JPS6223117B2 - - Google Patents

Info

Publication number
JPS6223117B2
JPS6223117B2 JP59010606A JP1060684A JPS6223117B2 JP S6223117 B2 JPS6223117 B2 JP S6223117B2 JP 59010606 A JP59010606 A JP 59010606A JP 1060684 A JP1060684 A JP 1060684A JP S6223117 B2 JPS6223117 B2 JP S6223117B2
Authority
JP
Japan
Prior art keywords
vinyl acetate
pva
paper
copolymer
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59010606A
Other languages
Japanese (ja)
Other versions
JPS59204999A (en
Inventor
Tohei Morya
Koichi Kajitani
Makoto Shiraishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP1060684A priority Critical patent/JPS59204999A/en
Publication of JPS59204999A publication Critical patent/JPS59204999A/en
Publication of JPS6223117B2 publication Critical patent/JPS6223117B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は紙用表面サイジング剤に関する。 従来、カルボキシル基を含有するポリビニルア
ルコール(以後、ポリビニルアルコールを単に
PVAと略記し、カルボキシル基を含有するポリ
ビニルアルコールを単にカルボキシル基変性
PVAと略記する)の製造と用途については種々
様々な報告(たとえば特公昭50−9882号公報)が
なされているが、それら公知の方法で製造された
カルボキシル基変性PVAを紙用表面サイジング
剤に使用した場合、必ずしも満足できる性能が発
揮されていない。この理由は十分明らかではない
が従来の製造法によつて製造したカルボキシル基
変性PVAはカルボキシル基の特徴として予想さ
れる代表的性能、例えば金属イオンとの反応性が
弱いか又は全く示さないことと関係があることが
考えられる。カルボキシル基の特徴を発揮させよ
うとして変性度を向上させるときは、本来の
PVAの特徴とする優れた性質、例えばフイルム
形成能あるいは塗膜の強度が極端に低下するとい
う困難があつた。 本発明はこれらの問題点を解決したもので、ア
ルコールの存在下で重合系内の酢酸ビニルとエチ
レン性不飽和ジカルボン酸との重量比が常に100
対0.01〜5の範囲にあり、かつほぼ一定となるよ
うにアルコール存在下で均一溶液共重合させ、得
られた共重合体をアルコール中で該共重合体中の
エチレン性不飽和ジカルボン酸単位に対して2モ
ル当量のアルカリと該共重合体中の酢酸ビニル単
位に対して0.001〜1.0モル当量のアルカリとの合
計量のアルカリを使用してケン化して得られるカ
ルボキシル基変性PVAを含有する紙用表面サイ
ジング剤である。 本発明においてはこのような特殊な方法によつ
て得られたカルボキシル基変性PVAを使用する
ことにより、後述する実施例から明らかなように
表面強度およびバリヤー性に優れたサイジング紙
を得ることができる。 また本発明においては用いるカルボキシル基変
性PVAが金属イオンとの反応性が大きいことか
ら、サイジングする紙の層中あるいは表面に硫酸
アルミニウムなどの金属イオンを含む化合物が含
まれている場合に、より表面強度およびバリヤー
性に優れたサイジング紙を得ることができる。 カルボキシル基変性PVAの製造にあたり、変
性用のモノマーとしてエチレン性不飽和ジカルボ
ン酸を使用することは既に文献類で提案されてい
て公知である。しかしながらマレイン酸、フマル
酸、イタコン酸等のエチレン性不飽和ジカルボン
酸類はいずれも酢酸ビニルに対し実質的に溶解し
ないために、均一重合法においてはジカルボン酸
モノマーに代わつて該ジカルボン酸モノマーのモ
ノエステル(マレイン酸モノアルキルエステル、
フマル酸モノアルキルエステル、イタコン酸モノ
アルキルエステル等)、ジエステル(マレイン酸
ジアルキルエステル、フマル酸ジアルキルエステ
ル、イタコン酸ジアルキルエステル等)、あるい
は無水物(無水マレイン酸、無水イタコン酸等)
等、酢酸ビニルに溶解性の高いモノマー類で代用
することが常法であつた。エチレン性不飽和ジカ
ルボン酸を使用する場合は乳化重合法等により実
施するのが通常であつた。 しかるに本発明者は、アルコールの存在下で重
合系内の酢酸ビニルとエチレン性不飽和ジカルボ
ン酸の重量比が常に100対0.01〜5の範囲となる
ようにすることによつて均一溶液共重合が実施可
能であり、該共重合体を用いて更に特定条件下で
ケン化するときは、分子構造的な要因に基づくと
考えられる特異な挙動を示し、紙用表面サイジン
グ剤として優れた性能を有するカルボキシル基変
性PVAが得られることを見出したものである。 かかる特異な挙動を示すカルボキシル基変性
PVAは、エチレン性不飽和ジカルボン酸に代わ
つてそのモノエステル、ジエステルあるいは無水
物を使用したのでは通常の製造法を採用する限り
決して得ることはできず、またエチレン性不飽和
モノカルボン酸あるいはそのエステルを使用した
場合にも得ることはできないものである。また、
エチレン性不飽和ジカルボン酸のモノエステル、
ジエステルあるいは無水物を使用した場合にはケ
ン化条件によつては共重合体のケン化物が乾燥時
に不溶化し、水に全くとけず従つて紙用表面サイ
ジング剤として用をなさぬ変性PVAが生成する
ことがしばしば経験されたが、本発明の製造法に
よればこのような不都合は全く生じない。共重合
時におけるエチレン性不飽和ジカルボン酸の量が
酢酸ビニル100部に対し0.01部以下であるときは
製品PVA中に含有されるカルボキシル基量が少
なすぎて本発明のPVAの特徴が発揮され得ず、
また、5部以上であるときには重合系に溶解せず
均一溶液共重合が円滑に行い得ない場合があり、
また経済的に見て5部以上使用する必要もない。 また本発明では共重合体をケン化するに際して
はアルコール中で共重合体中のエチレン性不飽和
ジカルボン酸単位に対して2モル当量のアルカリ
と共重合体中の酢酸ビニル単位に対して0.001〜
1.0モル当量のアルカリとの合計量の範囲のアル
カリを使用してケン化することが必要であつてこ
の範囲より少量のアルカリを使用した場合には、
本発明で示される性能は発揮し得ない。またこの
範囲より多量のアルカリを使用した場合には生成
変性PVA中にアルカリが残存し、着色など不都
合な問題が生じる。 このように、特定条件下でエチレン性不飽和ジ
カルボン酸を酢酸ビニルと共重合し、次いで該共
重合体を特定条件下でケン化した時に、従来採用
されていたカルボキシル基変性PVAの製造プロ
セスに起りがちなPVAの不溶化を伴なうことな
く、しかも金属イオンに対し顕著な反応性を有
し、さらに紙用表面サイジング剤として優れた性
能を有するカルボキシル基変性PVAが得られる
ことは従来の知見からは全く予想外のことであつ
た。 本発明方法で使用されるエチレン性不飽和ジカ
ルボン酸としてはマレイン酸、フマル酸、イタコ
ン酸などが挙げられるが、なかんずくイタコン酸
が性能上優れている。これらエチレン性不飽和ジ
カルボン酸の重合系における酢酸ビニル100に対
する重量比は共重合中常に0.01〜5の範囲にあ
り、かつ一定に保持されるべきである。この重合
条件によつて共重合体中におよそ0.1〜50モル%
のエチレン不飽和ジカルボン酸単位を含有せしめ
ることができる。 本発明における共重合方式としては、後述する
実施例からも明らかなように、回分方式、連続方
式のいずれも実施可能である。回分方式の場合、
共重合単量体反応性比(r1、r2)に従つて重合率
と共に単量体組成が変動していくが、本発明の目
的とする共重合体の製造にあたつては、一方もし
くは両方の単量体を添加していく、所謂半回分方
式を採用して、重合系内の酢酸ビニルとエチレン
性不飽和ジカルボン酸の重量比が常に100対0.01
〜5の範囲となり、かつその比がほぼ一定となる
ように制御することが必要である。 この場合の添加量の算出方法の例としては後述
する実施例1にあるようにR.J.Hannaが
Industrial and Engineering Chemistry、
Vo1.49、No.2、208−209(1957)に提出してい
る式が挙げられる。一塔式の連続方式の重合にお
いては、定常状態重合を実施することによつて酢
酸ビニルとエチレン性不飽和ジカルボン酸の重量
比をほぼ一定に制御可能である。また、多塔式の
連続共重合の場合には、回分方式と同様、二塔以
後の塔に単量体を添加して、各塔内の重合系の酢
酸ビニルとエチレン性不飽和ジカルボン酸の重量
比が常に100対0.01〜5の範囲となり、かつその
比がほぼ一定となるように制御することが必要で
ある。特公昭40−14862号公報の実施例2にある
ように、酢酸ビニルとエチレン性不飽和ジカルボ
ン酸の重量比を初期において100対0.01〜5の範
囲としても、そのまま回分方式の重合を実施した
場合は重合系内の両単量体の比は大きく変動する
結果、本発明の目的とする紙用表面サイジング剤
として優れた性能のカルボキシル基変性PVAは
製造し得ない。 共重合系に共存させるアルコールとしてはメタ
ノール、エタノール等が通常用いられる。また共
重合反応の開始剤としては2・2′−アゾビスイソ
ブチロニトリル、過酸化ベンゾイル、過酸化アセ
チル等公知のラジカル重合用開始剤が使用され得
る。反応温度は通常50℃〜沸点の範囲から選ばれ
る。 ケン化時に使用されるアルコールとしてはメタ
ノール、エタノールが通常用いられる。アルコー
ルは無水物でもよく、また水、または酢酸メチ
ル、酢酸エチル等の有機溶媒等を任意に含有せし
めてもよい。アルコール中の共重合体の濃度は特
に制限はないが、通常5〜50重量%の範囲から選
ばれる。ケン化に使用されるアルカリとしては水
酸化ナトリウム、水酸化カリウム等のアルカリ金
属塩の水酸化物や、ナトリウムメチラート、カリ
ウムメチラート等のアルコラート類、あるいはア
ンモニア等から選ばれる。ケン化温度は特に制限
はないが、通常10〜50℃の範囲から選ばれる。ケ
ン化時間は共重合体の濃度、アルカリ量、温度等
の条件によつて異なるが、通常3時間以下であ
る。 本発明の変性PVAのケン化度は特に制限がな
く、目的に応じて任意のケン化度を有する変性
PVAとすることができる。ケン化反応が進行す
ると通常のPVAの場合と同様に、白色のゲルあ
るいは沈殿物が生成し、これを粉砕、洗浄、乾燥
することによつて白色のPVA粉末を得ることが
できる。 本発明の変性PVAからなる紙用表面サイジン
グ剤は水への溶解性に優れ、かつ高濃度液の粘度
安定性も良好で、さらに流動性も優れている。 金属イオンとの反応性が高いという本発明の変
性PVAの顕著な性質は紙の表面サイジング剤に
おいて特に重要である。すなわち、本発明のカル
ボキシル基変性PVAを紙の表面サイジング剤に
使用することにより、通常の紙層内に含まれてい
る硫酸アルミニウムと化学反応を起こして強固な
塗膜を形成し、表面強度などの紙力向上効果が著
しいし、また紙層内の硫酸アルミニウムの含量を
増加させるに従い塗膜は強固になり、紙層に高い
バリヤー性を付与することができる。 以下カルボキシル基変性PVAの製造例、対照
例、実施例及び参考例によつて本発明を具体的に
説明する。 変性PVAの製造 例 1 還流冷却器、撹拌機、温度計、窒素導入管およ
び後添加液と仕込口とポンブを備えた重合缶に酢
酸ビニルを2800g、メタノールを370g、マレイ
ン酸の10%メタノール溶液を140g仕込んだ。重
合液を撹拌しつつ、系内で窒素置換して恒温槽に
より加熱し、60℃の恒温になつた時点で2・2′−
アゾビスイソブチロニトリル3.36gをメタノール
200gと共に添加し重合を開始した。重合開始時
点より、重合系の固型分濃度を分析しつつマレイ
ン酸の10%メタノール溶液をR.J.Hanna
(Industrial and Engineering Chemistry、Vo1
49、No.2、208−209頁(1957))の提出した式に
準じた方式に従つて滴下しつつ重合を進行させ
た。5時間30分の間にマレイン酸の10%メタノー
ル溶液190gをほぼ均一に滴下した後チオ尿素を
加えて重合を停止した。重合停止直前の固型分濃
度は35%であつた。この重合ペーストにメタノー
ル蒸気を吹きこんで未反応の酢酸ビニル単量体を
除去し、マレイン酸単位の含量が5.1モル%の酢
酸ビニル−マレイン酸共重合体のメタノール溶液
を得た。 次に該溶液の共重合体濃度をメタノールで30%
に調整した溶液167gを40℃で撹拌しながら水酸
化ナトリウムの10%メタノール溶液を44ml加えて
ケン化した。該ゲル状物を家庭用ミキサーで粉砕
後メタノールで洗浄し、100℃で5時間乾燥して
白色粉末の変性PVA(酢酸ビニル単位のケン化
度97.9モル%)を得た。このPVAの4%水溶液の
20℃におけるブルツクフイールド粘度は21.5cpで
あつた。 例 2 例1と同様の重合缶に、酢酸ビニル3500g、メ
タノール403g、イタコン酸の25%メタノール溶
液20gを仕込み、窒素置換、撹拌、加温の操作を
実施後、2・2′−アゾビスイソブチロニトリル
2.45gをメタノール200gと共に添加して60℃で
重合を開始した。開始時から3時間15分の間にイ
タコン酸の25%メタノール溶液248gを均一に滴
下した後、チオ尿素を加えて重合を停止した。重
合停止直前の固型分濃度は30%であつた。常法に
より未反応の酢酸ビニル単量体を除去してイタコ
ン酸の含量が、3.0モル%の酢酸ビニル−イタコ
ン酸共重合体のメタノール溶液を得た。該溶液の
濃度を30%に調整した液167gを40℃で撹拌しな
がら水酸化ナトリウムの10%メタノール溶液を32
ml加えてケン化した。5分30秒で白色のゲル状物
が得られた。粉砕、洗浄、乾燥の後白色粉末の変
性PVA(酢酸ビニル単位のケン化度99.1モル%)
を得た。この変性PVAの4%水溶液の20℃にお
けるブルツクフイールド粘度は42.0cpであつた。 例 3 還流冷却器、撹拌機、温水ジヤケツトおよび温
度計を備えた容量200の重合缶に酢酸ビニル/
イタコン酸/メタノール/2・2′−アゾビスイソ
ブチロニトルを重量比で100/4.1/34.7/0.07と
して連続的に仕込み、滞留時間を5時間にとり、
60℃で連続共重合を実施した。連続的にとり出さ
れる反応液中の未反応の酢酸ビニルとイタコン酸
の重量比は100対0.24であつた。酢酸ビニルの重
合率は50%で、イタコン酸の重合率は97%であつ
た。次いで重合缶を出た液を酢酸ビニル追出工程
に導入し、メタノール蒸気によつて酢酸ビニルを
追出し、イタコン酸単位の含量が5.0モル%の酢
酸ビニル−イタコン酸共重合体のメタノール溶液
(共重合体濃度30%)が得られた。この溶液100
Kg/時に対し、水酸化ナトリウムの5%メタノー
ル溶液を52.2/時の割合で混合機に仕込み回転
式ベルト上で20分間ケン化反応を行わせた。生成
した白色のPVAゲルを粉砕、洗浄、乾燥の各工
程を通過させ、白色のPVA粉末(酢酸ビニル単
位のケン化度98.7モル%)を得た。 例 4 例2と同様の操作で、酢酸ビニルを3000g、メ
タノールを545g、イタコン酸の25%メタノール
溶液7gおよび2・2′−アゾビスイソブチロニト
リル1.5gを200gのメタノールと共に使用して重
合を開始した。3時間の重合時間中に、イタコン
酸の25%メタノール溶液116gを均一に滴下し
た。重合停止時の固型分濃度は40%であつた。こ
の共重合体は1.3モル%のイタコン酸を含有して
いた。共重合体の濃度30%のメタノール溶液167
gに対し水酸化ナトリウムの10%メタノール溶液
を22ml添加しケン化して変性PVA(酢酸ビニル
単位のケン化度99.3モル%)を得た。 対照例 1 例1において、マレイン酸に代えて無水マレイ
ン酸を使用した以外は例1と同様な方法で共重合
とケン化を実施して黄色のPVA粉末(酢酸ビニ
ル単位のケン化度97.0モル%)を得た。このポリ
マー構造はビニルアルコール91.7モル%、酢酸ビ
ニル2.8モル%で、マレイン酸単位が5.5モル%で
あつた。 対照例 2、3 例1において、マレイン酸に代えて、マレイン
酸モノメチル(対照例2)あるいはマレイン酸ジ
メチル(対照例3)を使用した以外は例1と同様
の方法で共重合およびケン化を実施してPVA粉
末{酢酸ビニル単位のケン化度97.0モル%(対照
例2)、96.7モル%(対照例3)}を得た。 対照例 4 例2においてイタコン酸に代えてイタコン酸ジ
メチルを使用した以外は例2と同様の方法で共重
合およびケン化して白色のPVA粉末(酢酸ビニ
ル単位のケン化度98.4モル%)を得た。 対照例 5、6 例2において、イタコン酸に代えて、イタコン
酸モノメチル(対照例5)あるいは無水イタコン
酸(対照例6)を使用した以外は例2と同様の方
法でPVA粉末{酢酸ビニル単位のケン化度99.1モ
ル%(対照例5)、98.9モル%(対照例6)}を得
た。 対照例 7、8 例1においてマレイン酸に代えてクロトン酸
(対照例7)あるいはアクリル酸(対照例8)を
使用した以外は例1と同様な方法でPVA粉末
{酢酸ビニル単位のケン化度98.5モル%(対照例
7)、99.1モル%(対照例8)}を得た。 対照例 9 例1と同様の反応装置を使用して、酢酸ビニル
900g、イタコン酸30g、メタノール200g、およ
び2・2′−アゾビスイソブチロニトリル0.5gを
一括混合し、60℃で7時間重合を実施した。共重
合物は例1と同様の方法でケン化しPVA粉末を
得た。(イタコン酸含量2.7モル%) 対照例 10 例1においてマレイン酸を使用しない以外は例
1と同様の方法によつて変性のない、通常の
PVA粉末を得た。 対照例 11 対照例1においてケン化時のアルカリ量を対照
例1に使用した量の半分の量を用いた以外は対照
例1と同様にして変性PVA粉末を得た。しかし
ながらこのポリマーは水に溶解せず、単に膨潤を
示すのみで紙用表面サイジング剤としては使用で
きなかつた。 対照例 12 例1において、ケン化条件として水酸化ナトリ
ウムの10%メタノール溶液を44ml用いることに替
えて、26.3ml使用してケン化する以外は、例1と
同様にして、変性PVA(酢酸ビニル単位のケン
化度50モル%、マレイン酸単位の含量5.1モル
%)を得た。 実施例1〜4および比較例1〜10 例1〜4で作成したカルボキシル基変性PVA
を用いて紙の表面サイジング試験を実施した。比
較例として、対照例1〜10で作成した変性PVA
および未変性PVAを用いた表面サイジング試験
を併せて実施した。試験の実施要領および結果を
以下に示す。 1 表面サイジング試験 (1) 対象紙;上質紙用原紙(表面サイズを施し
ていない紙)、坪量66.9g/m2、緊度0.68
g/cm3厚さ98μ、硫酸バン土含有量1.29% (2) サイズ液;表およびに記載の各種
PVA系樹脂の4重量%水溶液 (3) サイズプレス;熊谷理機工業株式会社製試
験用サイズプレス機を用いて紙の表面サイジ
ングを実施した。(絞り圧力10Kg/cm2、速度
60m/分、サイズ液温度50℃) サイズプレス実施時のサイズ液の発泡性を
観察した。 (4) 乾燥;回転ドラム乾燥機を用いて105℃で
1分間乾燥した。 (5) カレンダー処理;乾燥後の紙を、速度10
m/分、圧力50Kg/cm、温度50℃の条件で2
回カレンダー処理を行なつた。 (6) コンデイシヨニング;紙は物性測定に供する
前に20℃、65%RHの条件下に3日間放置し
てコンデイシヨニングを行なつた。 2 紙物性試験 (1) IGT印刷強度(毛羽発生開始速度) IGT印刷試験機により印圧35Kg/cm2、ピツ
キングオイルMを用いて測定した。数値の高
いほど表面強度が高いことを示している。 (2) RI導管ピツク 明製作所製RIテスターを使用し、大日本
インキ製TV20(墨)のインキを用いて印刷
試験を行ない、導管ピツクを計数した。ピツ
ク数の少ないほど紙力が高いことを示してい
る。 (3) 透気度(バリヤー性) JIS P8117−1963により測定した。 数置の高いほどバリヤー性が優れているこ
とを示している。 3 測定結果 紙物性測定結果をまとめて表および表に
示す。この結果より、本発明になるカルボキシ
ル基変性PVAは、従来公知のポリビニルアル
コール系樹脂に比し、よりすぐれた表面強度お
よびバリヤー性を付与する表面サイジング剤で
あることが理解される。
The present invention relates to surface sizing agents for paper. Conventionally, polyvinyl alcohol containing carboxyl groups (hereinafter referred to simply as polyvinyl alcohol)
Abbreviated as PVA, polyvinyl alcohol containing carboxyl groups is simply modified with carboxyl groups.
There have been various reports (for example, Japanese Patent Publication No. 50-9882) regarding the production and use of PVA (abbreviated as PVA), but carboxyl group-modified PVA produced by these known methods has been used as a surface sizing agent for paper. When used, satisfactory performance is not always achieved. The reason for this is not fully clear, but carboxyl group-modified PVA produced by conventional production methods does not exhibit the typical performance expected as a characteristic of carboxyl groups, such as weak or no reactivity with metal ions. It is possible that there is a relationship. When increasing the degree of modification to bring out the characteristics of carboxyl groups, the original
The problem was that the excellent properties characteristic of PVA, such as film-forming ability and coating strength, were drastically reduced. The present invention solves these problems, and the weight ratio of vinyl acetate and ethylenically unsaturated dicarboxylic acid in the polymerization system is always 100 in the presence of alcohol.
homogeneous solution copolymerization in the presence of alcohol so that the ratio is in the range of 0.01 to 5 and almost constant, and the resulting copolymer is added to the ethylenically unsaturated dicarboxylic acid units in the copolymer in alcohol. Paper containing carboxyl group-modified PVA obtained by saponification using a total amount of alkali of 2 molar equivalents for the vinyl acetate units and 0.001 to 1.0 molar equivalents of the alkali for the vinyl acetate units in the copolymer. surface sizing agent. In the present invention, by using carboxyl group-modified PVA obtained by such a special method, it is possible to obtain sizing paper with excellent surface strength and barrier properties, as is clear from the examples described below. . In addition, since the carboxyl group-modified PVA used in the present invention has high reactivity with metal ions, if a compound containing metal ions such as aluminum sulfate is contained in the layer or surface of the paper to be sized, the surface A sizing paper with excellent strength and barrier properties can be obtained. The use of ethylenically unsaturated dicarboxylic acid as a modifying monomer in the production of carboxyl group-modified PVA has already been proposed in literature and is well known. However, since all ethylenically unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid are not substantially soluble in vinyl acetate, monoesters of the dicarboxylic acid monomers are used instead of dicarboxylic acid monomers in the homogeneous polymerization method. (maleic acid monoalkyl ester,
fumaric acid monoalkyl ester, itaconic acid monoalkyl ester, etc.), diesters (maleic acid dialkyl ester, fumaric acid dialkyl ester, itaconic acid dialkyl ester, etc.), or anhydrides (maleic anhydride, itaconic anhydride, etc.)
It has been a common practice to substitute monomers with high solubility in vinyl acetate, such as vinyl acetate. When ethylenically unsaturated dicarboxylic acids are used, emulsion polymerization is usually used. However, the present inventor has discovered that homogeneous solution copolymerization can be carried out by controlling the weight ratio of vinyl acetate and ethylenically unsaturated dicarboxylic acid in the polymerization system to always be in the range of 0.01 to 5 to 100 in the presence of alcohol. When the copolymer is further saponified under specific conditions, it exhibits unique behavior that is thought to be based on molecular structural factors, and has excellent performance as a surface sizing agent for paper. It was discovered that carboxyl group-modified PVA can be obtained. Carboxyl group modification exhibiting such peculiar behavior
PVA can never be obtained by using conventional manufacturing methods by replacing ethylenically unsaturated dicarboxylic acids with their monoesters, diesters, or anhydrides; This cannot be obtained even when esters are used. Also,
monoester of ethylenically unsaturated dicarboxylic acid,
When a diester or anhydride is used, depending on the saponification conditions, the saponified product of the copolymer becomes insolubilized during drying, producing modified PVA that is completely insoluble in water and therefore useless as a surface sizing agent for paper. However, according to the manufacturing method of the present invention, such inconvenience does not occur at all. When the amount of ethylenically unsaturated dicarboxylic acid during copolymerization is 0.01 part or less per 100 parts of vinyl acetate, the amount of carboxyl groups contained in the product PVA is too small to exhibit the characteristics of the PVA of the present invention. figure,
In addition, if the amount is 5 parts or more, it may not dissolve in the polymerization system and homogeneous solution copolymerization may not be carried out smoothly.
Also, from an economic point of view, there is no need to use more than five copies. In addition, in the present invention, when saponifying the copolymer, 2 molar equivalents of alkali are added to the ethylenically unsaturated dicarboxylic acid units in the copolymer in alcohol and 0.001 to 0.001 to 0.001 to 0.001 to the vinyl acetate units in the copolymer are added.
If it is necessary to saponify using alkali in the range of total amount with 1.0 molar equivalent of alkali, and if a smaller amount of alkali is used than this range,
The performance shown in the present invention cannot be achieved. In addition, if a larger amount of alkali is used than this range, the alkali will remain in the resulting modified PVA, causing problems such as coloring. In this way, when ethylenically unsaturated dicarboxylic acid is copolymerized with vinyl acetate under specific conditions, and then the copolymer is saponified under specific conditions, the production process of carboxyl group-modified PVA that has been conventionally adopted can be improved. Previous knowledge has shown that it is possible to obtain carboxyl group-modified PVA that does not cause the insolubilization that tends to occur in PVA, has remarkable reactivity with metal ions, and has excellent performance as a surface sizing agent for paper. This was completely unexpected. Examples of the ethylenically unsaturated dicarboxylic acids used in the method of the present invention include maleic acid, fumaric acid, and itaconic acid, but itaconic acid is particularly excellent in terms of performance. The weight ratio of these ethylenically unsaturated dicarboxylic acids to 100 parts of vinyl acetate in the polymerization system is always in the range of 0.01 to 5 and should be kept constant during the copolymerization. Approximately 0.1 to 50 mol% in the copolymer depending on these polymerization conditions.
of ethylenically unsaturated dicarboxylic acid units. As the copolymerization method in the present invention, both a batch method and a continuous method can be carried out, as is clear from the Examples described later. In the case of batch method,
The monomer composition changes with the polymerization rate according to the comonomer reactivity ratio (r 1 , r 2 ), but in producing the copolymer targeted by the present invention, on the one hand, Alternatively, a so-called semi-batch method is adopted in which both monomers are added, so that the weight ratio of vinyl acetate and ethylenically unsaturated dicarboxylic acid in the polymerization system is always 100:0.01.
5, and it is necessary to control the ratio so that it is approximately constant. An example of how to calculate the amount added in this case is RJHanna as shown in Example 1 below.
Industrial and Engineering Chemistry;
The formula submitted in Vo1.49, No.2, 208-209 (1957) is mentioned. In one-column continuous polymerization, the weight ratio of vinyl acetate and ethylenically unsaturated dicarboxylic acid can be controlled to be approximately constant by carrying out steady-state polymerization. In addition, in the case of multi-column continuous copolymerization, similar to the batch method, monomers are added to the second and subsequent columns to combine vinyl acetate and ethylenically unsaturated dicarboxylic acid in the polymerization system in each column. It is necessary to control the weight ratio so that it is always in the range of 0.01 to 5:100 and that the ratio is almost constant. As shown in Example 2 of Japanese Patent Publication No. 40-14862, even if the weight ratio of vinyl acetate and ethylenically unsaturated dicarboxylic acid is initially in the range of 0.01 to 5 to 100, the batch polymerization is carried out as it is. Since the ratio of both monomers in the polymerization system varies greatly, it is not possible to produce carboxyl group-modified PVA with excellent performance as a surface sizing agent for paper, which is the object of the present invention. Methanol, ethanol, etc. are usually used as the alcohol coexisting in the copolymerization system. Further, as an initiator for the copolymerization reaction, known initiators for radical polymerization such as 2,2'-azobisisobutyronitrile, benzoyl peroxide, acetyl peroxide, etc. can be used. The reaction temperature is usually selected from the range of 50°C to the boiling point. Methanol and ethanol are usually used as alcohols during saponification. The alcohol may be anhydrous, or may optionally contain water or an organic solvent such as methyl acetate or ethyl acetate. The concentration of the copolymer in the alcohol is not particularly limited, but is usually selected from a range of 5 to 50% by weight. The alkali used for saponification is selected from hydroxides of alkali metal salts such as sodium hydroxide and potassium hydroxide, alcoholates such as sodium methylate and potassium methylate, and ammonia. The saponification temperature is not particularly limited, but is usually selected from the range of 10 to 50°C. The saponification time varies depending on conditions such as the concentration of the copolymer, the amount of alkali, and the temperature, but is usually 3 hours or less. The degree of saponification of the modified PVA of the present invention is not particularly limited, and the modified PVA can have any saponification degree depending on the purpose.
Can be PVA. As the saponification reaction progresses, a white gel or precipitate is produced, as in the case of ordinary PVA, and white PVA powder can be obtained by crushing, washing, and drying this. The surface sizing agent for paper made of modified PVA of the present invention has excellent solubility in water, good viscosity stability in highly concentrated liquids, and excellent fluidity. The remarkable property of the modified PVA of the present invention of high reactivity with metal ions is of particular importance in paper surface sizing agents. That is, by using the carboxyl group-modified PVA of the present invention as a surface sizing agent for paper, it causes a chemical reaction with aluminum sulfate contained in a normal paper layer to form a strong coating film, improving surface strength, etc. The effect of improving paper strength is remarkable, and as the content of aluminum sulfate in the paper layer increases, the coating film becomes stronger and can impart high barrier properties to the paper layer. The present invention will be specifically explained below with reference to production examples, control examples, examples, and reference examples of carboxyl group-modified PVA. Production example of modified PVA 1 In a polymerization tank equipped with a reflux condenser, stirrer, thermometer, nitrogen inlet tube, post-addition liquid, charging port, and pump, add 2800 g of vinyl acetate, 370 g of methanol, and a 10% methanol solution of maleic acid. I prepared 140g of. While stirring the polymerization solution, the system was replaced with nitrogen and heated in a constant temperature bath, and when the temperature reached 60℃, 2.2'-
3.36g of azobisisobutyronitrile in methanol
It was added together with 200 g to start polymerization. From the start of polymerization, a 10% methanol solution of maleic acid was added to RJHanna while analyzing the solid content concentration of the polymerization system.
(Industrial and Engineering Chemistry, Vo1
49, No. 2, pp. 208-209 (1957)), the polymerization was allowed to proceed dropwise. After dropping 190 g of a 10% methanol solution of maleic acid almost uniformly over a period of 5 hours and 30 minutes, thiourea was added to stop the polymerization. The solid content concentration immediately before the termination of polymerization was 35%. Methanol vapor was blown into this polymerization paste to remove unreacted vinyl acetate monomer, thereby obtaining a methanol solution of a vinyl acetate-maleic acid copolymer having a maleic acid unit content of 5.1 mol %. Next, the copolymer concentration of the solution was adjusted to 30% with methanol.
44 ml of a 10% methanol solution of sodium hydroxide was added to 167 g of the prepared solution while stirring at 40°C for saponification. The gel-like material was ground with a household mixer, washed with methanol, and dried at 100° C. for 5 hours to obtain a white powder of modified PVA (degree of saponification of vinyl acetate units: 97.9 mol%). This 4% aqueous solution of PVA
The Bruckfield viscosity at 20°C was 21.5 cp. Example 2 Into a polymerization reactor similar to Example 1, 3500 g of vinyl acetate, 403 g of methanol, and 20 g of a 25% methanol solution of itaconic acid were charged, and after performing operations of nitrogen substitution, stirring, and heating, 2,2'-azobisiso Butyronitrile
2.45g was added together with 200g of methanol to initiate polymerization at 60°C. After 248 g of a 25% methanol solution of itaconic acid was uniformly dropped over a period of 3 hours and 15 minutes from the start, thiourea was added to stop the polymerization. The solid content concentration immediately before the termination of polymerization was 30%. Unreacted vinyl acetate monomer was removed by a conventional method to obtain a methanol solution of vinyl acetate-itaconic acid copolymer having an itaconic acid content of 3.0 mol %. While stirring 167 g of the solution whose concentration was adjusted to 30% at 40°C, 32 g of a 10% methanol solution of sodium hydroxide was added.
ml was added and saponified. A white gel-like substance was obtained in 5 minutes and 30 seconds. After grinding, washing and drying, the modified PVA becomes a white powder (degree of saponification of vinyl acetate unit: 99.1 mol%)
I got it. The Brookfield viscosity of this 4% aqueous solution of modified PVA at 20°C was 42.0 cp. Example 3 Vinyl acetate/
Itaconic acid/methanol/2.2'-azobisisobutyronitrile was continuously charged at a weight ratio of 100/4.1/34.7/0.07, and the residence time was set to 5 hours.
Continuous copolymerization was carried out at 60°C. The weight ratio of unreacted vinyl acetate to itaconic acid in the continuously taken out reaction solution was 100:0.24. The polymerization rate of vinyl acetate was 50%, and that of itaconic acid was 97%. Next, the liquid coming out of the polymerization reactor is introduced into a vinyl acetate expulsion step, where the vinyl acetate is expelled by methanol vapor, and a methanol solution (copolymer) of vinyl acetate-itaconic acid copolymer with an itaconic acid unit content of 5.0 mol% is introduced. A polymer concentration of 30%) was obtained. This solution 100
Kg/hour, 5% methanol solution of sodium hydroxide was charged into the mixer at a rate of 52.2/hour, and the saponification reaction was carried out on a rotary belt for 20 minutes. The produced white PVA gel was passed through the steps of pulverization, washing, and drying to obtain a white PVA powder (degree of saponification of vinyl acetate units: 98.7 mol%). Example 4 Polymerization in the same manner as in Example 2 using 3000 g of vinyl acetate, 545 g of methanol, 7 g of 25% methanol solution of itaconic acid and 1.5 g of 2,2'-azobisisobutyronitrile with 200 g of methanol. started. During the polymerization period of 3 hours, 116 g of a 25% methanol solution of itaconic acid was uniformly added dropwise. The solid content concentration at the time of termination of polymerization was 40%. This copolymer contained 1.3 mol% itaconic acid. 30% methanol solution of copolymer 167
22 ml of 10% methanol solution of sodium hydroxide was added and saponified to obtain modified PVA (degree of saponification of vinyl acetate units: 99.3 mol%). Control Example 1 Copolymerization and saponification were carried out in the same manner as in Example 1, except that maleic anhydride was used instead of maleic acid, and a yellow PVA powder (Saponification degree of vinyl acetate unit: 97.0 mol) was obtained. %) was obtained. The polymer structure was 91.7 mol% vinyl alcohol, 2.8 mol% vinyl acetate, and 5.5 mol% maleic acid units. Control Examples 2 and 3 Copolymerization and saponification were carried out in the same manner as in Example 1, except that monomethyl maleate (Control Example 2) or dimethyl maleate (Control Example 3) was used instead of maleic acid. PVA powder {saponification degree of vinyl acetate units: 97.0 mol% (Control Example 2), 96.7 mol% (Control Example 3)} was obtained. Control Example 4 White PVA powder (degree of saponification of vinyl acetate units: 98.4 mol%) was obtained by copolymerization and saponification in the same manner as in Example 2, except that dimethyl itaconate was used instead of itaconic acid. Ta. Control Examples 5 and 6 PVA powder {vinyl acetate unit Saponification degrees of 99.1 mol% (Control Example 5) and 98.9 mol% (Control Example 6) were obtained. Control Examples 7 and 8 PVA powder {saponification degree of vinyl acetate unit 98.5 mol% (Comparative Example 7), 99.1 mol% (Comparative Example 8)}. Control Example 9 Using the same reactor as in Example 1, vinyl acetate
900g of itaconic acid, 30g of itaconic acid, 200g of methanol, and 0.5g of 2,2'-azobisisobutyronitrile were mixed all at once, and polymerization was carried out at 60°C for 7 hours. The copolymer was saponified in the same manner as in Example 1 to obtain PVA powder. (Itaconic acid content: 2.7 mol%) Control example 10 An unmodified, normal,
Obtained PVA powder. Control Example 11 A modified PVA powder was obtained in the same manner as in Control Example 1, except that the amount of alkali during saponification was half the amount used in Control Example 1. However, this polymer was not soluble in water and merely exhibited swelling, so it could not be used as a surface sizing agent for paper. Control Example 12 Modified PVA (vinyl acetate) was prepared in the same manner as in Example 1, except that instead of using 44 ml of a 10% methanol solution of sodium hydroxide as the saponification condition, 26.3 ml was used for saponification. The degree of saponification of the units was 50 mol%, and the content of maleic acid units was 5.1 mol%). Examples 1 to 4 and Comparative Examples 1 to 10 Carboxyl group-modified PVA prepared in Examples 1 to 4
A paper surface sizing test was conducted using As a comparative example, modified PVA prepared in Control Examples 1 to 10
A surface sizing test using unmodified PVA was also conducted. The test procedure and results are shown below. 1 Surface sizing test (1) Target paper: High-quality paper base paper (paper without surface sizing), basis weight 66.9 g/m 2 , tightness 0.68
g/ cm3 thickness 98μ, aluminum sulfate content 1.29% (2) Sizing liquid; various types listed in the table and
4% by weight aqueous solution of PVA resin (3) Size press: Surface sizing of paper was carried out using a test size press manufactured by Kumagai Riki Kogyo Co., Ltd. (Squeezing pressure 10Kg/cm 2 , speed
(60 m/min, sizing liquid temperature 50°C) The foaming properties of the sizing liquid were observed during the size press. (4) Drying: Drying was performed at 105°C for 1 minute using a rotating drum dryer. (5) Calendaring: Calendar the paper after drying at speed 10.
m/min, pressure 50Kg/cm, temperature 50℃ 2
Calendar processing was performed twice. (6) Conditioning: The paper was conditioned by being left at 20° C. and 65% RH for 3 days before being subjected to physical property measurements. 2 Paper property test (1) IGT printing strength (fuzz onset speed) Measured using an IGT printing tester at a printing pressure of 35 kg/cm 2 and using picking oil M. The higher the value, the higher the surface strength. (2) RI conduit picks Using an RI tester made by Mei Seisakusho, a printing test was conducted using TV20 (black) ink made by Dainippon Ink, and the conduit picks were counted. The smaller the number of picks, the higher the paper strength. (3) Air permeability (barrier property) Measured according to JIS P8117-1963. The higher the number, the better the barrier properties are. 3 Measurement Results The paper physical property measurement results are summarized in the table below. From these results, it is understood that the carboxyl group-modified PVA of the present invention is a surface sizing agent that provides better surface strength and barrier properties than conventionally known polyvinyl alcohol resins.

【表】【table】

【表】 実施例5〜7および比較例11〜13 実施例1で用いた紙に硫酸アルミニウム水溶液
を塗布して、紙層内の硫酸アルミニウムの含量を
増加させ、この紙に例2で得られたカルボキシル
基変性PVA水溶液を塗布し、液体(トルエン/
n−ヘプタンの混合液)のバリヤー性を調べた。
その結果を表に示す。 バリヤー性はトルエン/n−ヘプタン(50/
50)混合液を塗工紙上に滴下し、30秒間で透過す
るか否かにより判定した。すなわちPVA塗工量
の異なる多くの試料を作成し、上記混合液が透過
しない塗工量の下限を示した。したがつて数値の
少ないほどPVAのバリヤー性が高いことを示し
ている。
[Table] Examples 5 to 7 and Comparative Examples 11 to 13 The paper used in Example 1 was coated with an aluminum sulfate aqueous solution to increase the content of aluminum sulfate in the paper layer, and the paper obtained in Example 2 was coated with an aluminum sulfate aqueous solution to increase the content of aluminum sulfate in the paper layer. Apply a carboxyl-modified PVA aqueous solution to the liquid (toluene/
The barrier properties of n-heptane mixture were investigated.
The results are shown in the table. Barrier properties are toluene/n-heptane (50/
50) The mixed solution was dropped onto coated paper, and judgment was made by whether or not it was transmitted in 30 seconds. That is, we created many samples with different amounts of PVA coating, and determined the lower limit of the amount of coating that would not allow the above-mentioned mixed solution to pass through. Therefore, the lower the value, the higher the barrier properties of PVA.

【表】 参考例 例1〜4、対照例1〜9及び12で得た各変性
PVAおよび変性していないPVA(クラレポバー
ル117)の10%水溶液の各液に各種の金属塩粉末
を添加混合して、金属塩との反応性を検討した。
但し硫酸アルミニウムは粉末で用いた場合変性し
ていないPVAをもゲル化させるので、硫酸アル
ミニウム〔Al2(SO4318H2O〕の10%液を1.5ml
滴下して状態を観察した結果を表に示す。本発
明の紙用表面サイジング剤に用いられるカルボキ
シル基変性PVAはいずれも多くの金属塩とゲル
あるいは不溶物を形成し金属イオンとの反応性が
顕著に高いことが確認された。
[Table] Reference Examples Each modification obtained in Examples 1 to 4, Control Examples 1 to 9 and 12
Various metal salt powders were added to and mixed with 10% aqueous solutions of PVA and unmodified PVA (Kuraray Poval 117), and the reactivity with the metal salts was investigated.
However, when aluminum sulfate is used in powder form, it also gels unmodified PVA, so add 1.5 ml of a 10% solution of aluminum sulfate [Al 2 (SO 4 ) 3 18H 2 O].
The results of dropping and observing the condition are shown in the table. It was confirmed that all of the carboxyl group-modified PVA used in the paper surface sizing agent of the present invention form gels or insoluble substances with many metal salts and have significantly high reactivity with metal ions.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 アルコールの存在下で、重合系内の酢酸ビニ
ルとエチレン性不飽和ジカルボン酸の重量比が常
に100対0.01〜5の範囲にあり、かつほぼ一定と
なるようにして均一溶液共重合させて得られた共
重合体を、アルコール中で前記共重合体中のエチ
レン性不飽和ジカルボン酸単位に対して2モル当
量のアルカリと前記共重合体中の酢酸ビニル単位
に対して0.001〜1.0モル当量のアルカリとの合計
量の範囲のアルカリを使用してケン化して得られ
るカルボキシル基変性ポリビニルアルコールを含
有する紙用表面サイジング剤。 2 不飽和ジカルボン酸がイタコン酸である特許
請求の範囲1に記載の紙用表面サイジング剤。
[Claims] 1. In the presence of alcohol, the weight ratio of vinyl acetate to ethylenically unsaturated dicarboxylic acid in the polymerization system is always in the range of 0.01 to 5 to 100 and is uniform so that it is almost constant. The copolymer obtained by solution copolymerization is mixed with an alkali in an amount of 2 molar equivalents based on the ethylenically unsaturated dicarboxylic acid units in the copolymer and the vinyl acetate units in the copolymer in alcohol. A surface sizing agent for paper containing carboxyl group-modified polyvinyl alcohol obtained by saponification using an alkali in a total amount in the range of 0.001 to 1.0 molar equivalent. 2. The surface sizing agent for paper according to claim 1, wherein the unsaturated dicarboxylic acid is itaconic acid.
JP1060684A 1984-01-23 1984-01-23 Paper surface sizing agent Granted JPS59204999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1060684A JPS59204999A (en) 1984-01-23 1984-01-23 Paper surface sizing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1060684A JPS59204999A (en) 1984-01-23 1984-01-23 Paper surface sizing agent

Publications (2)

Publication Number Publication Date
JPS59204999A JPS59204999A (en) 1984-11-20
JPS6223117B2 true JPS6223117B2 (en) 1987-05-21

Family

ID=11754900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1060684A Granted JPS59204999A (en) 1984-01-23 1984-01-23 Paper surface sizing agent

Country Status (1)

Country Link
JP (1) JPS59204999A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371796B2 (en) * 2003-12-15 2008-05-13 E. I. Du Pont De Nemours And Company Copolymers of vinyl alcohol and itaconic acid for use in paper coatings
JP5005938B2 (en) * 2005-09-14 2012-08-22 日本製紙株式会社 Permeation inhibiting method, printing base paper and printing paper using the same
JPWO2022259658A1 (en) * 2021-06-07 2022-12-15

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936797A (en) * 1972-08-11 1974-04-05
JPS5138753A (en) * 1974-09-26 1976-03-31 Mitsubishi Heavy Ind Ltd

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936797A (en) * 1972-08-11 1974-04-05
JPS5138753A (en) * 1974-09-26 1976-03-31 Mitsubishi Heavy Ind Ltd

Also Published As

Publication number Publication date
JPS59204999A (en) 1984-11-20

Similar Documents

Publication Publication Date Title
JPS6031844B2 (en) Method for producing carboxyl group-modified polyvinyl alcohol
JP3146310B2 (en) Method for producing aqueous dispersion of ethylene / α, β-unsaturated carboxylic acid interpolymer
JP2002284818A (en) Novel vinyl alcohol resin and its use
JP2008542520A (en) Vinyl alcohol copolymers for use in aqueous dispersions and melt-extruded articles
US4219591A (en) Process for coating an inorganic silicatic substrate
KR100312663B1 (en) Modified polyvinyl acetals having a low solution viscosity
JP2002241433A (en) Novel vinyl alcohol resin and its use
US4097436A (en) Hydrolyzed vinyl acetate-vinyl alkoxy silane polymers
JPWO2019117118A1 (en) Ethylene-vinyl alcohol copolymer aqueous solution
US4355141A (en) Polymerizing vinyl chloride in reactor treated with condensates
JP4794121B2 (en) Ink or paint binder
US4118356A (en) Copolymers of ethylene and vinyl acetate of increased insolubility
JPS6223117B2 (en)
JPH0680709A (en) Dispersant
US20230227595A1 (en) Modified polyvinyl alcohol resin with improved solubility in alcohol mixtures
JP3758705B2 (en) Emulsion dispersion stabilizer
JPH0117485B2 (en)
JP3357887B2 (en) Polyvinyl alcohol-based water-resistant resin composition
JPS5879003A (en) Preparation of silicon-containing modified polyvinyl alcohol
JP3769380B2 (en) Polyvinyl alcohol paper coating agent with excellent high-speed coating properties
JP3357710B2 (en) Emulsion composition
JPH06279539A (en) Emulsion stabilizer, emulsion produced by using the same, and production of emulsion using the same
JP2002053616A (en) Polyvinyl alcoholic polymer and powder comprising the polymer
JP3459101B2 (en) New surfactant, new emulsifier for emulsion polymerization, new dispersant for suspension polymerization and new resin modifier
JPS6233243B2 (en)