ratio of halide to aluminum is out of the above range, the activity per titanium trichloride catalyst will be insufficient, and the resulting propylene copolymer will have a sticky or sticky surface when molded, which is undesirable.

本発明においては上記触媒系にさらにエチレングリコー
ル、アルキルエーテル、エステル、オルソエステル、リ
ン酸エステルなどの立体規則性向上剤を併用することも
できる。
In the present invention, stereoregularity improvers such as ethylene glycol, alkyl ethers, esters, orthoesters, and phosphoric esters can also be used in combination with the above catalyst system.

本発明において、重合の際に使用する芳香族炭化水素化
合物としては、ベンゼン、トルエン、キシレン、エチル
ベンゼン、クメン、ジイソプロピルベンゼン、トリメチ
ルベンゼン、テトラメチルベンゼン、ブチルベンゼンな
どが使用でき、特にトルエン、キシレン、エチルベンゼ
ンが好ましく使用できる。
In the present invention, as the aromatic hydrocarbon compound used during polymerization, benzene, toluene, xylene, ethylbenzene, cumene, diisopropylbenzene, trimethylbenzene, tetramethylbenzene, butylbenzene, etc. can be used, and in particular toluene, xylene, Ethylbenzene can be preferably used.

本発明においてプロピレンの重合はプロピレン自身を液
状媒体とし、しかも上記芳香族炭化水素化合物の存在下
に重合され、重合温度としては常温〜80℃、好ましく
は40〜70℃であり、40℃以下では触媒活性が小さ
いだけでなく工業的規模での実施においては重合熱の除
去が困難となる。
In the present invention, propylene is polymerized using propylene itself as a liquid medium, and in the presence of the above-mentioned aromatic hydrocarbon compound, and the polymerization temperature is room temperature to 80°C, preferably 40 to 70°C, and below 40°C. Not only is the catalytic activity low, but it is difficult to remove the heat of polymerization when carried out on an industrial scale.

又、75℃以上では、得られる共重合体のかさ密度が低
下し好ましくない。重合圧力は芳香族炭化水素の種類、
量、エチレン濃度及び分子量調節剤として用いる水素の
量と重合温度によって定まる。
Moreover, if the temperature is 75° C. or higher, the bulk density of the obtained copolymer decreases, which is not preferable. Polymerization pressure depends on the type of aromatic hydrocarbon,
amount, ethylene concentration, amount of hydrogen used as a molecular weight regulator, and polymerization temperature.

本発明において得られる共重合体中のエチレン及び/又
はエチレンと炭素数が4〜6のα−オレフィンの総和は
10重量%以下、好ましくは8重量%以下である。10
重量%を越えると得られるプロピレンの共重合体の剛性
が不良となりフィルム等に成形した時表面がべとついた
りくもったりする上に重合の際、ポリマーのかさ比重が
低下しスラリーの粘度が大きくなり重合熱の除去が困難
になるなどの問題が生じる。
The total amount of ethylene and/or ethylene and α-olefin having 4 to 6 carbon atoms in the copolymer obtained in the present invention is 10% by weight or less, preferably 8% by weight or less. 10
If the proportion by weight is exceeded, the resulting propylene copolymer will have poor rigidity, resulting in a sticky or cloudy surface when formed into a film, etc., and during polymerization, the bulk specific gravity of the polymer will decrease and the viscosity of the slurry will increase. This causes problems such as difficulty in removing polymerization heat.

本発明において重要なのは、液状重合媒体中の芳香族炭
化水素が1〜20容量%存在する条件下でプロピレンの
共重合体を製造することにある。芳香族炭化水素の量が
工容量%以下では成形物の外観、べたつき、透明性の改
良効果が充分ではなく又20容量%以上であってもさら
に改良されることはなく単に活性の低下をまねくだけで
ある。好ましい範囲としては3〜10容量%である。
What is important in the present invention is to produce the propylene copolymer under conditions where the aromatic hydrocarbon in the liquid polymerization medium is present in an amount of 1 to 20% by volume. If the amount of aromatic hydrocarbon is less than 20% by volume, the effect of improving the appearance, stickiness, and transparency of the molded product will not be sufficient, and even if it is more than 20% by volume, no further improvement will occur and the activity will simply decrease. Only. The preferred range is 3 to 10% by volume.

本発明においては上記操作で得られた共重合体スラリー
は次いでプロピレンで向流洗浄される。
In the present invention, the copolymer slurry obtained by the above operation is then countercurrently washed with propylene.

向流洗浄に先立って触媒をアルコール類或いはエポキシ
ド類で失活し触媒残渣を可溶化しておくことはより好ま
しい。この工程は40〜70℃で行えば良い。
It is more preferable to deactivate the catalyst with alcohol or epoxide to solubilize the catalyst residue prior to countercurrent washing. This step may be carried out at 40 to 70°C.

Lj流洗浄に用いるプロピレンは少量のエチレン、エタ
ン、プロパン等を含有していても良い。炭素数5以上の
炭化水素化合物を含有する場合は、これらの炭化水素の
量は10重量%以下であることが好ましい。10重重量
をこえるとスラリーから媒体を蒸発により除去しても生
成パウダー中に揮発分が多量に存在しそのため多大の乾
燥工程を必要とし、又場合によっては加熱の際に重合体
が媒体に溶解しパウダーが団塊化し輸送ラインの閉塞を
まねくことになる。
The propylene used for Lj flow cleaning may contain small amounts of ethylene, ethane, propane, etc. When containing hydrocarbon compounds having 5 or more carbon atoms, the amount of these hydrocarbons is preferably 10% by weight or less. If the weight exceeds 10 weight, even if the medium is removed from the slurry by evaporation, there will be a large amount of volatile matter in the resulting powder, which will require a lengthy drying process, and in some cases, the polymer will dissolve in the medium during heating. The powder will form into clumps, leading to blockage of transportation lines.

向流洗浄塔は上部にスラリー導入口及び洗浄液流出口を
、又下部に洗浄液導入口及び洗浄剤スラリー排出口を備
えた通常の形状のものであれば良(格別の限定はない。
The countercurrent cleaning tower may have a normal shape (there is no particular limitation) as long as it has a slurry inlet and a cleaning liquid outlet at the top and a cleaning liquid inlet and a cleaning agent slurry outlet at the bottom.

作用 本発明の方法を実施することによって成形品の外観、べ
たつきが良好となる理由は、含酸素有機化合物で変性さ
れた三塩化チタンと特定のハロゲン/アルミニウム原子
比であるジアルキルアルミニウムハライドからなる触媒
で得られたプロピレン−エチレンランダム共重合体は、
上記外観べたつきに悪影響を与える部分(おそらく低分
子量の低立体規則性のポリマーと思われる)が少ないか
或いは向流洗浄塔で除去されやすいためと推定できる。
Effect The reason why the appearance and stickiness of molded products are improved by carrying out the method of the present invention is that the catalyst is composed of titanium trichloride modified with an oxygen-containing organic compound and dialkyl aluminum halide having a specific halogen/aluminum atomic ratio. The propylene-ethylene random copolymer obtained in
It is presumed that this is because the portion that adversely affects the above-mentioned appearance stickiness (probably a low molecular weight, low stereoregular polymer) is small or is easily removed by the countercurrent washing tower.

又透明性が大幅に向上する理由は、分子量分布が狭い傾
向も見られず不明であるが何らかの理由で上記触媒系と
、芳香族炭化水素の組み合わせで透明性の良好な共重合
体が得られているものと思われる。
The reason why the transparency is greatly improved is not clear as there is no tendency for the molecular weight distribution to be narrow, but for some reason, a copolymer with good transparency can be obtained by combining the above catalyst system and an aromatic hydrocarbon. It seems that there is.

実施例 以下に実施例を挙げ本発明を具体的に説明する。Example The present invention will be specifically explained below with reference to Examples.

実施例及び比較例に於て、物性は共重合体に対してフェ
ノール系安定剤を20/10000重量比、ステアリン
酸カルシウムを10/10000重量比、滑剤を20/
10000重量比の割合で添加し250℃で造粒した後
240℃で厚さ30μ、幅25cmのTダイフィルムを
作りこれについて評価した。各物性の測定は次のとうり
である; 極限粘度=135℃テトラレン溶液で測定ヘイズ(χ)
 : ASTM−1003〜53ブム棒グ(2):フィ
ルムを2枚重ねあわせ2Kgの錘を乗せ50℃で24時
間保った後密着面積の割合として算出 ヤング率(Kg/mm) :20mm X 220mm
のフィルムを用いてインストロンで測定 引っ張り強さくKg/ad):ASTM D882−6
4フインパクト(Kgcm/+*m):5℃でフィルム
10IIIm×10a1のものに球形の錘で衝撃を与え
破壊した 時の衝撃エネルギーより算出 浮き出し:フィルムを50℃で24時間保持の後目視に
より判定 融点及び結晶化温度(それぞれT1、Tcと略記>  
:D、S、Cを用い昇温及び降温速度10℃/winで
測定した。
In Examples and Comparative Examples, the physical properties of the copolymer were determined by using a phenolic stabilizer at a weight ratio of 20/10,000, calcium stearate at a weight ratio of 10/10,000, and a lubricant at a weight ratio of 20/10,000.
After adding at a weight ratio of 10,000 and granulating at 250°C, a T-die film with a thickness of 30 μm and a width of 25 cm was prepared at 240°C and evaluated. Measurement of each physical property is as follows; Intrinsic viscosity = Measured with tetralene solution at 135°C Haze (χ)
: ASTM-1003-53 Bum Rod (2): Calculated as a percentage of the adhering area after stacking two films together and placing a 2 kg weight on it and keeping it at 50°C for 24 hours Young's modulus (Kg/mm): 20 mm x 220 mm
Tensile strength (Kg/ad): ASTM D882-6
4 impact (Kgcm/+*m): Calculated from the impact energy when a spherical weight is applied to a film of 10IIIm x 10a1 at 5°C to break it. Embossment: Visually inspected after holding the film at 50°C for 24 hours. Determined melting point and crystallization temperature (abbreviated as T1 and Tc, respectively)>
: Measured using D, S, and C at a temperature rising and cooling rate of 10° C./win.

実施例1 三塩化チタン触媒の製造 A、直径12ml11の鋼球2.3Kgの入った内容積
900m1の粉砕用ポットに東邦チタニウム■製、3塩
化チタン(TAC−141)60g、ジエチルアルミニ
ウムクロライド4鵬】を加え共粉砕しながらエチレンを
1g装入した。
Example 1 Production of titanium trichloride catalyst A. In a grinding pot with an internal volume of 900 m1 containing 2.3 kg of steel balls with a diameter of 12 ml, 60 g of titanium trichloride (TAC-141) manufactured by Toho Titanium ■, and 4 Peng of diethyl aluminum chloride were added. ] was added and 1 g of ethylene was charged while co-pulverizing.

共粉砕物を取り出す操作を3回繰り返した。得られた共
粉砕物100gを800m1のn−へブタン中に分散し
、次いでイソアミルエーテル2241を20分かけて添
加し次いで四塩化チタン480m1を30分かけて添加
した。
The operation of taking out the co-pulverized material was repeated three times. 100 g of the co-pulverized material obtained was dispersed in 800 ml of n-hebutane, then isoamyl ether 2241 was added over 20 minutes, and then 480 ml of titanium tetrachloride was added over 30 minutes.

その後60℃に昇温し攪拌下、2時間処理した後室温で
n−へブタンで5回洗浄しさらに70℃で1回洗浄した
。(触媒Aとする) B、5j!の丸底フラスコにn−ヘキサン11、四塩化
チタン250nl入れ一5℃で5時間かけて攪拌下にジ
エチルアルミニウムクロライド300m1 (n−ヘキ
サン900m1に希釈)を滴下した。次いで一1℃で3
.5時間攪拌下に保持した後、n−ヘキサンで5回得ら
れた3塩化チタンを洗浄したく1回1500ml使用)
Thereafter, the temperature was raised to 60°C, and the mixture was treated for 2 hours with stirring, and then washed five times with n-hebutane at room temperature and once at 70°C. (Catalyst A) B, 5j! 11 n-hexane and 250 nl of titanium tetrachloride were placed in a round-bottomed flask, and 300 ml of diethylaluminum chloride (diluted in 900 ml of n-hexane) was added dropwise with stirring at -5°C over 5 hours. Then at -1℃
.. After keeping it under stirring for 5 hours, wash the obtained titanium trichloride with n-hexane 5 times (1500 ml each time)
.

得られた固体三塩化チタンにn−ヘキサン3000o+
1加え攪拌下65℃で4時間保持し次いで1回1500
mlのn−ヘキサンで2回洗浄した。次いでイソアミル
エーテル44m1を1500mlのn−ヘキサンに希釈
したものを加え30℃で1時間保持し次いで固体三塩化
チタンを1回n−ヘキサン1500+1で5回洗浄した
N-hexane 3000o+ was added to the obtained solid titanium trichloride.
1 was added and kept at 65°C for 4 hours with stirring, then 1500
Washed twice with ml of n-hexane. Next, 44 ml of isoamyl ether diluted in 1500 ml of n-hexane was added and kept at 30 DEG C. for 1 hour, and then the solid titanium trichloride was washed 5 times, once with 1500+1 n-hexane.

次いで四塩化チタン60m1を10100Oのn−ヘキ
サンに希釈した液を加え65℃で2時間処理し、次いで
1回n−へキサン1500mlで5回洗浄して三塩化チ
タン触媒を得た(触媒B)。
Next, a solution obtained by diluting 60 ml of titanium tetrachloride in 10,100 O n-hexane was added and treated at 65°C for 2 hours, and then washed 5 times with 1500 ml of n-hexane once to obtain a titanium trichloride catalyst (catalyst B). .

C1三塩化チタン塩化アルミニウム共晶体をジエチルエ
ーテルと接触処理する工程を経て得られた市販の三塩化
チタン触媒(東邦チタニウム■製、TAC−3−21)
を500g当たり31のトルエンで洗浄(3回)した触
媒(触媒C)。
Commercially available titanium trichloride catalyst (manufactured by Toho Titanium ■, TAC-3-21) obtained through a process of contacting a C1 titanium trichloride aluminum chloride eutectic with diethyl ether.
(Catalyst C) was washed (3 times) with 31 g of toluene per 500 g.

実施例1 充分に乾燥し窒素で置換しさらにプロピレンで置換した
ジャケット付の100 fのオートクレーブにプロピレ
ン25Kg、ブテン−11,7Kg及びトルエン31を
装入する。一方1!のフラスコにn−へブタン500m
1 、ジエチルアルミニウムクロライド(塩素/アルミ
ニウム比1.01)15al実施例1で得た触媒B1.
5gを混合し上記100Jのオートクレーブに圧入した
。水素及びエチレンを所定量装入し次いでジャケットに
温水を通じて内温を60℃、気相水素濃度9.0χ、エ
チレンの気相濃度2.0χ、ブテン−14,5χに保た
れるように水素及びエチレン、ブテン−1を装入しプロ
ピレンを5Kg/hで装入しながら3時間重合を続けた
。3時間経過した後50n+ 1のエチレングリコール
モノイソプロビルエーテルを入れ60℃で30分間撹拌
した。得られたスラリーは細かい部分の内径が10cm
、上部の太い部分の内径が30cm、細かい部分の長さ
が10m、上部の太い部分の長さが2mの向流洗浄塔の
上部にスラリーを3(1Kg/h、下部よりプロピレン
85%、プロパン5%、エチレン1%、ブテン−15%
、トルエン4%の組成の洗浄液を40kg/hの割合で
導入し、上方より洗浄液を44Kg/h下部より洗浄さ
れたスラリーを26Kg/hで取り出し、取り出された
スラリーは内径374インチ、長さ60mの2重管を経
て大気圧に保たれたサイクロンに放出した。2重管はI
Kg/Gのスチームを通じて加熱してあった。サイクロ
ンより取り出されたパウダーは50℃、5Qmml(g
で10時間乾燥し約13にgのポリマーが得られた、一
方向流洗浄塔上部からの洗浄液からは0.5Kgのポリ
マーが回収された。従って全ポリマーに対する製品パウ
ダーの収率は約96%であった。得られたパウダーは前
述の条件で造粒製膜し物性を測定した。
Example 1 25 kg of propylene, 11.7 kg of butene, and 31 kg of toluene are charged into a jacketed 100 F autoclave which has been thoroughly dried, purged with nitrogen, and further purged with propylene. On the other hand, 1! 500m of n-hebutane in a flask of
1, diethylaluminum chloride (chlorine/aluminum ratio 1.01) 15al Catalyst B1 obtained in Example 1.
5 g were mixed and press-fitted into the above 100 J autoclave. A predetermined amount of hydrogen and ethylene were charged, and then hot water was passed through the jacket to maintain the internal temperature at 60°C, gas phase hydrogen concentration at 9.0χ, gas phase concentration of ethylene at 2.0χ, and butene at 14.5χ. Ethylene and butene-1 were charged, and polymerization was continued for 3 hours while charging propylene at a rate of 5 kg/h. After 3 hours had passed, 50n+1 ethylene glycol monoisopropyl ether was added and stirred at 60°C for 30 minutes. The resulting slurry has an inner diameter of 10 cm at the fine part.
, the slurry was placed at the top of a countercurrent cleaning tower with an inner diameter of 30 cm in the thick part at the top, a length of 10 m in the fine part, and a length of 2 m in the thick part at the top. 5%, ethylene 1%, butene-15%
A cleaning solution with a composition of 4% toluene was introduced at a rate of 40 kg/h, and the cleaning solution was poured from above at 44 kg/h, and the washed slurry was taken out from the bottom at a rate of 26 kg/h. The slurry taken out had an inner diameter of 374 inches and a length of 60 m. It was discharged through a double pipe into a cyclone maintained at atmospheric pressure. Double pipe is I
It was heated through Kg/G of steam. The powder taken out from the cyclone was kept at 50℃ and 5Qmml (g
About 13 g of polymer was obtained after drying for 10 hours. 0.5 Kg of polymer was recovered from the washing liquid from the top of the unidirectional flow washing tower. Therefore, the yield of product powder based on total polymer was about 96%. The obtained powder was granulated and film-formed under the conditions described above, and its physical properties were measured.

実施例2〜3 初めに装入するトルエンをキシレンにかえしかも塩素/
アルミニウムの比率が1.04のジエチルアルミニウム
クロライドを用いた(実施例2)、又塩素/アルミニウ
ムの比率が0.95のジエチルアルミニウムクロライド
を用いしかも気相のエチレン濃度1.5χ、ブテン−1
濃度5.0χ(実施例3)とした他は実施例1と同様と
した。結果は表に示す。
Examples 2 to 3 The initially charged toluene was changed to xylene and chlorine/
Diethylaluminum chloride with an aluminum ratio of 1.04 was used (Example 2), and diethylaluminum chloride with a chlorine/aluminum ratio of 0.95 was used, and the ethylene concentration in the gas phase was 1.5χ, butene-1
The procedure was the same as in Example 1 except that the concentration was 5.0χ (Example 3). The results are shown in the table.

実施例4〜5 触媒として触媒Aと同モルの塩素/アルミニウム比1.
02のジプロピルアルミニウムクロライドを用いた(実
施例4)、又触媒Bにかえ触媒Cを用いた(実施例5〉
他は実施例1と同様とした結果は表に示す。
Examples 4 to 5 As a catalyst, the same molar chlorine/aluminum ratio as catalyst A was used.
02 dipropyl aluminum chloride was used (Example 4), and catalyst C was used instead of catalyst B (Example 5)
Other conditions were the same as in Example 1. The results are shown in the table.

比較例1〜3 トルエン3βにかえてn−へブタン2,7I!、 トル
エン0.31とした(比較例1)、ジエチルアルミニウ
ムクロライドとして塩素/アルミニウム比0.89とし
た(比較例2)トルエン3Ilにかえてトルエン0.3
j!とししかも塩素/アルミニウム比1.2のジエチル
アルミニウムクロライドとした(比較例3)その他は実
施例1と同様とした結果は表に示す。
Comparative Examples 1 to 3 n-hebutane 2,7I instead of toluene 3β! , toluene was set to 0.31 (Comparative Example 1), and the chlorine/aluminum ratio was set to 0.89 as diethylaluminum chloride (Comparative Example 2) toluene 0.3 was used instead of 3Il of toluene.
j! In addition, diethylaluminium chloride with a chlorine/aluminum ratio of 1.2 was used (Comparative Example 3) The rest was the same as in Example 1. The results are shown in the table.

比較例4 塩化マグネシウムに担持した触媒を用いた対比例として
特開昭59−129205号の実施例1と同様の触媒系
を用いて実施例1と同様の共重合反応を実施した。結果
は表に示す。
Comparative Example 4 As a comparative example using a catalyst supported on magnesium chloride, a copolymerization reaction similar to that in Example 1 was carried out using the same catalyst system as in Example 1 of JP-A-59-129205. The results are shown in the table.

、/ /′,/ /′

Claims (1)

【特許請求の範囲】[Claims] 含酸素有機化合物で変性した三塩化チタンとジアルキル
アルミニウムハライドを用いてプロピレン自身を媒体と
する塊状重合法でプロピレンの共重合体を製造する方法
において、液状媒体の全量に対して1−20容量%の炭
素数6−10の芳香族炭化水素化合物の存在下に、ジア
ルキルアルミニウムハライドとしてハライドとアルミニ
ウムの比率が0.90〜1.10原子比のものを用いて
、エチレン及び/又はエチレンと炭素数4〜6のα−オ
レフィンの総和が全共重合体中の10重量%以下となる
ように共重合を行い、次いで共重合スラリーをプロピレ
ンで向流洗浄することを特徴とする透明性に優れたプロ
ピレンの共重合体の製造方法。
In a method for producing a propylene copolymer by a bulk polymerization method using propylene itself as a medium using titanium trichloride modified with an oxygen-containing organic compound and dialkyl aluminum halide, 1 to 20% by volume based on the total amount of the liquid medium. In the presence of an aromatic hydrocarbon compound having 6 to 10 carbon atoms, using a dialkyl aluminum halide having an atomic ratio of halide to aluminum of 0.90 to 1.10, ethylene and/or ethylene and carbon number Copolymerization is carried out so that the sum of α-olefins 4 to 6 is 10% by weight or less in the total copolymer, and the copolymer slurry is then washed in countercurrent with propylene.It has excellent transparency. A method for producing a propylene copolymer.
JP61074260A 1986-04-02 1986-04-02 Method for producing propylene copolymer Expired - Lifetime JP2501557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61074260A JP2501557B2 (en) 1986-04-02 1986-04-02 Method for producing propylene copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61074260A JP2501557B2 (en) 1986-04-02 1986-04-02 Method for producing propylene copolymer

Publications (2)

Publication Number Publication Date
JPS62232411A true JPS62232411A (en) 1987-10-12
JP2501557B2 JP2501557B2 (en) 1996-05-29

Family

ID=13541995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61074260A Expired - Lifetime JP2501557B2 (en) 1986-04-02 1986-04-02 Method for producing propylene copolymer

Country Status (1)

Country Link
JP (1) JP2501557B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6082920A (en) 1997-01-07 2000-07-04 Mitsubishi Pencil Kabushiki Kaisha Ball-point pen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598211A (en) * 1979-01-18 1980-07-26 Sumitomo Chem Co Ltd Production of ethylene-propylene-butene-1 copolymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598211A (en) * 1979-01-18 1980-07-26 Sumitomo Chem Co Ltd Production of ethylene-propylene-butene-1 copolymer

Also Published As

Publication number Publication date
JP2501557B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
EP2125902B1 (en) Monomer recycle process for fluid phase in-line blending of polymers
JPH0339093B2 (en)
EP0991679A1 (en) Propylene terpolymers and a process for the production thereof
JPH0336042B2 (en)
KR20050084032A (en) Butene-1 copolymers and process for their preparation
JPS6025444B2 (en) Manufacturing method of low density polyethylene
JP2007254671A (en) Method for producing polypropylene
JPS607645B2 (en) Method for producing a copolymer polypropylene by pre-polymerization activation of a catalyst for the copolymer
JPH0317845B2 (en)
JPS6018316A (en) Mandrel for manufacturing rubber hose
JPS62232411A (en) Production of propylene copolymer
EP3853270A1 (en) Propylene terpolymer
JPH0318644B2 (en)
JPH03126704A (en) Polybutene-1 for pipe and pipe of the same resin
JPS6043848B2 (en) Soft resin and its manufacturing method
JPS6195010A (en) Production of propylene/ethylene random copolymer
JPS61243842A (en) Polypropylene composition
JP3341568B2 (en) Propylene / ethylene block copolymer composition and method for producing the same
JPS588713A (en) Production of ethylene copolymer
JPS5811448B2 (en) Manufacturing method of block copolymer
JP2687503B2 (en) Polypropylene composition
JPH0339089B2 (en)
JPS6312088B2 (en)
JPH0319850B2 (en)
JPH0360327B2 (en)