JPH0360327B2 - - Google Patents

Info

Publication number
JPH0360327B2
JPH0360327B2 JP338483A JP338483A JPH0360327B2 JP H0360327 B2 JPH0360327 B2 JP H0360327B2 JP 338483 A JP338483 A JP 338483A JP 338483 A JP338483 A JP 338483A JP H0360327 B2 JPH0360327 B2 JP H0360327B2
Authority
JP
Japan
Prior art keywords
ethylene
olefin
chloride
propylene
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP338483A
Other languages
Japanese (ja)
Other versions
JPS59129211A (en
Inventor
Tadashi Asanuma
Ichiro Fujikage
Masahiro Kaneko
Shinryu Uchikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP338483A priority Critical patent/JPS59129211A/en
Publication of JPS59129211A publication Critical patent/JPS59129211A/en
Publication of JPH0360327B2 publication Critical patent/JPH0360327B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は低温耐衝撃性、剛性、透明性にすぐれ
しかも成形品とした時表面がくもつたり、べたつ
いたりすることのないエチレン/α−オレフイン
共重合体を収率よく製造する方法に関する。 食品容器用ブローグレード又はシートグレード
或は食品包装用フイルムグレードとして適した低
温耐衝撃性、剛性、透明性に優れたエチレン/α
−オレフイン共重合体を製造する方法に関しては
すでに多くの方法が知られており、例えば特公昭
43−11230、特公昭44−4992に開示された方法が
ある。しかしながらこれらの方法では低温耐衝撃
性、透明性が不充分でありこれに対して特開昭53
−35788或は特願昭56−35198で提案された方法で
は耐衝撃性等の物性は良好であるが、成形品の外
観が不良であるという問題がある。これに対して
は特願昭57−17583で提案した方法は物性バラン
スが優れているだけではなく、成形品の外観が良
好であり優れた方法であるが重合において併用す
る炭化水素化合物の回収及び得られた製品の乾燥
に問題があつた。 本発明の目的は低温耐衝撃性、剛性、透明性に
優れしかも成形した時成形品の外観の優れたエチ
レン/α−オレフイン共重合体を与える方法を提
供することにある。 本発明の別の目的は、上記の優れた性質を有す
るエチレン/α−オレフイン共重合体を収率よ
く、しかも容媒の回収工程が省略又は軽減された
方法を提供することにある。 本発明によるエチレン/α−オレフインのラン
ダム共重合体の製造方法はハロゲン化マグネシウ
ムとC−O又はC−N結合を含有する有機化合を
少なくとも含有する組成物を液状の塩化チタンで
接触処理し次いで炭素数6〜12の芳香族炭化水素
で洗浄して得た担持遷移金属触媒と有機アルミニ
ウム化合物からなる触媒を用いてα−オレフイン
自身を媒体として、エチレンとα−オレフインを
共重合せしめることを特徴とするものである。 本発明において少なくともハロゲン化マグネシ
ウムとC−O又はC−N結合を含有する有機化合
物を含有する組成物は既知の方法又はこれらに準
拠して製造され、格別の限定はない。例えばC−
O又はC−N結合を含有する有機化合物とハロゲ
ン化マグネシウムを共粉砕する方法、あるいは溶
解した塩化マグネシウム(溶解剤として例えばア
ルコール、エーテル、エステル)を適当な沈澱剤
(例えばハロゲン化ケイ素、ハロゲン化チタン、
ハロゲン化アルミニウム、有機アルミニウム)で
沈澱させついでもしくは沈澱の前又は同時にC−
OあるいはC−N結合を含有する有機化合物と接
触する方法、あるい有機マグネシウム化合物を適
当なハロゲン化剤で処理して塩化マグネシウムと
し次いでC−O又はC−N結合を含有する有機化
合物と接触する方法などが用いられる。 C−O又はC−N結合含有する化合物としては
例えばエーテル、エステル、オルソエステル、リ
ン酸エステル、アミド、アミンなどが挙げられ
る。上記組成物を製造するにさいし、SiO2
Al2O3など不活性化合物を共存させることができ
る。 かくして得られた組成物は次いで液状塩化チタ
ンで接触処理される。塩化チタンとしては例え
ば、四塩化チタン又は電子供与体によつて可溶化
された三塩化チタンが用いられる。接触処理は通
常、撹拌しながら常温〜140℃、好ましくは50〜
100℃で行われる。この塩化チタンで処理する際
に後述の芳香族炭化水素を共存させることも可能
である。 上記で処理された固形物は次いで芳香族炭化水
素で洗浄される。洗浄温度は常温付近で行わえば
良く、格別高温又は低温で行う必要はない。洗浄
は、担持遷移金属触媒中のTiと遊離のTiの比率
が1:1/100程度となる様に繰返し行うことがで
きる。 使用できる芳香族炭化水素は炭素数6〜12の炭
化水素であり具体的にはベンゼン、トルエン、キ
シレン、エチルベンゼン、クメンなどが例示され
る。 有機アルミニウム化合物としてはジエチルアル
ミニウムクロライド、ジプロピルアルミニウムク
ロライド、ジブチルアルミニウムクロライドなど
のジアルキルアルミニウムクロライド或はトリエ
チルアルミニウム、トリプロピルアルミニウム、
トリブチルアムミニウム、トリヘキシルアルミニ
ウムなどのトリアルキルアルミニウムなどが単独
で又は混合物として用いられる。 本発明の重合方法は担持遷移金属触媒と有機ア
ルミニウムの組み合わせの触媒の存在下で行われ
るが、より好ましくはエステル、エーテル、オル
ソエステル、アミン、アミド、リン酸エステル、
亜リン酸エステルなどの立体規則性向上剤が第三
成分として用いられる。 上記触媒を用いてエチレンとα−オレフインの
共重合が行われる。重合反応は通常の条件で行わ
れ格別の制限はないが、好ましくは常温〜100℃、
常圧〜50Kg/cm2−ゲージの条件で行われる。本発
明の効果がより大きい重合型式としては、α−オ
レフイン自身を媒体とする塊状重合法又は気相重
合法であり中でも塊状重合法である。ここでα−
オレフインとはプロピレン、ブテン−1、ヘキセ
ン−1、中でも80モル%以上のプロピレンと20モ
ル%以下のブテン−1、ヘキセン−1の混合物或
は100%プロピレンを表わす。本発明の方法によ
り得られる共重合体のエチレン含量は0.5〜10重
量%の範囲である。 本発明の方法を用いることによりすぐれた性質
を有するエチレン/α−オレフイン共重合体を効
率よく製造することができ工業的に価値がある。 以下に実施例を挙げ本発明を具体的に説明す
る。実施例及び比較例に於て、物性は共重合体に
対してフエノール系安定剤を20/10000の重量比、
ステアリン酸カルシウムを10/10000の重量比、
滑剤を20/10000の重量比でそれぞれ添加し、250
℃で造粒した後240℃で厚さ30μ、幅25cmのTダ
イフイルムを作りこれについて評価した。各物性
の測定は次のとおりである。 極限粘度数:135℃テトラリン溶液で測定 ヘイズ(%):ASTM−1003−53 ブロツキング(%):フイルムを2枚重ねあわせ
2Kgの錘りを乗せ50℃で24時間保つた後密着面
積の割合として算出。 ヤング率(Kg/mm):20mm×220mmのフイルムを用
いてインストロンで測定。 引張り強さ(Kg/cm2):ASTM D882−64T インパクト(Kg、cm/mm):5℃でフイルム10mm
×10mmのものに球形の錘りで衝撃を与え破壊し
た時の衝撃エネルギーにより算出。 浮き出し:フイルムを50℃で24時間保持の後目視
により判定。 実施例 1 (A)担持遷移金属触媒の製造: 振動ミルに装備された直径12mmの鋼球80個の
入つた内容積600mlの粉砕用ポツト中の窒素雰
囲気中で塩化マグネシウム20g、オルソ酢酸エ
チル1ml、1.2−ジクロロエタン4mlを加え40
時間粉砕した。200ml丸底フラスコに上記粉砕
物10g、四塩化チタン50mlを加え80℃で2時間
撹拌した後、デカンテーシヨンによつて上澄液
を除去した。次にトルエン100mlを加えて室温
で15分間撹拌した後、デカンテーシヨンによつ
て上澄液を除去する洗浄操作を7回繰返した
後、さらにトルエン100mlを追加して担体遷移
金属触媒スラリーとした。このスラリーの一部
をサンプリングしてトルエンを蒸発させ分析し
たところ担体遷移金属触媒中のTi含量は
1.75wt%であつた。又スラリー濃度は67g/
−トルエンであつた。 (B)重合反応: 充分に乾燥し窒素で置換しさらにプロピレン
で置換したジヤケツト付きの100オートクレ
ーブにプロピレン25Kg装入する。一方1のフ
ラスコにn−ヘプタン200ml、ジエチルアルミ
ニウムクロライド2.6ml、p−トルイル酸メチ
ル1.4ml、上記触媒1g(15mlのトルエンを含
む)を入れ室温で0.1時間撹拌の後トリエチル
アルミニウム0.5mlを加えたものを上記100の
オートクレーブな圧入した。水素及びエチレン
を所定量装入し次いでジヤケツトに温水を通じ
て内温を70℃とし、気相水素濃度が6%エチレ
ンの気相濃度が2.4%に保たれるように水素及
びエチレンを装入しながら重合を続けた。一方
56.5mlのn−ヘプタンに3.5mlのトリエチルア
ルミニウムを溶解したものを0.5ml/min、プ
ロピレンを125g/minの割合でオートクレー
ブに連続的に圧入しながら2時間重合を続け
た。2時間経過後10mlのジエチレングリコール
モノイソプロピルエーテルを入れ70℃で30分間
撹拌し次いでスラリーを細い部分の内径が10
cm、長さ10mで上部の太い部分の内径が30cm、
長さが2mの向流洗浄塔の上部にスラリーを30
Kg/h、、下部よりプロピレン90%、プロパン
5%、エチレン1%、n−ヘプタン4%の組成
の洗浄液を40Kg/hの割合で導入し、上部より
洗浄液を44Kg/h、下部より洗浄されたスラリ
ーを26Kg/hの割合で取り出し、取り出された
スラリーは内径3/4インチ、長さ60mの2重管
を経て大気圧に保たれたサイクロンに放出し
た。2重管は1Kg/cm2Gのスチームを通じ加熱
してあつた。サイクロンより取り出されたパウ
ダーは揮発分を0.1%含有していた。得られた
パウダーはさらに50℃、50mmHgで10分間乾燥
したところ、18.1Kgのポリマーが得られ一方向
流洗浄塔上部からの洗浄液からは0.7Kgのポリ
マーが回収された。全ポリマーに対する製品の
割合(以下製品収率)は96.3wt%であつた。得
られたパウダーは前述の条件で造粒、製膜され
た物性を測定した。 実施例2〜5比較例1〜2 担持遷移金属触媒の洗浄処理用溶剤をキシレン
(実施例2)、エチルベンゼン(実施例3)、クメ
ン(実施例4)、ベンゼン(実施例5)、n−ヘキ
サン(比較例1)n−ヘプタン(比較例2)とし
た他は実施例1と同様な方法が実施された。結果
は表に示す。
The present invention relates to a method for producing in good yield an ethylene/α-olefin copolymer which has excellent low-temperature impact resistance, rigidity, and transparency, and which does not have a cloudy or sticky surface when molded. Ethylene/α with excellent low-temperature impact resistance, rigidity, and transparency suitable as blow grade or sheet grade for food containers or film grade for food packaging.
-Many methods are already known for producing olefin copolymers, for example,
There is a method disclosed in Japanese Patent Publication No. 43-11230 and Japanese Patent Publication No. 44-4992. However, these methods have insufficient low-temperature impact resistance and transparency;
-35788 or Japanese Patent Application No. 56-35198, the physical properties such as impact resistance are good, but there is a problem that the appearance of the molded product is poor. In contrast, the method proposed in Japanese Patent Application No. 57-17583 not only has an excellent balance of physical properties but also provides a good appearance of the molded product, making it an excellent method. There was a problem in drying the obtained product. An object of the present invention is to provide a method for producing an ethylene/.alpha.-olefin copolymer which has excellent low-temperature impact resistance, rigidity, and transparency, and which gives molded articles with excellent appearance. Another object of the present invention is to provide a method for producing an ethylene/α-olefin copolymer having the above-mentioned excellent properties in a high yield, and in which the step of recovering the container is omitted or reduced. The method for producing a random copolymer of ethylene/α-olefin according to the present invention comprises contact-treating a composition containing at least a magnesium halide and an organic compound containing a C-O or C-N bond with liquid titanium chloride, and then It is characterized by copolymerizing ethylene and α-olefin using α-olefin itself as a medium using a supported transition metal catalyst obtained by washing with an aromatic hydrocarbon having 6 to 12 carbon atoms and a catalyst consisting of an organoaluminum compound. That is. In the present invention, the composition containing at least a magnesium halide and an organic compound containing a C-O or C-N bond can be produced by a known method or in accordance with these methods, and is not particularly limited. For example, C-
A method of co-pulverizing magnesium halide with an organic compound containing an O or C-N bond, or a method of co-pulverizing dissolved magnesium chloride (e.g. alcohol, ether, ester as a dissolving agent) with a suitable precipitating agent (e.g. silicon halide, halogenated Titanium,
C-
A method of contacting with an organic compound containing an O or C-N bond, or a method of treating an organomagnesium compound with a suitable halogenating agent to form magnesium chloride, and then contacting it with an organic compound containing a C-O or C-N bond. Methods such as Examples of compounds containing C-O or C-N bonds include ethers, esters, orthoesters, phosphoric acid esters, amides, and amines. In producing the above composition, SiO 2 ,
Inert compounds such as Al 2 O 3 can coexist. The composition thus obtained is then contact treated with liquid titanium chloride. As titanium chloride, for example, titanium tetrachloride or titanium trichloride solubilized with an electron donor is used. Contact treatment is usually carried out at room temperature to 140°C, preferably 50 to 140°C while stirring.
Performed at 100℃. During the treatment with titanium chloride, it is also possible to coexist with an aromatic hydrocarbon, which will be described later. The solids treated above are then washed with aromatic hydrocarbons. The cleaning temperature may be around room temperature, and there is no need to perform the cleaning at particularly high or low temperatures. Washing can be repeated so that the ratio of Ti in the supported transition metal catalyst to free Ti is approximately 1:1/100. Aromatic hydrocarbons that can be used are those having 6 to 12 carbon atoms, and specific examples include benzene, toluene, xylene, ethylbenzene, and cumene. Examples of organoaluminum compounds include dialkylaluminum chloride such as diethylaluminum chloride, dipropylaluminum chloride, dibutylaluminum chloride, triethylaluminum, tripropylaluminum,
Trialkylaluminiums such as tributylamminium and trihexylaluminum are used alone or as a mixture. The polymerization method of the present invention is carried out in the presence of a catalyst in combination of a supported transition metal catalyst and an organoaluminum, and more preferably esters, ethers, orthoesters, amines, amides, phosphoric esters,
A stereoregularity enhancer such as a phosphite is used as the third component. Copolymerization of ethylene and α-olefin is performed using the above catalyst. The polymerization reaction is carried out under normal conditions, and there are no particular restrictions, but preferably at room temperature to 100°C,
It is carried out under the conditions of normal pressure to 50Kg/cm 2 -gauge. Polymerization methods that are more effective in the present invention are bulk polymerization methods or gas phase polymerization methods using α-olefin itself as a medium, and among these, bulk polymerization methods are preferred. Here α−
Olefin refers to propylene, butene-1, hexene-1, a mixture of 80 mol% or more propylene and 20 mol% or less butene-1 or hexene-1, or 100% propylene. The ethylene content of the copolymers obtained by the method of the invention ranges from 0.5 to 10% by weight. By using the method of the present invention, it is possible to efficiently produce an ethylene/α-olefin copolymer having excellent properties, which is of industrial value. The present invention will be specifically explained below with reference to Examples. In the examples and comparative examples, the physical properties were determined by using a phenolic stabilizer at a weight ratio of 20/10000 to the copolymer.
Calcium stearate at a weight ratio of 10/10000,
A lubricant was added at a weight ratio of 20/10000, and 250
After granulation at 240°C, a T-die film with a thickness of 30 μm and a width of 25 cm was prepared and evaluated. Measurements of each physical property are as follows. Intrinsic viscosity: Measured with tetralin solution at 135°C Haze (%): ASTM-1003-53 Blocking (%): After stacking two films and placing a 2 kg weight on them and keeping them at 50°C for 24 hours, as a percentage of the adhesion area calculation. Young's modulus (Kg/mm): Measured using an Instron using a 20mm x 220mm film. Tensile strength (Kg/ cm2 ): ASTM D882-64T Impact (Kg, cm/mm): 10mm film at 5℃
Calculated based on the impact energy when a 10 mm object is damaged by impact with a spherical weight. Embossment: Determined visually after holding the film at 50°C for 24 hours. Example 1 (A) Production of supported transition metal catalyst: 20 g of magnesium chloride and 1 ml of ethyl orthoacetate in a nitrogen atmosphere in a grinding pot with an internal volume of 600 ml containing 80 steel balls with a diameter of 12 mm, equipped with a vibration mill. , add 4 ml of 1,2-dichloroethane and add 40
Time crushed. 10 g of the above pulverized material and 50 ml of titanium tetrachloride were added to a 200 ml round-bottomed flask, and the mixture was stirred at 80° C. for 2 hours, and then the supernatant liquid was removed by decantation. Next, 100 ml of toluene was added, stirred at room temperature for 15 minutes, and the washing operation of removing the supernatant liquid by decantation was repeated 7 times, followed by an additional 100 ml of toluene to form a carrier transition metal catalyst slurry. . A part of this slurry was sampled, toluene was evaporated and analyzed, and the Ti content in the carrier transition metal catalyst was found to be
It was 1.75wt%. Also, the slurry concentration is 67g/
-It was toluene. (B) Polymerization reaction: Charge 25 kg of propylene into a jacketed 100 autoclave that has been thoroughly dried, purged with nitrogen, and then purged with propylene. On the other hand, 200 ml of n-heptane, 2.6 ml of diethylaluminium chloride, 1.4 ml of methyl p-toluate, and 1 g of the above catalyst (including 15 ml of toluene) were placed in flask 1, and after stirring at room temperature for 0.1 hour, 0.5 ml of triethyl aluminum was added. The above 100 parts were press-fitted in an autoclave. Charge hydrogen and ethylene in predetermined amounts, then pass hot water through the jacket to bring the internal temperature to 70°C, and while charging hydrogen and ethylene, keep the gas phase hydrogen concentration at 6% and the ethylene gas phase concentration at 2.4%. Polymerization continued. on the other hand
Polymerization was continued for 2 hours while continuously pressurizing a solution of 3.5 ml of triethylaluminum in 56.5 ml of n-heptane into the autoclave at a rate of 0.5 ml/min and propylene at a rate of 125 g/min. After 2 hours, add 10ml of diethylene glycol monoisopropyl ether and stir at 70℃ for 30 minutes.
cm, the length is 10m and the inner diameter of the thick part at the top is 30cm,
The slurry was placed at the top of a countercurrent cleaning tower with a length of 30 m.
Kg/h, a cleaning solution with a composition of 90% propylene, 5% propane, 1% ethylene, and 4% n-heptane was introduced from the bottom at a rate of 40Kg/h, and the cleaning solution was introduced from the top at a rate of 44Kg/h, and from the bottom. The slurry was taken out at a rate of 26 kg/h, and the taken out slurry was discharged into a cyclone maintained at atmospheric pressure through a double pipe with an inner diameter of 3/4 inch and a length of 60 m. The double tube was heated through steam at 1 kg/cm 2 G. The powder taken out from the cyclone contained 0.1% volatile matter. When the obtained powder was further dried at 50°C and 50 mmHg for 10 minutes, 18.1 kg of polymer was obtained, and 0.7 kg of polymer was recovered from the washing liquid from the upper part of the unidirectional flow washing tower. The ratio of the product to the total polymer (hereinafter referred to as product yield) was 96.3 wt%. The obtained powder was granulated and formed into a film under the conditions described above, and its physical properties were measured. Examples 2 to 5 Comparative Examples 1 to 2 The solvent for cleaning the supported transition metal catalyst was xylene (Example 2), ethylbenzene (Example 3), cumene (Example 4), benzene (Example 5), n- The same method as in Example 1 was carried out, except that hexane (Comparative Example 1) and n-heptane (Comparative Example 2) were used. The results are shown in the table.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の共重合方法に用いる触媒の
フローチヤート図である。
FIG. 1 is a flow chart of a catalyst used in the copolymerization method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 ハロゲン化マグネシウムとC−OまたはC−
N結合を含有する有機化合物を液状の塩化チタン
で接触処理し次いで炭素数6〜12の芳香族炭化水
素で洗浄することにより得られた担持遷移金属触
媒と有機アルミニウムからなる触媒を用いてα−
オレフイン自身を媒体としてエチレンとα−オレ
フインを共重合せしめることを特徴とする、オレ
フインの共重合方法。
1 Magnesium halide and C-O or C-
α-
A method for copolymerizing olefin, which comprises copolymerizing ethylene and α-olefin using olefin itself as a medium.
JP338483A 1983-01-14 1983-01-14 Copolymerization of olefin Granted JPS59129211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP338483A JPS59129211A (en) 1983-01-14 1983-01-14 Copolymerization of olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP338483A JPS59129211A (en) 1983-01-14 1983-01-14 Copolymerization of olefin

Publications (2)

Publication Number Publication Date
JPS59129211A JPS59129211A (en) 1984-07-25
JPH0360327B2 true JPH0360327B2 (en) 1991-09-13

Family

ID=11555859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP338483A Granted JPS59129211A (en) 1983-01-14 1983-01-14 Copolymerization of olefin

Country Status (1)

Country Link
JP (1) JPS59129211A (en)

Also Published As

Publication number Publication date
JPS59129211A (en) 1984-07-25

Similar Documents

Publication Publication Date Title
JPH0433619B2 (en)
JPH0317845B2 (en)
JPH0360327B2 (en)
JPH0319850B2 (en)
JPH0333167B2 (en)
JP2501557B2 (en) Method for producing propylene copolymer
JPS6369809A (en) Polymerization of propylene
JPS6036203B2 (en) Method for producing propylene-ethylene block copolymer
JPS6312088B2 (en)
JPH0680101B2 (en) Process for producing block copolymer of propylene
JPS646212B2 (en)
JP3281132B2 (en) Method for producing crosslinked polyolefin
JPH02145611A (en) Propylene random copolymer
JPS58120615A (en) Preparation of ethylene-propylene random copolymer
JPS612708A (en) Production of propylene/ethylene random copolymer
JP2683363B2 (en) Propylene polymerization method
JPS6195010A (en) Production of propylene/ethylene random copolymer
JPS5856362B2 (en) Production method of titanium trichloride catalyst
JPS58136607A (en) Production of ethylene/propylene random copolymer
JPS58136611A (en) Production of ethylene/propylene block copolymer
KR830001194B1 (en) How to prepare propylene copolymer
JPH0816140B2 (en) Process for producing block copolymer of propylene
JPH07173213A (en) Catalyst for producing ethylene-propylene copolymer rubber
JPH058204B2 (en)
JPH0580496B2 (en)