JPS62231198A - Curved crystal element for x-ray diffraction - Google Patents

Curved crystal element for x-ray diffraction

Info

Publication number
JPS62231198A
JPS62231198A JP61074698A JP7469886A JPS62231198A JP S62231198 A JPS62231198 A JP S62231198A JP 61074698 A JP61074698 A JP 61074698A JP 7469886 A JP7469886 A JP 7469886A JP S62231198 A JPS62231198 A JP S62231198A
Authority
JP
Japan
Prior art keywords
crystal
curved
curvature
plane
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61074698A
Other languages
Japanese (ja)
Inventor
勝 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61074698A priority Critical patent/JPS62231198A/en
Publication of JPS62231198A publication Critical patent/JPS62231198A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は、ヨハンソン型湾曲結晶の製1F方法に関する
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a 1F method for manufacturing a Johansson type curved crystal.

口、従来の技術 従来LSIの製造過程において、レジストパターンの形
成には一般に光転写方式が用いられてきた。しかし、光
転写方式では0.5μmが限界と言われており、又フレ
ネル回折の影響や焦点深度が小さい為に、1μm以下の
微細パターンを形成する為には、多層レジスト法やCE
L法等のプロセス技術を用いなくてはならない。そのZ
)に工程が複雑になり歩留まりの低下の原因となり、近
い将来限界に達すると思われる。これに変わる手段とし
て電子ビーム直接描画やX線リソグラフィーが考えられ
ている。しかし、電子ビーム直接描画方式ではスループ
ットやステージのつなぎ合わせ精度、更には高アスペク
ト比を達成するために、多層レジストを使わねばならな
いなどの難点がある。これに対して、X線リソグラフィ
ーは転写工程であるため大量生産に向いていることから
特に有望視されており、波長数人〜数十Aの光線用いる
為、実用上回折の影響は無視できる程度であり、0.1
μm程度までの解頭度が期待できる。
2. Description of the Related Art In the conventional LSI manufacturing process, a phototransfer method has generally been used to form a resist pattern. However, the optical transfer method is said to have a limit of 0.5 μm, and due to the influence of Fresnel diffraction and the small depth of focus, in order to form fine patterns of 1 μm or less, multilayer resist methods and CE
A process technology such as the L method must be used. That Z
), which complicates the process and causes a decrease in yield, and is expected to reach its limit in the near future. Electron beam direct writing and X-ray lithography are being considered as alternative means. However, the electron beam direct writing method has drawbacks such as the need to use multilayer resist in order to achieve throughput, stage joint accuracy, and high aspect ratio. On the other hand, X-ray lithography is considered particularly promising because it is a transfer process and is suitable for mass production, and since it uses light beams with wavelengths of several to several tens of amperes, the effect of diffraction is negligible in practical use. and 0.1
A degree of decapitation of up to about μm can be expected.

X線リソグラフィーは大別して2つの方法が考えられる
。一つはX線マスクとウェハーの間隔を10μm前後に
近接させてX線を照射し、アスクのパターンを転写する
、いわゆるプロキシミティ−法であり、乙う一つはX線
結渫素子を使ってマスクの投影像を転写する投影露光法
である。
X-ray lithography can be roughly divided into two methods. One is the so-called proximity method, in which the X-ray mask and wafer are placed close to each other with a distance of about 10 μm, and the mask pattern is transferred by irradiating X-rays. This is a projection exposure method in which a projected image of a mask is transferred using a method.

本発明は後行である投影露光法に使用される照明用惧光
素子として利用が考えられているヨハンソン型湾曲結晶
についての発明である。υC来X線分光用の代表的な湾
曲結晶としてヨハン型が使われているが、このヨハン型
結晶は、結晶表面に平行な格子面を持った平行平面の結
晶をローランド円の直径を半径にするような円弧に沿っ
て一方向にのみ曲げることにより、ローランド円上に置
かれた点線源からのX線のうちブラッグ条件を満たす特
定波長のX線のみが同じローランド円上の池の点に集光
するようにしたものである。しかし、上述したような湾
曲結晶では収差が大きく、結晶の中心叶近の光軸に近い
所では線源から出たX線はブラッグ条件を満たしてロー
ランド円上の一点にffiするが、結晶の中心から外れ
ていくにつれて、入射X線はブラッグ角を満たし得なく
なってしまう。又阪に結晶周辺においてブラッグ条件を
満たすような位置に光源を持ってきても、中心点の回折
X線と周辺部の回折X線とは集光点が異なるために、湾
曲結晶で回折されたX線を全て同じ位置に集束すること
は困難である。ヨハン型湾曲結晶の表面をローランド円
にi9うように、円筒面に研磨して収差をなくしたヨハ
ンソン型湾曲結晶もあるが、湾曲は一方向のみであるか
ら、一平面上の集光しか出来ないために、3次元の集光
を必要とするX線リングラフイーの集光素子としては適
さない、3次元的に集光できるようにするには、結晶に
二重曲率を持たせねばならないが、その場ご結晶は球面
ではなく、2方向の曲率が異なるトロイダル面に仕上げ
ねばならず製f%が困難である。
The present invention relates to a Johansson-type curved crystal that is considered to be used as a light emitting element for illumination used in the subsequent projection exposure method. Since υC, a Johann type crystal has been used as a typical curved crystal for X-ray spectroscopy, but this Johann type crystal is a parallel plane crystal with lattice planes parallel to the crystal surface, with a radius equal to the diameter of a Rowland circle. By bending in only one direction along an arc such as It is designed to concentrate light. However, the curved crystal described above has large aberrations, and the X-rays emitted from the source near the optical axis near the center of the crystal satisfy the Bragg condition and ffi to a single point on the Rowland circle. As it moves away from the center, the incident X-rays no longer satisfy the Bragg angle. Furthermore, even if a light source is placed at a position around the crystal that satisfies the Bragg condition, the diffracted X-rays at the center point and the diffracted X-rays at the periphery have different focal points, so the light source is diffracted by the curved crystal. It is difficult to focus all the X-rays on the same location. There is also a Johansson-type curved crystal that eliminates aberrations by polishing the surface of the Johann-type curved crystal to a cylindrical surface similar to a Rowland circle, but since the curvature is only in one direction, light can only be focused on one plane. Therefore, it is not suitable as a focusing element for X-ray phosphorography, which requires three-dimensional light focusing.To be able to focus three-dimensional light, the crystal must have a double curvature. However, the in-situ crystal is not a spherical surface, but must be finished into a toroidal surface with different curvatures in two directions, making it difficult to manufacture f%.

ハ1発明が解決しようとする問題点 本発明は、空間的な一点に集光可能なヨハンソン型結晶
を容易に製1tする方法を提供することをを目的とする
C.1 Problems to be Solved by the Invention It is an object of the present invention to provide a method for easily manufacturing a Johansson crystal that can focus light on one spatial point.

二0問題点解決のための手段 格子面を曲率半径2Roで湾曲させたとき、結晶表面の
曲率半径がR8となるように、湾曲前に予め結晶表面を
円筒面に研磨しておき、その後上記結晶を上記格子面の
曲率半径が2 Roになるように、円筒研磨面の円筒軸
に垂直な面内で曲げると共に、それと直角の方向に湾曲
させて、結晶表面をトロイダル面とした。
20 Means for Solving Problems When the lattice plane is curved with a radius of curvature of 2Ro, the crystal surface is polished into a cylindrical surface beforehand so that the radius of curvature of the crystal surface becomes R8, and then the above The crystal was bent in a plane perpendicular to the cylindrical axis of the cylindrical polished surface so that the radius of curvature of the lattice plane was 2 Ro, and was also curved in a direction perpendicular thereto to make the crystal surface a toroidal surface.

ホ、1ヤ用 垂直な2方向において曲率が違う曲面であるトロイダル
面になるように研磨することは非常に困難であるから、
結晶を湾曲する前に予め計算された曲面に研磨した後、
湾曲させることにより、I・ローイダル面を(Y成する
方法にて、容易にヨハンシン型結晶を製1ヤできるよう
になった。
E, because it is very difficult to polish to a toroidal surface, which is a curved surface with different curvature in two perpendicular directions,
After polishing the crystal to a pre-calculated curved surface before curving it,
By curving it, it became possible to easily produce a Johanshin-type crystal using the method of forming an I/rhoidal plane (Y).

へ、実施例 第1図に本発明の一実施例を示す。第1図Aに湾曲後の
結晶断面図、第1図Bに湾曲前の結晶断面図を示す。第
2図にヨハンソン型湾曲結晶の断面図を示す、第1図及
び第2図において、Kは湾曲結晶、Cは格子面、0は結
晶に表面の曲率中心、Roは結晶に表面の曲率半径、A
、Aoは紙面内の結晶表面上のX線の回折点、SはX線
源、Fは回折X線の収束点、Bは5B=SFでかつAO
Bが直径になるような円周上の点即ち格子面の曲率中心
点、I−TはA。BとSFの交点、Eは紙面内にない結
晶表面上のX線の入射点、Dは点Aoを通る結晶面と線
分B/〜の延長線との交点である。
Embodiment FIG. 1 shows an embodiment of the present invention. FIG. 1A shows a cross-sectional view of the crystal after bending, and FIG. 1B shows a cross-sectional view of the crystal before bending. Figure 2 shows a cross-sectional view of a Johansson-type curved crystal. In Figures 1 and 2, K is the curved crystal, C is the lattice plane, 0 is the center of curvature of the surface of the crystal, and Ro is the radius of curvature of the surface of the crystal. ,A
, Ao is the diffraction point of X-rays on the crystal surface in the paper plane, S is the X-ray source, F is the convergence point of the diffracted X-rays, B is 5B=SF and AO
B is the point on the circumference where the diameter is the center of curvature of the lattice plane, and IT is A. The intersection of B and SF, E is the incident point of the X-ray on the crystal surface that is not within the plane of the paper, and D is the intersection of the crystal plane passing through point Ao and the extension of line segment B/~.

第2図に示すヨハンソン型湾曲結晶について、X線の収
束原理を説明する。紙面上のローランド円上即ち点0を
中心とする半径ROの円周上で、格子面の曲率中心点B
と結晶に表面の曲率中心点0を拮ぶ方向BAoと同線分
BAOが結晶表面と交わる点Aθにおいてブラッグの条
件を満足する方向でローランド円周上の位置に線源Sを
配置し、線分BAoに関してSと対称な位置に点Fを設
定すれば、点S、B、Fは結晶表面に沿った円周上にあ
り、かつ5I3=BFであるから、結晶表面上の江1口
の点Aにおいて1 、:i S A B = l B A F−π/′2−
θBくθ8 ;ブラッグ角) を:151足し、格子面の法線は全て点Bを通るから、
X線源Sから湾曲結晶にで曲率Roを有する表面の任、
αの点Aに放射されたX線の回折X線はすべて点Fに収
束する。また結晶面は線分SFを軸とする回転面になる
ようにも湾曲させれば、X線源Sから紙面から外れた方
向で湾曲結晶に表面の任意の点Eに入射されたX線の回
折X線ら同じようにすべて点Fに無収差で収束する。
The principle of convergence of X-rays will be explained regarding the Johansson type curved crystal shown in FIG. On the Rowland circle on the paper, that is, on the circumference of the radius RO centered on point 0, the center of curvature B of the lattice surface
A radiation source S is placed at a position on the Roland circumference in a direction that satisfies Bragg's condition at a point Aθ where the direction BAo and the same line segment BAO intersect with the crystal surface, and the center of curvature point 0 of the surface of the crystal is If point F is set at a position symmetrical to S with respect to minute BAo, points S, B, and F are on the circumference along the crystal surface, and 5I3=BF, so 1 at point A: i S A B = l B A F-π/'2-
θB × θ8 ; Bragg angle) is added by 151, and all normals to the lattice plane pass through point B, so
From the X-ray source S to the curved crystal, a surface with a curvature Ro,
All the diffracted X-rays of the X-rays emitted to point A of α converge to point F. In addition, if the crystal plane is also curved to become a plane of rotation about the line segment SF, then Similarly, all diffracted X-rays converge on point F without aberration.

このような湾曲結晶は、紙面内では点Bを中心とする円
弧状に湾曲させ、紙面と垂直方向にはSFを軸とするよ
うな回転面に、平板型結晶を湾曲させ、このように湾曲
させた結晶を紙面内ではA。Bが直径をなすように、紙
面と垂直方向にはSFを軸とするような円状に研磨する
ことによって製(ヤすることができるが、このような研
磨面は実際に製1ヤするには非常に難しく大変手数がか
かるそこで、本発明は湾曲させた後研磨するのではなく
、研磨した後湾曲させる方法で上記の3次元的ヨハンン
ン型の湾曲結晶を製(P Lようとするものである。そ
の方法に関して第1図で説明分行う。第1図Bは湾曲前
の結晶断面図であり、第1図Aは湾曲後の結晶断面図で
ある。第1図Aに示すように湾曲結晶において角θと結
晶表面の曲率半径Roを決めると、 AOD=2Roθ AD=2R□  (1−CO!+θ) となり、X=AOD、、y=A石とおくと、結晶の湾曲
前の研磨表面Aの座標が(x、y>で表され、そのxy
の関係式を求めると、 Ro>>xの時、次式が成り立つ。
Such a curved crystal is made by curving it into an arc shape centered on point B in the plane of the paper, and by curving a flat plate crystal into a plane of rotation with SF as the axis in the direction perpendicular to the plane of the paper. The resulting crystal is A in the paper. It can be manufactured by polishing in a circular shape with SF as the axis in the direction perpendicular to the plane of the paper so that B is the diameter, but such a polished surface is difficult to actually manufacture once. Therefore, the present invention aims to produce the above-mentioned three-dimensional Johann type curved crystal by a method of polishing and then curving, rather than curving and then polishing. The method will be explained in Fig. 1. Fig. 1B is a cross-sectional view of the crystal before bending, and Fig. 1A is a cross-sectional view of the crystal after bending. Determining the angle θ and the radius of curvature Ro of the crystal surface in the crystal, AOD=2Roθ AD=2R□ (1-CO!+θ), and if we set X=AOD, and y=A stone, then the polishing before the crystal is curved. The coordinates of surface A are expressed as (x, y>, and the xy
When we find the relational expression, the following expression holds true when Ro>>x.

y=2Ro  (1−cos x/2Ro ) −(1
1ζx”/ 4 Ro−−−−−0−(■L52Ro−
7Ui丁)”−x”−・・・=131(3)式は変形す
ると、 (y−2Ro )2+x”= (2Ro 、z、、、、
、、、、(4゜となり、結晶表面が湾曲後の曲率半径の
219の半径2 ROの曲面であることを示している。
y=2Ro (1-cos x/2Ro) −(1
1ζx”/ 4 Ro---0-(■L52Ro-
7Ui ding)"-x"-...=131 When formula (3) is transformed, (y-2Ro)2+x"= (2Ro, z,...
,,,, (4 degrees, indicating that the crystal surface is a curved surface with a radius of 2RO of 219, which is the radius of curvature after curvature.

また、AD H= 2RoS jn2θBとなる。Further, ADH=2RoSjn2θB.

関数yは第1図Bに示すように、この湾曲結晶を平板に
戻した時の格子面AoDを基準(X軸)にとった結晶の
表面の断面を表す関数である。従って、第3図に示すよ
うな平板結晶を、その任意の主断面が式(1)9式(2
1式(3)のいずれかで表されるような円筒面に加工し
ておいてから、円筒軸に垂直な面内で結晶表面が曲率半
径R8になるように湾曲させ、同面に垂直な面即ち曲率
を持たない面を曲率半径がA。Hである曲面のトロイダ
ル面になるように湾曲させれば、結渫持性の良い湾曲結
晶を得ることができる。式(1)は結晶の厳密な研12
面の断面の関数で、式(21はR8>>xとして近似さ
せた時の断面を表す、しかし、これは異物線なので製1
ヤは難しい。そこで更にこれを半径2R8の円で近似さ
せたのが式(3)である。
As shown in FIG. 1B, the function y is a function representing the cross section of the surface of the crystal with the lattice plane AoD as the reference (X axis) when the curved crystal is returned to a flat plate. Therefore, for a flat crystal as shown in FIG.
1. After processing into a cylindrical surface as expressed by either formula (3), curve the crystal surface in a plane perpendicular to the cylinder axis so that the radius of curvature is R8, and then A surface, that is, a surface without curvature, has a radius of curvature of A. By curving the crystal so that it becomes a toroidal surface having a curved surface H, a curved crystal with good retention properties can be obtained. Equation (1) is a rigorous study of crystals12
It is a function of the cross section of the surface, and the formula (21 represents the cross section when approximated as R8>>x. However, since this is a foreign body line, the product 1
Ya is difficult. Therefore, equation (3) is obtained by further approximating this using a circle with a radius of 2R8.

−具体例として、波長^= 5 、40625 AのX
線、結晶として格子定数d=3.25AのGe(111
)を用いる。SA、)=FAo=750mmにとるとθ
a =56.2.77deg、RO=450.87、A
H8=623.8mmになる。Xの値を1m1IIかl
>40mmまでの値なとった時のyの計算例3kに示す
、 単位 關 第3図Aに結晶を上記表のようにして研磨した時の結晶
の斜視図を、第3図Bに同結晶を2方向に湾曲させた時
の結晶の斜視図を示す。
- As a specific example, wavelength ^ = 5, X of 40625 A
Ge (111
) is used. SA, )=FAo=750mm, θ
a = 56.2.77deg, RO = 450.87, A
H8=623.8mm. The value of X is 1m1II or l
An example of calculating y when taking a value up to >40 mm.Units shown in Figure 3A are perspective views of the crystal when polished as shown in the table above, and Figure 3B is a perspective view of the same crystal. A perspective view of the crystal when curved in two directions is shown.

ト、効果 本発明によれば、超微細なパターンを必要とする超LS
Iの製作の工程として考えられているX線リソグラフィ
ーにとって、不可欠なX線集光素子である無収差で3次
元集光機能を持った湾曲結晶を製1ヤが容易になった。
According to the present invention, ultra-LS that requires ultra-fine patterns
For X-ray lithography, which is considered as a manufacturing process for I, it has become easier to manufacture a curved crystal that has no aberration and has a three-dimensional light focusing function, which is an essential X-ray focusing element.

【図面の簡単な説明】[Brief explanation of drawings]

第1(21は本発明の一実施例でA図が湾曲後の結晶の
断面図、B図が湾曲前の結晶の断面図、第2図はヨハン
ソン型の湾曲結晶の断面図、第3図は本発明工程図でA
図が研磨済みで湾曲前の結晶の斜をA図、B図が湾曲後
の完成湾曲結晶の斜視図である。
Figure 1 (21 is an embodiment of the present invention; Figure A is a cross-sectional view of the crystal after bending; Figure B is a cross-sectional view of the crystal before bending; Figure 2 is a cross-sectional view of the Johansson-type curved crystal; Figure 3). is A in the process diagram of the present invention
Figure A is a perspective view of the polished crystal before bending, and Figure B is a perspective view of the completed curved crystal after bending.

Claims (1)

【特許請求の範囲】[Claims] 格子面を曲率半径2R_0で湾曲させたとき、結晶表面
の曲率半径がR_0となるように、湾曲前に予め結晶表
面を円筒面に研磨しておき、その後上記結晶を上記格子
面の曲率半径が2R_0になるように、円筒研磨面の円
筒軸に垂直な面内で曲げると共に、それと直角の方向に
湾曲させて、結晶表面をトロイダル面としたX線回折用
湾曲結晶素子
When the lattice plane is curved with a radius of curvature of 2R_0, the crystal surface is polished into a cylindrical surface before bending so that the radius of curvature of the crystal surface becomes R_0, and then the crystal is polished so that the radius of curvature of the crystal surface becomes R_0. A curved crystal element for X-ray diffraction, which is bent in a plane perpendicular to the cylindrical axis of the cylindrical polished surface and curved in a direction perpendicular to it so that the crystal surface becomes 2R_0, so that the crystal surface is a toroidal surface.
JP61074698A 1986-03-31 1986-03-31 Curved crystal element for x-ray diffraction Pending JPS62231198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61074698A JPS62231198A (en) 1986-03-31 1986-03-31 Curved crystal element for x-ray diffraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61074698A JPS62231198A (en) 1986-03-31 1986-03-31 Curved crystal element for x-ray diffraction

Publications (1)

Publication Number Publication Date
JPS62231198A true JPS62231198A (en) 1987-10-09

Family

ID=13554703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61074698A Pending JPS62231198A (en) 1986-03-31 1986-03-31 Curved crystal element for x-ray diffraction

Country Status (1)

Country Link
JP (1) JPS62231198A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195399A (en) * 1988-01-29 1989-08-07 Shimadzu Corp X-ray spectroscope
JPH01253700A (en) * 1988-03-31 1989-10-09 Shimadzu Corp Asymmetric johannson curved crystal and optical exposure system for x-ray projection using said crystal
WO2007072906A1 (en) * 2005-12-21 2007-06-28 Kyoto University Method for manufacturing curvature distribution crystal lens, polarization control device, x-ray reflectance measuring device, and x-ray reflectance measuring method
WO2009028613A1 (en) * 2007-08-31 2009-03-05 Kyoto University Curvature distribution crystal lens and x-ray reflectance measuring instrument

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576535A (en) * 1980-06-12 1982-01-13 Nippon Chemical Ind Energization controlling circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576535A (en) * 1980-06-12 1982-01-13 Nippon Chemical Ind Energization controlling circuit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195399A (en) * 1988-01-29 1989-08-07 Shimadzu Corp X-ray spectroscope
JPH01253700A (en) * 1988-03-31 1989-10-09 Shimadzu Corp Asymmetric johannson curved crystal and optical exposure system for x-ray projection using said crystal
WO2007072906A1 (en) * 2005-12-21 2007-06-28 Kyoto University Method for manufacturing curvature distribution crystal lens, polarization control device, x-ray reflectance measuring device, and x-ray reflectance measuring method
JPWO2007072906A1 (en) * 2005-12-21 2009-06-04 国立大学法人京都大学 Method of manufacturing curvature distribution crystal lens, polarization control device, X-ray reflectivity measuring device, and X-ray reflectivity measuring method
JP4759750B2 (en) * 2005-12-21 2011-08-31 国立大学法人京都大学 Method of manufacturing curvature distribution crystal lens, polarization control device, X-ray reflectivity measuring device, and X-ray reflectivity measuring method
WO2009028613A1 (en) * 2007-08-31 2009-03-05 Kyoto University Curvature distribution crystal lens and x-ray reflectance measuring instrument
JP4973960B2 (en) * 2007-08-31 2012-07-11 国立大学法人京都大学 Curvature distribution crystal lens and X-ray reflectivity measuring apparatus
US8406379B2 (en) 2007-08-31 2013-03-26 Kyoto University Curvature distribution crystal lens and X-ray reflectometer

Similar Documents

Publication Publication Date Title
JP4918542B2 (en) EUV projection optical system with six reflectors
US5063586A (en) Apparatus for semiconductor lithography
KR100221678B1 (en) Ringfield lithography
JP4959235B2 (en) Non-axial projection optical system and extreme ultraviolet lithography apparatus using the same
KR101946596B1 (en) Image-forming optical system, exposure apparatus, and device producing method
TW200813647A (en) Exposure method and apparatus, and method for fabricating device
US4891830A (en) X-ray reflective mask and system for image formation with use of the same
JPS6221223A (en) Projecting and image-forming device for soft x-rays
JPS62231198A (en) Curved crystal element for x-ray diffraction
JP4957548B2 (en) Projection optical system and exposure apparatus
JP3861329B2 (en) Vacuum thin film forming apparatus and reflector manufacturing method
JPH09120154A (en) Polarizing mask and its production as well as pattern exposure method and pattern projection aligner using the same
JPH06148861A (en) Photomask and its production
JPH01253700A (en) Asymmetric johannson curved crystal and optical exposure system for x-ray projection using said crystal
TWI825014B (en) Optical objective for operation in euv spectral region
JPS6030131A (en) Electron-beam exposure device
JPH0789537B2 (en) X-ray reduction projection exposure system
JPH07249561A (en) Illuminating optical device
JP2689341B2 (en) X-ray projection exposure apparatus
JP2555592B2 (en) Illumination system for X-ray projection exposure
JPS62230021A (en) Illumination system for x-ray projection exposure system
WO2018110511A1 (en) Fine optical image generation element and fine optical image generation apparatus
JP4004603B2 (en) Aberration coefficient measuring method of reduction projection exposure apparatus
JP2008304711A (en) Projection optical system, exposure device, and device manufacturing method
JPH04328500A (en) Condenser