JPS62232172A - Manufacture of substrate for photovoltaic element - Google Patents

Manufacture of substrate for photovoltaic element

Info

Publication number
JPS62232172A
JPS62232172A JP61074304A JP7430486A JPS62232172A JP S62232172 A JPS62232172 A JP S62232172A JP 61074304 A JP61074304 A JP 61074304A JP 7430486 A JP7430486 A JP 7430486A JP S62232172 A JPS62232172 A JP S62232172A
Authority
JP
Japan
Prior art keywords
film
organic insulating
substrate
metal substrate
photovoltaic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61074304A
Other languages
Japanese (ja)
Inventor
Norihiko Inuzuka
犬塚 敬彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61074304A priority Critical patent/JPS62232172A/en
Publication of JPS62232172A publication Critical patent/JPS62232172A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To improve the optical conversion efficiency of a photovoltaic element, which is formed on a substrate for the photovoltaic element, and the life of the element, by providing processes, in which a film comprising an organic insulating material is formed on a metal substrate, the film is dried and partially hardened, and the film is further dried with heat in a vacuum state. CONSTITUTION:An organic insulating film, which is applied on one surface of a metal substrate 12 is dried and partially hardened in a low-temperature furnace 19. Then, the metal substrate 20 is sent to a high-temperature vacuum furnace 29 and heated for 30-120 minutes at 300-350 deg.C. Thus, the organic insulating film on the surface of the metal substrate 20 is completely gardened. The furnace 29 is kept at said temperature in the vacuum state. Therefore, unreacted products having low molecular weight and remaining solvent, which are mixed in the organic insulating film, and gaseous materials such as enzyme and nitrogen, which are occluded and adsorbed in the film, are removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、プラズマCVD装置などの高真空成膜装置
を用いて光発電素子を製造する際に用いる光発電素子基
板の製造方法、特に金属基板の表面に有機iP、縁材料
の皮膜を形成した光発電素子基板の製造方法に関するも
のである。
Detailed Description of the Invention [Industrial Field of Application] This invention relates to a method for manufacturing a photovoltaic device substrate used when manufacturing a photovoltaic device using a high vacuum film forming apparatus such as a plasma CVD device, and in particular to a method for manufacturing a photovoltaic device substrate using a high vacuum film forming apparatus such as a plasma CVD device. The present invention relates to a method of manufacturing a photovoltaic device substrate in which a film of organic iP and edge material is formed on the surface of the substrate.

〔従来の技術〕[Conventional technology]

近年、ブラズ−r c v D4! fitを用いてp
−1−n接合を有するアモルファスシリコン光発電素子
が製造され、各種用途忙利用されている。このn−1−
n接合を有する単層の光発電1子の実効光起電力は0.
5ボルト程度であるため、各種用途に利用する場合には
、複数個の光発電、素子を直列に接続して所定の起電力
を得なければならない、このために、光発電素子の基板
として、ガラス基板やステンレスなどの金属基板が用い
られているが、可祷性を要する用途に光発電素子を用い
る場合には2薄1漠の金属基板が用いられる。しかし、
光発電素子の基板として金槁基板を用いる場合VCU 
、金M基板上に直接o−1−n接合を有する光発電素子
を複数個形成しても、金lI%基板が共通の下部電甑と
して作用するため、これらの光発電、素子間で直列接続
を行うことができない。そこで従来、ステンレス鋼板の
よう々金属基板上で光発電素子の11ゴ列接続を行う場
合には、第2図に示すように、予め金属基板上にポリイ
ミド系樹脂のような回帰性を有する耐熱性絶1・材料の
皮膜を形成したのちに、この皮膜の上に金属製下部電極
をジ数個形成することによって、発電区分の異なる光発
電、素子を同一基板上に製造することが行われている。
In recent years, Braz-RCV D4! p using fit
Amorphous silicon photovoltaic devices having a -1-n junction have been manufactured and are widely used in various applications. This n-1-
The effective photovoltaic force of a single layer photovoltaic device having an n-junction is 0.
Since it is about 5 volts, when using it for various purposes, it is necessary to connect multiple photovoltaic elements in series to obtain a predetermined electromotive force.For this purpose, as a substrate for photovoltaic elements, Metal substrates such as glass substrates and stainless steel are used, but when a photovoltaic element is used for applications that require flexibility, metal substrates of various thicknesses and thicknesses are used. but,
When using a gold-plated substrate as a substrate for a photovoltaic device, VCU
Even if a plurality of photovoltaic devices having o-1-n junctions are formed directly on the gold M substrate, since the gold lI% substrate acts as a common lower electrode, these photovoltaic devices can be connected in series. Unable to make connection. Conventionally, when connecting 11 photovoltaic elements in rows on a metal substrate such as a stainless steel plate, as shown in Fig. By forming a film of the material and then forming several metal lower electrodes on the film, it is possible to manufacture photovoltaic power generation devices with different power generation categories on the same substrate. ing.

!52図は従来の光発電素子の断面図であり1図におい
て(ハは金FA基板、(2)はこの金属基板(ハの上に
設けられた耐熱性の有機P縁皮膜、(3)けこの有機絶
縁皮1!A(λ)の上に例えばスパッタ装置によって銀
が成かされた金属製下部電極、(ul 、 (rl 、
 (61はこの下部9c極(3)の上に例えばプラズマ
CVD装置によって成膜されたアモルファスシリコン光
i w、 素子の膜であり、それぞれ(<<ldn層、
(S)は土層、(61けTl fflである。(71目
この光発電素子のp 18161の表面に例えばスパッ
タ装#によって形成された透明導電膜、(IIはこの透
明導電膜(71の上に例えば電子ビーム蒸着装置を用い
て銀の蒸着膜が形成された上部*水である。(り)はF
部電極(3),nJml#l、  1r4(sl、p層
(6)、透明4電換(71、及び上部型・ネfilから
構成された元殆に素子であり、(io)は互いに離れて
設けられた光発電素子(9)の上部m極(fflと下部
電極(3)を従続するリード線である。
! Figure 52 is a cross-sectional view of a conventional photovoltaic device. On this organic insulating film 1!A(λ), metal lower electrodes (ul, (rl,
(61 is an amorphous silicon film formed on this lower 9c electrode (3) by, for example, a plasma CVD device, and is a film of an element, respectively (<<ldn layer,
(S) is the soil layer (61 Tl ffl. This is the upper part*water on which a silver vapor deposition film is formed using, for example, an electron beam evaporation device.(ri) is F
It is basically an element consisting of a part electrode (3), nJml#l, 1r4 (sl, p layer (6), transparent 4-electrode (71), and upper type/nefil, and (io) are separated from each other. This is a lead wire that connects the upper m-pole (ffl) of the photovoltaic element (9) and the lower electrode (3) provided in the photovoltaic element (9).

従来の光発電素子は上記のように構成され、透明導電膜
(り1側から適当なエネルギー強羅をもった光が光発電
素子(ワ)のp層(A1.iノー1jl、n層(pi 
IC入射すると、元発粛、素子(9)中で正孔と電子が
発生する。光発電素子は、第2図では透明4電膜(り)
側から順にpm (61、xJ41j1.n層(ulの
接合構造をもっているので、正孔はp層(6)に拡散し
、一方、′成子はn m f51に拡散する。従って、
p層(6)と逍明導實膜(71を通じて電気的に接続し
ている上部電極1ff+が正極になり、n層(4)と電
気的に接し−Cいる下部d極(3)が負部となる九発1
素子(デ1が形成される。そこで、異なる発電区分を有
する元発、J!素子(ワ)同士をリード線(10)によ
って直列に接続すると、高電圧の電気工不ルヤーを取り
出すことができる。
A conventional photovoltaic element is constructed as described above, and light with an appropriate energy intensity is emitted from the transparent conductive film (1) side to the p layer (A1.i no 1jl, n layer (pi)
When incident on the IC, holes and electrons are generated in the element (9). In Figure 2, the photovoltaic element is a transparent four-electrode film.
Since it has a junction structure of pm (61,xJ41j1.
The upper electrode 1ff+, which is electrically connected to the p-layer (6) through the Shomei conductive film (71), becomes a positive electrode, and the lower d-electrode (3), which is electrically connected to the n-layer (4) and has -C, becomes a negative electrode. nine shots 1
An element (De1) is formed.Therefore, by connecting the original J! elements (Wa) with different power generation sections in series with each other using a lead wire (10), it is possible to take out a high-voltage electric power generator. .

第3図は、上記のような光発電素子を形成する際に使用
される光発電素子基板の製造工程を示す説明図あり、(
//)は例えは長尺のステンレス薄板がロール巻きちれ
たフリーロール、 (/Jlはこのフリーロール(//
)から送り出された可撓性の金属基板、(/3)[この
金DA基板(/コ)を洗浄するための洗浄槽例えは超音
波洗浄槽、(/4)はこの洗浄槽(/3)の中に入れら
れた溶剤、(/s)は洗浄槽(/3)で抗紗さγした金
属基板(/コ)全乾燥するための乾燥炉、(/6))よ
この乾隊炉(/j)で乾燥された金属蚕板(/2)の片
側表面に;口゛機絶縁材料を頭布するためのコーディン
グ情、(、/7)はこのコーチインク槽(/6)の中に
入れられた有様絶縁材料例えばポリイミド系樹脂、ポリ
フェニレンサルファイド糸倒脂鳴、(/l)はコーチイ
ンク槽a(/is)&(ふ・いて並−基板(/コ)に塗
布された有機P縁材料(/7)の皮膜すなわち有機絶縁
材料(コ)の課厚調壷用のコーティングロール、 (/
 ? )ij金1・焉基板(/コ)の表面に塗布された
有機絶縁皮膜(2)を乾燥・半硬化させるための低温加
熱炉、(λ0)は片側表面に有機絶縁皮膜(コ1が塗布
された金属基板、(2/)Viこの金属基板(コ0)を
巻き取るだめの駆動用ロール、(2コ)、(コ、t)、
(a≠)、(コs)、Ob)。
FIG. 3 is an explanatory diagram showing the manufacturing process of a photovoltaic device substrate used when forming a photovoltaic device as described above;
//) is a free roll made of a long thin stainless steel plate, (/Jl is this free roll (//
) A flexible metal substrate sent out from (/3) ), (/s) is the metal substrate that has been gauzed in the cleaning tank (/3), (/ko) is the drying oven for complete drying, (/6)) is the drying oven next to it. On one side of the metal silk plate (/2) dried in (/j); the coding information for coating the mouth machine insulating material, (, /7) is in this coach ink tank (/6). Insulating materials such as polyimide resin, polyphenylene sulfide threads, (/l) are organic materials coated on the coach ink tank a (/is) P edge material (/7) film, i.e. organic insulating material (co) coating roll for thickness adjustment jar, (/
? ) ij Gold 1 / A low temperature heating furnace for drying and semi-curing the organic insulating film (2) applied to the surface of the substrate ( / ), (λ0) is a low temperature heating furnace for drying and semi-curing the organic insulating film (2) applied to one side metal substrate, (2/) Vi, drive roll for winding up this metal substrate (ko0), (2ko), (ko, t),
(a≠), (kos), Ob).

(コア)、(コg)は金属基板(/2)及び(2o)を
送るための送りロールである。
(core) and (cog) are feed rolls for feeding the metal substrates (/2) and (2o).

従来の光発電素子基板の製造方法は1例えば0、/膜厚
のステンレス薄板である金属基板(/2)がフリーロー
ル(//)から送り出され1例えばフッ素系溶剤の入っ
た超音波洗浄槽(/3)を通ることによって脱脂・脱兎
される。清浄化された金属基板(/コ)は、乾燥炉(1
5)を通って洗浄溶剤を乾燥したのち、コーテイング槽
(/6’)f通る。このコーテイング槽(/6)では有
機溶剤によって希釈された有機絶縁材料(/7)として
のポリイミド系樹脂がスプレーによって金属基板(/2
)の片側表面に塗布され、コーティングロール(7g)
によって所定の膜厚に調整される。この膜厚は金属基板
(/2)の表面粗さによって、10〜λθQ Bmの任
意の厚さにrA幣できる。金属基板(/2)の片側表面
に塗布された有機絶縁皮膜(2)は1次に低温加熱炉(
/9)において加熱又は紫外線・電子線照射によって乾
燥・半硬化される。この低温加熱炉(/テ)中では、上
記の希釈溶剤の殆んどが蒸散すると共に、有機絶縁皮膜
(2)の硬化が始まる。このように有機絶縁被膜(コ)
が片側表面に塗布された金属基板(20)は、最後に駆
動用ロール(コ/)に巻き取られろ。
The conventional manufacturing method for photovoltaic device substrates is that a metal substrate (/2), which is a thin stainless steel plate with a film thickness of, for example, 0, is sent out from a free roll (//) and placed in an ultrasonic cleaning tank containing, for example, a fluorinated solvent. It is degreased and removed by passing through (/3). The cleaned metal substrate (/co) is placed in a drying oven (1
After passing through 5) to dry the cleaning solvent, it passes through a coating tank (/6') f. In this coating bath (/6), polyimide resin as an organic insulating material (/7) diluted with an organic solvent is sprayed onto the metal substrate (/2).
) on one side of the coating roll (7g)
The film thickness is adjusted to a predetermined value. The thickness of this film can be any thickness from 10 to λθQBm depending on the surface roughness of the metal substrate (/2). The organic insulating film (2) applied to one surface of the metal substrate (/2) is first heated in a low temperature heating furnace (
/9), it is dried and semi-cured by heating or UV/electron beam irradiation. In this low-temperature heating furnace (/TE), most of the diluting solvent mentioned above evaporates and the organic insulating film (2) begins to harden. In this way, organic insulating coating (co)
The metal substrate (20) coated on one side is finally wound up on a driving roll (co/).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の光発電素子基板の製造方法では1通
常の大気条件下で形成された有機絶縁皮膜(コ)中に低
分子量の未反応物や窒素、酸素などのガスが取り込まれ
ている。一方、アモルファスシリコン光発電素子の成膜
は、プラズマCVD法のような高温・高真空装着を用い
て、光発電素子基板の温度をコOO℃〜300℃に上げ
て行われている。
In the conventional manufacturing method for photovoltaic device substrates as described above, 1. low molecular weight unreacted substances and gases such as nitrogen and oxygen are incorporated into the organic insulating film formed under normal atmospheric conditions. . On the other hand, film formation of amorphous silicon photovoltaic devices is carried out by raising the temperature of the photovoltaic device substrate to 00° C. to 300° C. using high-temperature, high-vacuum mounting such as plasma CVD.

従って、有機絶縁皮膜(りで被覆された金属基板(ハを
用いて光発電素子を製造する場合、有機絶縁皮膜(2)
中から上記の未反応物やガスが放出される。
Therefore, when manufacturing a photovoltaic device using a metal substrate coated with an organic insulating film (2), the organic insulating film (2)
The above-mentioned unreacted substances and gases are released from inside.

これらの未反応物やガスがアモルファスシリコン光発電
素子の膜中に取り込筐れると、光発電素子の候の性質が
恋〈なり、さらに光発電素子の電気的特性や寿命が低下
するという間4点があった。
If these unreacted substances and gases are incorporated into the film of an amorphous silicon photovoltaic device, the properties of the photovoltaic device will deteriorate, and the electrical characteristics and life of the photovoltaic device will deteriorate. There were 4 points.

この発明はかかる問題点(i−解決するためになされた
もので、金属基板の絶縁膜に耐熱性の有機絶縁皮膜を用
いた場合でも、特性の劣化しない優れた光発電素子が製
造できる光発電素子基板の製造方法を得ることを目的と
する、 〔問題点を解決するための手段〕 この発明に係る光発電素子基板の製造方法は。
This invention was made to solve such problems (i-), and is a photovoltaic power generation device that can produce an excellent photovoltaic device whose characteristics do not deteriorate even when a heat-resistant organic insulating film is used as an insulating film on a metal substrate. [Means for Solving Problems] A method for manufacturing a photovoltaic device substrate according to the present invention is aimed at obtaining a method for manufacturing a device substrate.

金属基板上に重布した耐熱性の有機絶縁材料の皮膜を乾
燥・半硬化する工程の次に真空加熱乾燥工程を設け、こ
の工程で、光発電素子のアモルファスシリコン膜の成膜
温屁より高温で有機絶縁材料の皮膜を加熱処理するよう
にしたものである。
After the process of drying and semi-curing the film of heat-resistant organic insulating material overlaid on the metal substrate, a vacuum heating drying process is performed. The film of the organic insulating material is heat-treated.

〔作 用〕 この発明においては、金属基板上に塗布されたや吸蔵・
吸着されているガス成分が除去される。
[Function] In the present invention, the occlusion and occlusion film coated on the metal substrate
Adsorbed gas components are removed.

〔実施例〕〔Example〕

第1図はこの発明による先発′ft素子基板の製造工程
を示す説明図であり、(//)〜(コg)は第3図に’
S?けるものと全く同一である。(2デ)は低温加熱炉
(/?)で半硬化した有機絶縁皮膜(2)を真!加熱乾
燥して完全に硬化させるための高温真空加熱炉、(JO
)は金MA板(20)を送るための送りロールである。
FIG. 1 is an explanatory diagram showing the manufacturing process of the original FT element substrate according to the present invention, and (//) to (g) are shown in FIG. 3.
S? It is exactly the same as the (2de) is an organic insulating film (2) semi-cured in a low-temperature heating furnace (/?). High temperature vacuum heating furnace (JO
) is a feed roll for feeding the gold MA plate (20).

上記のように構成された光発電素子基板の製造方法に2
いては、上記従来方法と同様に行われ、金属基板(/−
)の片側表面に塗布された有機絶縁皮膜(コ)は、低温
加熱炉(/9)によって乾燥・半硬化される。次に、こ
の金属基板(コ0)は高温真空加熱炉(λ9)に送り込
まれ、 J00’(:、−voO℃、好適には300’
(:、〜3SO℃で30分〜/20分間加熱されろこと
により、金四基板(,20)の表面の有機絶縁皮膜(2
1が完全に硬化される。この加熱温度は。
2. A method for manufacturing a photovoltaic device substrate configured as described above.
The metal substrate (/-
) is dried and semi-cured in a low-temperature heating furnace (/9). Next, this metal substrate (CO0) is sent to a high temperature vacuum heating furnace (λ9), and J00'(:, -voO℃, preferably 300'
The organic insulating film (2
1 is completely cured. What is this heating temperature?

アモルファスシリコン光発電素子の成+′lA謳fff
i(2θθ°C〜3oo’C)より高温に設定されたも
のである。高温真空加熱炉(コブ)は上記の温度でかつ
真空に保たれているため、有機絶縁皮膜(2)中に混入
した低分子量の未反応生成物、残存溶剤、及びこの皮膜
中に吸蔵・吸着された酵素ψ窒素などのガス状物質が除
去される。続いて、有機P!縁皮膜(2)が塗布された
金属基板(−〇)は、駆動用ロール(コ/)によって巻
き取られる。
Development of amorphous silicon photovoltaic device
i (2θθ°C to 3oo'C). Since the high-temperature vacuum heating furnace (cob) is kept at the above temperature and in a vacuum, low molecular weight unreacted products and residual solvent mixed into the organic insulation film (2) are occluded and adsorbed in this film. Gaseous substances such as nitrogen are removed by the enzyme ψ produced. Next, organic P! The metal substrate (-) coated with the edge film (2) is wound up by a driving roll (ko/).

次に、以上のように製造された光発電素子基板及び従来
の製造方法により製造された光発電素子基板の表面に、
それぞれ光発電素子(qlを形成した。
Next, on the surface of the photovoltaic device substrate manufactured as described above and the photovoltaic device substrate manufactured by the conventional manufacturing method,
A photovoltaic device (ql) was formed respectively.

すなわち、これらの先発11t素子基板の表面にそれぞ
れ下部電極(3)、5oooAの3層(ul 、 1層
(S)、及び狐層(61、透明導電膜(7)及び上部電
極(ざ)を形成した6次いで、これらの光発電素子(?
)に、 「AM−/Jを用いて1001+1W/−の光
をgo時間照射して。
That is, a lower electrode (3), three layers of 500A (UL, 1 layer (S), and a fox layer (61), a transparent conductive film (7), and an upper electrode (ZA) were respectively formed on the surface of these original 11t element substrates. These photovoltaic elements (?) were then formed.
), ``Using AM-/J, irradiate light of 1001+1W/- for go time.

光の変換効率の変化を測定した。その結果を次の表  
     (か面&/d) この表から、この発明の製造方法による基板を用いて造
られた光発電素子は、初期の変換効率が高いのみならず
、光劣化の程度も少ないことがわかる。
Changes in light conversion efficiency were measured. The results are shown in the table below.
(Curface &/d) From this table, it can be seen that the photovoltaic device manufactured using the substrate according to the manufacturing method of the present invention not only has a high initial conversion efficiency but also has a low degree of photodeterioration.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、金属基板上に有機絶縁
材料の皮膜を形成して乾燥・半硬化したのち、皮膜を真
空加熱乾燥する工程を有することにより、予め有機絶縁
皮膜中の未反応生成物や不純物ガス成分がアモルファス
シリコン光発電素子の成膜に先立って除去されるので、
光発電素子基板上に形成された光発電素子は、光の変換
効率及び素子寿命性が優れているという効果がある、
As explained above, this invention includes a step of forming a film of an organic insulating material on a metal substrate, drying and semi-curing the film, and then heating and drying the film in vacuum. and impurity gas components are removed prior to film formation of the amorphous silicon photovoltaic device.
The photovoltaic device formed on the photovoltaic device substrate has the effect of having excellent light conversion efficiency and device lifespan.

【図面の簡単な説明】 第1図はこの発明の一実施例による光発電素子基板の製
造工程を示す説明図、第2図は従来の光発電素子の断面
図、第3図は従来の光発電素子基板の製造工程を示す説
明図である。 図において、(ハは金属基板、(,2)は有機絶縁皮膜
。 (3)は下部電極、(り1は1層、(ylはi HA、
(6)はp 7m、(7)は透明導電膜、(ざ)は上部
電極、(91は光発電素子、(/2)は金属基板、(/
b)はコーテイング槽。 (/7)は有機絶縁材料%(/l)はコーティングロー
ル、(/?)は低温加熱炉、(20)は金属基板、(コ
ブ)は高温真空加熱炉である。 なお、各図中、同一符号は同−又は相当部分を示す、
[Brief Description of the Drawings] Fig. 1 is an explanatory diagram showing the manufacturing process of a photovoltaic element substrate according to an embodiment of the present invention, Fig. 2 is a cross-sectional view of a conventional photovoltaic element, and Fig. 3 is an explanatory diagram showing the manufacturing process of a photovoltaic element substrate according to an embodiment of the present invention. It is an explanatory view showing a manufacturing process of a power generation element board. In the figure, (c is a metal substrate, (,2) is an organic insulating film, (3) is a lower electrode, (ri1 is one layer, (yl is iHA,
(6) is p 7m, (7) is the transparent conductive film, (Z) is the upper electrode, (91 is the photovoltaic element, (/2) is the metal substrate, (/
b) is a coating tank. (/7) is an organic insulating material % (/l) is a coating roll, (/?) is a low temperature heating furnace, (20) is a metal substrate, and (bump) is a high temperature vacuum heating furnace. In addition, in each figure, the same reference numerals indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)金属基板上に有機絶縁材料の皮膜を形成する工程
と、形成された皮膜を乾燥・半硬化する工程と、乾燥・
半硬化された皮膜を真空加熱乾燥する工程とを有するこ
とを特徴とする光発電素子基板の製造方法。
(1) A process of forming a film of an organic insulating material on a metal substrate, a process of drying and semi-curing the formed film, and a process of drying and semi-curing the formed film.
1. A method for manufacturing a photovoltaic element substrate, comprising the step of vacuum heating and drying a semi-cured film.
(2)有機絶縁材料は、ポリイミド系樹脂又はポリフェ
ニレンサルファイド系樹脂であることを特徴とする特許
請求の範囲第1項記載の光発電素子基板の製造方法。
(2) The method for manufacturing a photovoltaic device substrate according to claim 1, wherein the organic insulating material is a polyimide resin or a polyphenylene sulfide resin.
(3)真空加熱乾燥する温度は、光発電素子基板上に光
発電素子を形成するのに必要な温度よりも高温であるこ
とを特徴とする特許請求の範囲第1項記載の光発電素子
基板の製造方法。
(3) The photovoltaic device substrate according to claim 1, wherein the temperature of vacuum heating and drying is higher than the temperature required to form a photovoltaic device on the photovoltaic device substrate. manufacturing method.
(4)真空加熱乾燥する温度は、300℃〜350℃で
あることを特徴とする特許請求の範囲第1項又は第3項
記載の光発電素子基板の製造方法。
(4) The method for manufacturing a photovoltaic device substrate according to claim 1 or 3, wherein the vacuum heating and drying temperature is 300°C to 350°C.
JP61074304A 1986-04-02 1986-04-02 Manufacture of substrate for photovoltaic element Pending JPS62232172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61074304A JPS62232172A (en) 1986-04-02 1986-04-02 Manufacture of substrate for photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61074304A JPS62232172A (en) 1986-04-02 1986-04-02 Manufacture of substrate for photovoltaic element

Publications (1)

Publication Number Publication Date
JPS62232172A true JPS62232172A (en) 1987-10-12

Family

ID=13543252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61074304A Pending JPS62232172A (en) 1986-04-02 1986-04-02 Manufacture of substrate for photovoltaic element

Country Status (1)

Country Link
JP (1) JPS62232172A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010099656A (en) * 2008-10-06 2010-05-06 Bomag Gmbh Device for generating circular vibration or directional vibration having continuously adjustable vibration amplitude and/or exciting force

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010099656A (en) * 2008-10-06 2010-05-06 Bomag Gmbh Device for generating circular vibration or directional vibration having continuously adjustable vibration amplitude and/or exciting force

Similar Documents

Publication Publication Date Title
US6720576B1 (en) Plasma processing method and photoelectric conversion device
KR20140027265A (en) Laminate, production method for same, and method of creating device structure using laminate
JP3901156B2 (en) Mask forming method and removing method, and semiconductor device, electric circuit, display module, color filter, and light emitting element manufactured by the method
JP4746009B2 (en) Thin film transistor having poly (arylene ether) polymer as gate dielectric layer and passivation layer
CN109256475A (en) A kind of perovskite light emitting diode and preparation method based on ultraviolet thermal anneal process
CN101355116A (en) Method for manufacturing photoelectric conversion device
CN106953015A (en) A kind of preparation method of high efficiency large area perovskite solar cell
KR20080011203A (en) Thin film-laminated polyimide film and flexible printed wiring board
WO1991017572A1 (en) Solar cell
WO2007148771A1 (en) Capsular micro light-emitting device and its manufacturing method
JPS62232172A (en) Manufacture of substrate for photovoltaic element
JP6725122B2 (en) Method for improving conductivity of graphene sheet and electrode structure using graphene sheet with improved conductivity
JP3940047B2 (en) Method for manufacturing photoelectric conversion device
JP4076245B2 (en) Low dielectric constant insulating film, method for forming the same, and interlayer insulating film
JP5691679B2 (en) Laminated body and method for producing the same
JP6162918B1 (en) Method for producing high-efficiency solar cell
KR100263753B1 (en) Process and equipment for the preparation of dry-encapsulated organic light emitting device
TWM580257U (en) Excimer lamp
KR101734371B1 (en) A manufacturing method of a far infrared ray heating element
JP2585503B2 (en) Laser processing method
JPS5823489A (en) Manufacture of semiconductor device
TWI757575B (en) Excimer lamp and manufacturing method thereof
JPS58123772A (en) Semiconductor element
US11552202B2 (en) High efficiency solar cell and method for manufacturing high efficiency solar cell
JP2000228287A (en) Organic electroluminescent element and its manufacture