JPS6223114A - Monitoring for ultraviolet cleaning - Google Patents

Monitoring for ultraviolet cleaning

Info

Publication number
JPS6223114A
JPS6223114A JP16188785A JP16188785A JPS6223114A JP S6223114 A JPS6223114 A JP S6223114A JP 16188785 A JP16188785 A JP 16188785A JP 16188785 A JP16188785 A JP 16188785A JP S6223114 A JPS6223114 A JP S6223114A
Authority
JP
Japan
Prior art keywords
ozone
cleaned
cleaning
decomposed
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16188785A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Otake
大竹 光義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16188785A priority Critical patent/JPS6223114A/en
Publication of JPS6223114A publication Critical patent/JPS6223114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable the judgement of the completion of cleaning about an individual matter to be cleaned by a method wherein the organic substance film on the surface of the matter to be cleaned is decomposed by oxidation utilizing the ozone generated by ultraviolet rays and the cleaned state of the matter is monitored by an in-line using the gas produced by this decomposition. CONSTITUTION:Oxygen gas 2 introduced in a cleaning tank 1 from a gas introducing port 1a is irradiated with an ultraviolet lamp 3 to generate ozone and the resist on an Si semiconductor wafer 4 set up in parallel to the lamp 3 is decomposed by oxidation. Moreover, the ozone absorbs the ultraviolet rays emitted from the ultraviolet lamp 3 and is decomposed into excited oxygen atoms richer in an oxidative reaction than the ozone and the resist on the Si semiconductor wafer 4 is decomposed by oxidation in the same manner as the ozone. A component produced by this oxidation decomposition scatters on the Si semiconductor wafer 4 in a gaseous state and is exhausted through an exhaust vent 1b, while infrared rays A emitted from an infrared light source 5 are absorbed in the decomposition gas on the semiconductor wafer 4, the absorption strength is measured by an infrared detector 6, and at the same time, the measured value is monitored by a recording meter 7.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は被洗浄物表面上の有機物を紫外線洗浄する装置
の洗浄状態をモニタする方法、特に被洗浄物の洗浄除去
状態を非接触および非破壊で監視できるモニタ方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for monitoring the cleaning state of an apparatus for cleaning organic substances on the surface of an object to be cleaned with ultraviolet rays, and in particular a non-contact and non-destructive method for monitoring the cleaning and removal state of an object to be cleaned. This relates to a monitoring method that can be used for monitoring.

〔発明の背景〕[Background of the invention]

従来の紫外線洗浄装置は、特開昭59−94823号と
特開昭59−94824号に記載されているように、波
長185nmの紫外線強度X185と波長25 j n
m  の紫外線ランプ254との比(工185/T25
4)=008〜a3の範囲に設定された光源を照射し、
また被洗浄物表面上の工165の放射強度が、3mW/
−以上になるように設定された光源を照射し、ベルトコ
ンベアー上の被洗浄物が紫外線ランプの下を通過し終る
ときKは、洗浄が完了するように構成されている。
Conventional ultraviolet cleaning equipment, as described in JP-A-59-94823 and JP-A-59-94824, has an ultraviolet intensity X185 at a wavelength of 185 nm and an ultraviolet light intensity X185 at a wavelength of 25 j n
The ratio of m to the ultraviolet lamp 254 (185/T25
4) Irradiate with a light source set in the range of = 008 to a3,
In addition, the radiation intensity of the workpiece 165 on the surface of the object to be cleaned is 3 mW/
K is configured so that the cleaning is completed when the object to be cleaned on the belt conveyor finishes passing under the ultraviolet lamp by irradiating the object with a light source set so as to be more than -.

しかし、上記洗浄が完了しているか否かの判定は、予か
しめ洗浄時間と被洗浄体表面の清浄度との関係を求めて
一善的に決めている。このため実際に個々の被洗浄物の
洗浄除去状態は測定することができないばかシでなく1
時には洗浄除去が不十分な場合もある。ととろが、該洗
浄除去を確認するという点についてはなんら考慮されて
いなかった。
However, the determination as to whether or not the above-mentioned cleaning has been completed is determined based on the relationship between the pre-caulking cleaning time and the cleanliness of the surface of the object to be cleaned. For this reason, it is not impossible to actually measure the cleaning and removal status of each individual object;
Sometimes cleaning and removal is insufficient. No consideration was given to confirming that the totoro had been washed and removed.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点を解消し、被洗浄物表面上の有機物
を紫外線によシ発生するオゾンを利用して酸化分解させ
、該分解によシ生成したガスを用いて洗浄状態をインラ
インでモニタする紫外線洗浄ソニタ方法を提供すること
を目的とするものである。
The present invention solves the above problems, oxidizes and decomposes organic matter on the surface of the object to be cleaned using ozone generated by ultraviolet rays, and monitors the cleaning state in-line using the gas generated by the decomposition. It is an object of the present invention to provide an ultraviolet cleaning sonitor method.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために、被洗浄物および紫
外線ランプを内蔵し、かつ一方側に赤外光を発生する手
段を、他方側に赤外線を検出する手段をそれぞれ配設し
た洗浄槽内に酸素ガスを導入し、該洗浄槽内で発生する
オゾンによシ被洗浄物の表面上の有機分を酸化分解させ
、#酸化分解によシ生成されたガスの赤外線吸収強度を
連続測定することにより、前記有機物の洗浄除去の状態
を評価することを特徴とする。
In order to achieve the above-mentioned object, the present invention provides a cleaning tank which contains an object to be cleaned and an ultraviolet lamp, and which is equipped with a means for generating infrared light on one side and a means for detecting infrared light on the other side. Oxygen gas is introduced into the cleaning tank, and the organic components on the surface of the object to be cleaned are oxidized and decomposed by the ozone generated in the cleaning tank, and the infrared absorption intensity of the gas generated by the oxidative decomposition is continuously measured. The present invention is characterized in that the state of cleaning and removal of the organic matter is evaluated by doing so.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面について説明するに先だ
って、その原理について詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Before explaining one embodiment of the present invention with reference to the drawings, the principle thereof will be explained in detail below.

酸素02に紫外II!を照射して発生するオゾンOsは
、有機物、例えばCnHmOk(ただしn、m、には自
然数)に作用し、下記fl)〜(3)弐に示すように反
応する。
Oxygen 02 and UV II! The ozone Os generated by irradiation acts on organic matter, for example, CnHmOk (where n and m are natural numbers), and reacts as shown in fl) to (3) 2 below.

hv(184、?nm)+Oz→0+0・・・・・・ 
(1)02+0  →Os  ・・・・・・・・・ (
2)Os + Cn Hm Ok −1(1:o(ga
s) 、 Co2(gas)。
hv(184,?nm)+Oz→0+0・・・・・・
(1)02+0 →Os ・・・・・・・・・ (
2) Os + Cn Hm Ok -1(1:o(ga
s), Co2 (gas).

H2O(鴎B)・・・(3) 上記(11(21弐に示すようK、酸素02に184.
9nm付近の光hvを照射すると、光エネルギを吸収し
てオゾンOsを発生する。該オゾンO1は強い酸化作用
を有するため、被洗浄物表面上の有機物の炭素Cおよび
水素Hと結合し、上記(3)弐に示すように一酸化炭素
Go、二酸化炭素Co2、水蒸気HxOK分解する。
H2O (gull B)...(3) As shown in the above (11 (212), K, oxygen 02 and 184.
When irradiated with light hv around 9 nm, the light energy is absorbed and ozone Os is generated. Since the ozone O1 has a strong oxidizing effect, it combines with carbon C and hydrogen H of organic matter on the surface of the object to be cleaned, and decomposes carbon monoxide Go, carbon dioxide Co2, and water vapor Hx OK as shown in (3) 2 above. .

一方、オゾンO!と254.7nm  付近の光は下記
+4115)弐に示すように反応する。
On the other hand, Ozone O! Light around 254.7 nm reacts as shown in +4115)2 below.

h’v (254,7nm )+Os →oz +O*
−・−・−・−(410*+CnHmOk−+Co(g
as)、Co2(gas)、H2O(gas)・・・・
・・・・・(5) ただし、*印は励起状態を示す。
h'v (254,7nm) +Os →oz +O*
−・−・−・−(410*+CnHmOk−+Co(g
as), Co2 (gas), H2O (gas)...
...(5) However, the * mark indicates an excited state.

上記(4)式に示すようにオゾンOsに254.7 n
m付近の光h’v k照射すると、光エネルギを吸収し
てオゾンOs よりもさらに強い酸化作用を有する酸素
励起原子O*を発生する。#原子Osは上記(5)式に
示すように、オゾンと同様に有機物のC1Hと結合し、
C01CO2、H2Oのガスに分解する。
As shown in equation (4) above, 254.7 n of ozone Os
When it is irradiated with light h'v k near m, it absorbs the light energy and generates excited oxygen atoms O*, which have a stronger oxidizing effect than ozone Os. As shown in the above formula (5), the # atom Os combines with C1H of an organic substance like ozone,
Decomposes into gases of CO1CO2 and H2O.

上記+31 f5)弐に示す反応式で生成したGO,C
Oz、H2Oの各ガスの赤外吸収強度を被洗浄物表面上
で連続測定することによシ、洗浄中の個々の被洗浄物表
面上の有機物の洗浄除去状態をモニタすることが可能で
ある。
GO, C produced by the reaction formula shown in +31 f5) 2 above
By continuously measuring the infrared absorption intensity of each gas, Oz and H2O, on the surface of the object to be cleaned, it is possible to monitor the state of cleaning and removal of organic matter on the surface of each object to be cleaned during cleaning. .

次に紫外線によシ発生するオゾンによって有機物を分解
させ、該分解によシ生成されたガスの赤外吸収スペクト
ルからモニタとして使用可能なスペクトルに関して、第
1図を参照して説明する。
Next, an organic matter is decomposed by ozone generated by ultraviolet rays, and a spectrum that can be used as a monitor from an infrared absorption spectrum of a gas produced by the decomposition will be explained with reference to FIG.

同図は横軸に波数(cR−’)を、縦軸に透過率■をそ
れぞれと)、前記赤外吸収スペクトルを示したものであ
る。
The figure shows the infrared absorption spectrum, with the wave number (cR-') on the horizontal axis and the transmittance (2) on the vertical axis.

上記赤外吸収スペクトルは第1図よ如明らかなように、
二酸化炭素Cowでは逆対称振動にもとづくスペクトル
が2300〜2380cIIL−′でIll。
As clearly shown in Figure 1, the above infrared absorption spectrum is
In carbon dioxide Cow, the spectrum based on antisymmetric vibration is 2300 to 2380 cIIL-'.

また二重縮重振動にもとづくスペクトルが620〜7Q
Qcm’である。一方、水蒸気H20では全対称および
逆対称伸縮振動にもとづくスペクトルが3600〜39
0.0CII−’であり、また全対称変角振動にもとづ
くスペクトルが1400〜1780c111−’である
。ところが、−酸化炭素COの伸縮振動くもとづくスペ
クトル2050〜2250cII−’は、相対的に生成
量が少ないため、吸収スペクトルは検出されない。
Also, the spectrum based on double degenerate vibration is 620-7Q.
Qcm'. On the other hand, for water vapor H20, the spectrum based on fully symmetric and antisymmetric stretching vibrations is 3600-39
0.0 CII-', and the spectrum based on fully symmetric bending vibration is 1400 to 1780 c111-'. However, the absorption spectrum of the spectrum 2050 to 2250cII-', which is based on the stretching vibration of -carbon oxide CO, is not detected because the amount produced is relatively small.

さらに、上記の他に酸素の紫外線照射によって生成され
たオゾンOsの吸収スペクトルが、970〜1070α
−1および206・0〜2130−’において測定され
る。
Furthermore, in addition to the above, the absorption spectrum of ozone Os generated by ultraviolet irradiation of oxygen is 970-1070α
-1 and 206.0 to 2130-'.

したがって、紫外線によって分解生成されるガスの二酸
化炭素または水蒸気の赤外吸収スペクトルは、分解以外
の生成ガスであるオゾンの赤外吸収スペクトルと重合し
ないため、二酸化炭素または水蒸気の赤外吸収スペクト
ルの吸収強度を連続的に測定することによシ、洗浄除去
状態をモニタすることができる。
Therefore, the infrared absorption spectrum of carbon dioxide or water vapor, which is a gas decomposed and produced by ultraviolet rays, does not overlap with the infrared absorption spectrum of ozone, which is a gas produced other than decomposition. By continuously measuring the intensity, the cleaning removal status can be monitored.

上述した原理にもとづいてなされた本実施例の主要構成
を第2図に示す。同図において、1け酸素ガスの導入口
1aと導出口1bを備える洗浄槽、3.4け洗浄槽1内
の上、下部にそれぞれ平行に配設された紫外線ラングお
よび被洗浄物、例えば半導体ウェハである。5,6け洗
浄槽1の一方側(左側)および他方側(右側)にそれぞ
れ配設された赤外線光源および赤外線検出器、7は赤外
線抄出器6に接続する記録計である。
FIG. 2 shows the main structure of this embodiment based on the above-mentioned principle. In the same figure, a cleaning tank with an inlet 1a and an outlet 1b for oxygen gas, ultraviolet rungs arranged in parallel at the top and bottom of the cleaning tank 1, and objects to be cleaned, such as semiconductors, are shown. It's a wafer. An infrared light source and an infrared detector are disposed on one side (left side) and the other side (right side) of the five- and six-tube cleaning tank 1, respectively, and 7 is a recorder connected to the infrared extractor 6.

次に上記のような構成からなる本実施例の作用について
説明する。
Next, the operation of this embodiment configured as described above will be explained.

ガス導入口1aから洗浄槽1内に導入された酸素ガス2
け、紫外線ランプ3から発射される波長184.9nm
付近の紫外線に照射されてオゾンを生成し、該ランプ3
と千行く設置されたsi牛導体ウェハ4上のレジスト(
図示せず)を酸化分解する。
Oxygen gas 2 introduced into the cleaning tank 1 from the gas inlet 1a
The wavelength of 184.9 nm emitted from the ultraviolet lamp 3
The lamp 3 generates ozone by being irradiated with nearby ultraviolet rays.
The resist (
(not shown) is oxidized and decomposed.

また、前記オゾンは紫外線ランプ3から発射される波長
254.7 nm付近の紫外線を吸収し、該オゾンよ)
酸化反応に富んだ励起酸素原子に分解し。
In addition, the ozone absorbs ultraviolet light with a wavelength of around 254.7 nm emitted from the ultraviolet lamp 3, and the ozone
Decomposes into excited oxygen atoms, which are rich in oxidation reactions.

該オゾンと同様KSi半導体ウェハ4上のレジストを酸
化分解する。該酸化分解によシ生成された成分け、81
半導体ウェハ4上にガス状となって飛散し排気口1bよ
り排気される。
Similar to the ozone, the resist on the KSi semiconductor wafer 4 is oxidized and decomposed. Components generated by the oxidative decomposition, 81
The gas scatters on the semiconductor wafer 4 and is exhausted from the exhaust port 1b.

一方、赤外線光源5から発射される赤外線入け。On the other hand, an infrared ray is emitted from an infrared light source 5.

上記Si半導体クりハ4上の分解ガスに吸収され、該吸
収強度は赤外線検出器6によシ測定されると共に、該測
定値は記録計7にモニタされる。
It is absorbed by the decomposed gas on the Si semiconductor substrate 4, and its absorption intensity is measured by an infrared detector 6, and the measured value is monitored by a recorder 7.

第3図は横軸に洗浄時間を、縦軸に吸収強度をそれぞれ
とシ、分解生成した二酸化炭素の赤外吸収強度の時間変
化を測定した結果を示す線図である。すなわち前記二酸
化炭素の赤外吸収スペクトル2349>−’における吸
収強度を連続的に測定したものである。
FIG. 3 is a diagram showing the results of measuring changes over time in the infrared absorption intensity of decomposed carbon dioxide, with the horizontal axis representing cleaning time and the vertical axis representing absorption intensity. That is, the absorption intensity in the infrared absorption spectrum 2349>-' of the carbon dioxide was continuously measured.

この図より明らかなように、洗浄開始と同時にS1半導
体ウェハ4上の二酸化炭素の量が増加し、数分後に一定
の濃度となると共に、洗浄速度も安定する。また、前記
ウェハ4上のレジストが減少するに伴って、二酸化炭素
の濃度が減少するため、波数2549cm−’の吸収強
度も低減し、該吸収強度が零になった時点で洗浄の終了
したことがわかる。
As is clear from this figure, the amount of carbon dioxide on the S1 semiconductor wafer 4 increases at the same time as cleaning starts, and reaches a constant concentration after several minutes, and the cleaning speed also stabilizes. Furthermore, as the resist on the wafer 4 decreases, the concentration of carbon dioxide decreases, so the absorption intensity at a wave number of 2549 cm-' also decreases, and the cleaning is completed when the absorption intensity becomes zero. I understand.

〔発明の効果〕 以上説明したように1本発明によれば、紫外線による被
洗浄物表面上の有機物の洗浄状態をオゾンの影響なく、
非接触かつ非破壊にインラインでモニタすることができ
るばかりでなく、洗浄の完了しているか否かの判定が個
々の被洗浄物について可能である。
[Effects of the Invention] As explained above, according to the present invention, the cleaning state of organic matter on the surface of the object to be cleaned by ultraviolet rays can be improved without the influence of ozone.
Not only can non-contact and non-destructive in-line monitoring be possible, but it is also possible to determine whether or not cleaning has been completed for each object to be cleaned.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は紫外線による有機物の分解によシ生成したガス
の赤外吸収スペクトルを示す図、第2図は本発明の洗浄
モニタ方法を適用した紫外線洗浄装置の構成図、第6図
は分解生成した二酸化炭素の赤外吸収強度の時間変化を
測定した結果を示した線図である。 1・・・洗浄槽、3・・・紫外線ランプ、4・・・被洗
浄物。 5・・・赤外線光源、6・・・検出器。 1、、+轡、
Figure 1 is a diagram showing the infrared absorption spectrum of gas generated by the decomposition of organic matter by ultraviolet rays, Figure 2 is a block diagram of an ultraviolet cleaning equipment to which the cleaning monitoring method of the present invention is applied, and Figure 6 is a diagram showing the decomposition products. FIG. 2 is a diagram showing the results of measuring changes over time in the infrared absorption intensity of carbon dioxide. 1...Cleaning tank, 3...Ultraviolet lamp, 4...Object to be cleaned. 5... Infrared light source, 6... Detector. 1、、+轡、

Claims (1)

【特許請求の範囲】[Claims] 被洗浄物および紫外線ランプを内蔵し、かつ一方側に赤
外光を発生する手段を、他方側に赤外線を検出する手段
をそれぞれ配設した洗浄槽内に酸素ガスを導入し、該洗
浄槽内で発生するオゾンにより被洗浄物の表面上の有機
分を酸化分解させ、該酸化分解により生成されたガスの
赤外線吸収強度を連続測定することにより、前記有機物
の洗浄除去の状態を評価することを特徴とする紫外線洗
浄モニタ方法。
Oxygen gas is introduced into a cleaning tank that contains the object to be cleaned and an ultraviolet lamp, and is equipped with a means for generating infrared light on one side and a means for detecting infrared light on the other side. The organic matter on the surface of the object to be cleaned is oxidized and decomposed by the ozone generated by the process, and the infrared absorption intensity of the gas generated by the oxidative decomposition is continuously measured to evaluate the state of cleaning and removal of the organic matter. Characteristic ultraviolet cleaning monitoring method.
JP16188785A 1985-07-24 1985-07-24 Monitoring for ultraviolet cleaning Pending JPS6223114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16188785A JPS6223114A (en) 1985-07-24 1985-07-24 Monitoring for ultraviolet cleaning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16188785A JPS6223114A (en) 1985-07-24 1985-07-24 Monitoring for ultraviolet cleaning

Publications (1)

Publication Number Publication Date
JPS6223114A true JPS6223114A (en) 1987-01-31

Family

ID=15743881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16188785A Pending JPS6223114A (en) 1985-07-24 1985-07-24 Monitoring for ultraviolet cleaning

Country Status (1)

Country Link
JP (1) JPS6223114A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010034992A (en) * 2000-06-29 2001-05-07 박용석 Apparatus irradiating ultraviolet light
KR100735609B1 (en) * 2001-08-17 2007-07-04 삼성전자주식회사 Method and apparatus controlling irradiation capacity of uv lamp for di water recovery device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010034992A (en) * 2000-06-29 2001-05-07 박용석 Apparatus irradiating ultraviolet light
KR100735609B1 (en) * 2001-08-17 2007-07-04 삼성전자주식회사 Method and apparatus controlling irradiation capacity of uv lamp for di water recovery device

Similar Documents

Publication Publication Date Title
US7045359B2 (en) Method and apparatus to detect a gas by measuring ozone depletion
Johnston et al. Interpretations of stratospheric photochemistry
Russell et al. Kinetics and thermochemistry of the equilibrium trichloromethyl radical+ oxygen. dblarw. peroxotrichloromethane
CA1070641A (en) Emission control method and system
JPS6223114A (en) Monitoring for ultraviolet cleaning
JP2000035401A (en) Method for spectroscopic analysis of isotope using semiconductor laser
JPS6378522A (en) Ultraviolet washer
JPS6251224A (en) Ultraviolet ray cleaning monitoring
Badenes et al. Rate coefficient for the reaction FCO+ FC (O) O2→ 2 FC (O) O at 296 K
JPS59161824A (en) Light irradiating device
Field et al. Photoreduction of hydrogen peroxide by hydrogen
JP2673851B2 (en) NOX concentration measuring method and measuring apparatus
JP3837492B2 (en) Method for measuring reaction rate of gas phase OH radical reaction
Francisco et al. Infrared photochemistry of bis (trifluoromethyl) peroxide
JP2001194359A (en) Apparatus and method for measuring organic matter
Heidner III et al. Direct observation of nitrogen monofluoride (x) using laser-induced fluorescence: kinetics of the (nitrogen monofluoride) 3. SIGMA.-ground state
JPH06123714A (en) Method for fluorescent x-ray spectroscopy
JPS60190860A (en) Apparatus for measuring minute amount of organic substance
JPS63111930A (en) Decomposing and removing method for nitrous oxide contained in gaseous mixture
JP4634596B2 (en) Dissolved ozone concentration measuring device
JP2022130208A (en) Ozone concentration and method for measuring toluene concentration
JPS6127635A (en) High efficiency dry type removing device of photoresist
JPS6250660A (en) Trace organic material measuring instrument
JPH09145622A (en) Chemiluminescence-type nitrogen oxide meter
JP7189730B2 (en) Hydrogen isotope ratio measurement method and apparatus