JPS6250660A - Trace organic material measuring instrument - Google Patents

Trace organic material measuring instrument

Info

Publication number
JPS6250660A
JPS6250660A JP18952085A JP18952085A JPS6250660A JP S6250660 A JPS6250660 A JP S6250660A JP 18952085 A JP18952085 A JP 18952085A JP 18952085 A JP18952085 A JP 18952085A JP S6250660 A JPS6250660 A JP S6250660A
Authority
JP
Japan
Prior art keywords
column
gas
cell
cracking
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18952085A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Otake
大竹 光義
Yoshiharu Takizawa
芳治 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18952085A priority Critical patent/JPS6250660A/en
Publication of JPS6250660A publication Critical patent/JPS6250660A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To measure the amt. of the trace org. material in a semiconductor wafer in a short period with high sensitivity by irradiating UV rays on a sample housed in a cell in a UV cracking device in which a UV transmittable gas is filled, passing oxygen to the cell, heating the same and introducing the cracking gas through a concentration column into an analyzing instrument. CONSTITUTION:Gaseous nitrogen is supplied from a cylinder 11 into a UV cracking section 1; at the same time, a specified flow rate of oxygen is passed to the cracking cell 11 through a column 9 which adsorbs impurities from an oxygen cylinder 7. The UV rays are irradiated from a light source 5 on a sample while the sample is heated by a heat block 6. The cracking gas is captured through a 6-way valve 14 to the concentration column 17. Gaseous He is passed from a cylinder 19 to a column 17 and the cracking gas eliminated by a heater 24 is supplied via a sepn. column 26 to a photoionization detector 27. On the other hand, part of the gaseous He is fed through a gas permeating resistance force column 29 to a detector 27 as an electric discharge gas. The output signal from the detector 27 is fed via an amplifier 32 to a recorder 33, by which separated CO2, CO and H2O are measured.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、微量有機物測定装置に関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a trace organic substance measuring device.

〔発明の背景〕[Background of the invention]

紫外線を利用した有機汚染物質を洗浄する方法とし、て
fF開昭59−94821号、特開昭59−94825
号があり、これらはビッグの総説「UV10.・クリー
ニング・オプ・サーフエース(UV10゜CLtani
g of 8tb4faetz ”) Jを基に開発さ
れたものである。一方、有機物が紫外線によって分解生
成するガスを利用して微量有機物を測定する方る。しか
し、分解ガスを補集するため分解反応を紫外線を良く透
過するセル内で行うが、紫外線ランプからセルまでに酸
素が存在すると、酸素は185rLm近辺の光エネルギ
ーを吸収してオゾンを生成し、さらにオゾンは254r
L77!近辺の光エネルギーを吸収するため結局ランプ
からの紫外線がセルまで到達するまでに可成り減衰する
A method of cleaning organic contaminants using ultraviolet rays is disclosed in fF Publication No. 59-94821 and Japanese Patent Publication No. 59-94825.
These are Big's review article ``UV10.・Cleaning Op Surf Ace (UV10゜CLtani)''.
On the other hand, there is a method to measure trace amounts of organic matter using the gas produced by the decomposition of organic matter by ultraviolet rays.However, in order to collect the decomposed gas, a decomposition reaction is performed This is carried out in a cell that transmits ultraviolet rays well, but if oxygen exists between the ultraviolet lamp and the cell, the oxygen absorbs light energy around 185rLm and produces ozone, and further ozone
L77! Because it absorbs nearby light energy, the ultraviolet light from the lamp is attenuated considerably by the time it reaches the cell.

また、半導体ウェハ上の有機物の膜厚によっては、紫外
線−オゾンによる完全な酸化分解には限界がある。この
ため、セルに収納された半導体ウェハ上の有機物の分解
には可成りの時間を要するという問題があった。
Further, depending on the film thickness of the organic substance on the semiconductor wafer, there is a limit to complete oxidative decomposition by ultraviolet rays and ozone. Therefore, there is a problem in that it takes a considerable amount of time to decompose the organic matter on the semiconductor wafer housed in the cell.

〔発明の目的〕[Purpose of the invention]

本発明の目的は半導体ウェハの微量有機物の量を短時間
で高感度に測定することのでき−る微量有機物測定装置
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a trace organic matter measuring device that can measure the amount of trace organic matter in a semiconductor wafer in a short time and with high sensitivity.

〔発明の概要〕[Summary of the invention]

本発明は、半導体ウェハを収納し、紫外線を透過しうる
セルと、前記セルに収納された半導体ウェハ上の微量有
機物の紫外線を照射するための光源と、前記半導体ウェ
ハ上の有機物を紫外線で分解する際に分解を促進するた
めの熱源と、前記光源からセルまでの間に紫外線の吸収
が少ない気体側へは窒素ガスで満し且つ前記光源、セル
、熱源を収納するための照射部と、前記セルに酸素を供
給する酸素供給部と、前記半導体ウェハ上の有機物を紫
外線で分解生成した分解ガスを濃縮するための濃縮カラ
ムと、前記濃縮カラムから分解ガスを脱離させるための
加熱部及びキャリア供給部と、前記濃縮カラムから脱離
したガスを測定するガスクロマトグラムとを備えている
ことを特徴とする。この様な特徴を有する微量有機物測
定装置によれば、半導体ウェハ上の微量有機物を短時間
で分解濃縮し、高感度で測定を行なうことができる。こ
の原理を説明すると以下の通りとなる。
The present invention includes a cell that accommodates a semiconductor wafer and is capable of transmitting ultraviolet rays, a light source for irradiating ultraviolet rays to trace organic substances on the semiconductor wafer housed in the cell, and a cell that decomposes the organic substances on the semiconductor wafer with ultraviolet rays. a heat source for promoting decomposition when the cell is heated; a gas side between the light source and the cell that absorbs less ultraviolet rays is filled with nitrogen gas; and an irradiation section for housing the light source, cell, and heat source; an oxygen supply section for supplying oxygen to the cell; a concentrating column for concentrating decomposed gas produced by decomposing organic matter on the semiconductor wafer with ultraviolet rays; a heating section for desorbing the decomposed gas from the concentrating column; It is characterized by comprising a carrier supply section and a gas chromatogram for measuring the gas desorbed from the concentration column. According to the trace organic substance measuring device having such characteristics, it is possible to decompose and concentrate trace organic substances on a semiconductor wafer in a short time and perform measurement with high sensitivity. This principle is explained as follows.

酸素に紫外線を照射して発生するオゾンと微量有機物(
仮にCyLHnOJとするn 、 rIL、 Aは自然
数)とが次式(1)〜(5)の通り反応する。
Ozone and trace organic matter generated by irradiating oxygen with ultraviolet rays (
For example, CyLHnOJ (n, rIL, A is a natural number) reacts as shown in the following formulas (1) to (5).

Ar(184,94m) + 02 #0 + O・・
・・・・・・・・・・・・・・・・・・・(1)02+
0     づOs   、、0.−、 、、、 、、
、 、、、 、、、 、、、 (2)OB + CnH
mOa −>  CCfCyu)、COzCgrti’
)、H2αF−6)−0−(5)Ar(254,7nm
)+Os #02 + 0 ・・””・”・”・44)
o” + Ci翫OJ&  コC♂(ρ)、C02(y
aa)、H2O(、p)・・・(5)(ここで*は励起
状態を表わす。) 酸素に184.9 nnh付近の光を照射すると、光エ
ネルギーを吸収しオゾン(O3)を発生する((1)。
Ar (184,94m) + 02 #0 + O...
・・・・・・・・・・・・・・・・・・・・・(1)02+
0 zuOs ,,0. −、 、、、 、、
, , , , , , , , (2) OB + CnH
mOa −> CCfCyu), COzCgrti'
), H2αF-6)-0-(5)Ar (254,7nm
)+Os #02 + 0 ・・””・”・”・44)
o” + Ci 翫 OJ & Co C♂ (ρ), C02 (y
aa), H2O(, p)...(5) (Here, * represents an excited state.) When oxygen is irradiated with light around 184.9 nnh, it absorbs the light energy and generates ozone (O3). ((1).

(2)式)。オゾンは強い酸化作用を持っているため、
半導体ウェハに付着している微量有機物の炭素(C)と
水素(H)に結合し、−酸化炭素(CO)、二酸化炭素
(CO2)−水蒸気(H2O)に分解する((5)式)
、一方オシンに254.7nm付近の光を照射すると、
光エネルギーを吸収し、オゾンよりさらに強い酸化作用
を持つ酸素励起原子(0*)を発生し、オゾンと同様に
微量有機物のC、H,0に結合し、Co 、 Co、、
H2OIl?:分解する( (a)、 (5)式)、反
応式(51、(5)において半導体ウェハ上に付着して
いる微量有機物を加熱することにより分解反応は紫外線
とオゾンによる分解反応よりさらに促進する。
(2) formula). Because ozone has a strong oxidizing effect,
Bonds with trace amounts of organic matter carbon (C) and hydrogen (H) attached to semiconductor wafers and decomposes them into -carbon oxide (CO), carbon dioxide (CO2) -water vapor (H2O) (formula (5))
, On the other hand, when oscine is irradiated with light around 254.7 nm,
It absorbs light energy and generates excited oxygen atoms (0*), which has an even stronger oxidizing effect than ozone, and like ozone, it bonds to trace amounts of organic matter C, H, 0, Co, Co,...
H2OIl? : decomposes ((a), (5) formula); in reaction equations (51, (5)), by heating trace amounts of organic matter attached to the semiconductor wafer, the decomposition reaction is further accelerated than the decomposition reaction by ultraviolet rays and ozone. do.

一方、前記ランプとピルの間に空気の層が存在すると、
空気中の酸素が184.9377L付近の光を吸収して
オゾンを発生し、さらにオゾンは254.7nm付近の
光を吸収するため、光源からの紫外線がセルへ到達する
までに減衰し、セルに収納された半導体ウェハ上の微量
有機物の分解反応が進みにくくなる。したがって、ラン
プからセルの間の距離を短かくすると同時に雰囲気を紫
外線の吸収が少ない気体(例えば窒素ガス)を満すこと
により、セル内へ紫外線を効率良く照射することができ
る。
On the other hand, if there is a layer of air between the lamp and the pill,
Oxygen in the air absorbs light around 184.9377L and generates ozone, and ozone also absorbs light around 254.7nm, so the ultraviolet rays from the light source are attenuated by the time they reach the cell. This makes it difficult for the decomposition reaction of trace amounts of organic matter on the housed semiconductor wafers to proceed. Therefore, by shortening the distance between the lamp and the cell and at the same time filling the atmosphere with a gas that absorbs little ultraviolet rays (for example, nitrogen gas), the inside of the cell can be efficiently irradiated with ultraviolet rays.

セル内で分解生成した分解ガスは、濃縮カラムで濃縮し
、Co 、 Co、 、、 H2Oに高感度なガスクロ
マトグラムに注入し、汚染有機物の濃度を定量的に測定
する。
The decomposition gas generated by decomposition within the cell is concentrated in a concentrator column and injected into a gas chromatogram that is highly sensitive to Co, Co, ..., H2O to quantitatively measure the concentration of contaminant organic matter.

この装置によれば、より短時間に有機物が分解でき、高
感度に微量有機物を測定することができる。
According to this device, organic substances can be decomposed in a shorter time and trace amounts of organic substances can be measured with high sensitivity.

〔発明の実施例〕[Embodiments of the invention]

第1図は、本発明の微量有機物測定装置の原理を説明す
るための具体的一実施例の主要部説明図で、第2図は、
実施例の全体構成図を示す第1図におい、紫外線分解部
1は酸素を流すことができ、且つ半導体ウェハ2を収納
し紫外線を透過しうる窓板Sの付いたセル4と、前記セ
ル4に収納された半導体ウェハ2上の微量有機物に紫外
線を照射するための光源5及び加熱するためのヒートブ
ロック6で構成され、紫外線分解部1の内部には紫外線
の吸収が少ないガスを供給でき、酸素と紫外線及び熱で
半導体ウェハ2上の微量有機物を酸化分解することがで
きろ。酸素ボンベ7から出た酸素は調圧器8を通り、酸
素中に含まれている不純物を吸着するカラム9を流れ、
定流量バルブ10で一定の流量で紫外線分解部10分解
セル4に流れ込む一0累外線分解部1の内部には、ボン
ベ11から紫外線の吸収が少ない窒素ガスを調圧器12
、定流量バルブ15を経て供給される。分解セル4に収
納された半導体ウェハ2上の微量有機物の分解ガスは6
方バルブ14を通り、あらかじめ冷媒体・15を入れた
恒温度器16で冷却した濃縮カラム17の濃縮用充填剤
18に吸着して分析試料とする。これにより、紫外線を
効率よく照射し且つ熱による分解反応を促進するため半
導体ウェハ2上の微量有機物をより短時間で分解するこ
とができる第2図は、微量有機物の分解、濃縮と分析装
置を組み合せた微量有機物測定装置の全体構成を示す。
FIG. 1 is an explanatory view of the main parts of a specific embodiment for explaining the principle of the trace organic substance measuring device of the present invention, and FIG.
In FIG. 1 showing the overall configuration of the embodiment, an ultraviolet decomposition unit 1 includes a cell 4 with a window plate S through which oxygen can flow and which houses a semiconductor wafer 2 and can transmit ultraviolet rays; It is composed of a light source 5 for irradiating ultraviolet rays onto trace amounts of organic matter on semiconductor wafers 2 housed in the ultraviolet ray decomposition unit 1, and a heat block 6 for heating the ultraviolet ray decomposition unit 1. It is possible to oxidize and decompose trace amounts of organic matter on the semiconductor wafer 2 using oxygen, ultraviolet rays, and heat. The oxygen coming out of the oxygen cylinder 7 passes through a pressure regulator 8 and flows through a column 9 that adsorbs impurities contained in the oxygen.
Inside the ultraviolet decomposition unit 1, which flows into the ultraviolet decomposition unit 10 decomposition cell 4 at a constant flow rate through a constant flow valve 10, nitrogen gas, which absorbs little ultraviolet rays, is supplied from a cylinder 11 to a pressure regulator 12.
, is supplied via a constant flow valve 15. The decomposition gas of trace organic matter on the semiconductor wafer 2 stored in the decomposition cell 4 is 6
The sample passes through a two-way valve 14 and is adsorbed onto the concentration packing material 18 of the concentration column 17, which has been cooled in a constant temperature chamber 16 containing a refrigerant 15 in advance, and is used as an analysis sample. As a result, trace amounts of organic matter on the semiconductor wafer 2 can be decomposed in a shorter time by efficiently irradiating ultraviolet rays and promoting thermal decomposition reactions. The overall configuration of the combined trace organic matter measuring device is shown.

濃縮カラム17の濃縮用充填剤18に濃縮した分析試料
は6方バルブを点線状態にすることKより、ヘリウムボ
ンベ19からヘリウムカスの一部が、調圧器20、ガス
の不純物を吸着するカラム21、定流量パルプ22.6
方バルブ14を通って濃縮カラム17に流れ、加熱部2
5のヒータ24で脱離し、再び6方バルブ14を通り、
ガスクロマド装置25の分離カラム26で分離され光電
離検出器27へ供給される。一方、ヘリウムボンベ19
から調圧器20、カラム21を流れてきた残りのヘリウ
ムガスは定流量バルブ28、通気抵抗カラム29を流れ
、放電ガスとして光電離検出器27へ供給される。ガス
クロマド装置25は、定流量パルプ22・28、分離カ
ラム26と通気抵抗力カラム29及びこれを恒温に保つ
恒温槽50、温度コントロール51、光電離検出器27
及びこの検出器からの信号を増幅するアンプ52、記録
計55から構成され、分離された一酸化炭素、二酸化炭
素、水をそれぞれ測定する。
The analysis sample concentrated in the concentration packing material 18 of the concentration column 17 is placed in the dotted line state of the 6-way valve, so that part of the helium scum from the helium cylinder 19 is transferred to the pressure regulator 20 and the column 21 that adsorbs gas impurities. , constant flow pulp 22.6
It flows through the concentrating column 17 through the direct valve 14 and is heated to the heating section 2.
It is separated by the heater 24 of No. 5, passes through the six-way valve 14 again,
It is separated by a separation column 26 of a gas chromatography device 25 and supplied to a photoionization detector 27 . On the other hand, helium cylinder 19
The remaining helium gas that has flowed through the pressure regulator 20 and the column 21 flows through the constant flow valve 28 and the ventilation resistance column 29, and is supplied to the photoionization detector 27 as a discharge gas. The gas chromatography device 25 includes constant flow rate pulps 22 and 28, a separation column 26, an aeration resistance column 29, a constant temperature bath 50 that keeps them at constant temperature, a temperature control 51, and a photoionization detector 27.
It is composed of an amplifier 52 that amplifies the signal from this detector, and a recorder 55, and measures the separated carbon monoxide, carbon dioxide, and water, respectively.

以上に示した構成により、半導体ウエノ1上の汚染有機
物の炭素、水素原子の濃度比をより短時間で測定できる
With the configuration described above, the concentration ratio of carbon and hydrogen atoms of the organic contaminants on the semiconductor wafer 1 can be measured in a shorter time.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、紫外線は分解セルへ到達するまでの減
衰が押えられるためセル内の微量有機物の分解反応が早
くなり、さらに熱で分解反応を助成するためより短時間
で分解、濃縮ができ、既存の分析装置で迅速に分析でき
るものである。
According to the present invention, since the attenuation of ultraviolet rays is suppressed before reaching the decomposition cell, the decomposition reaction of trace amounts of organic matter within the cell is accelerated, and furthermore, since the decomposition reaction is assisted by heat, decomposition and concentration can be achieved in a shorter time. , which can be quickly analyzed using existing analytical equipment.

【図面の簡単な説明】 第1図は本発明の微量有機物測定装置の原理を説明する
ための具体的実施例の主要部説明図、第2図は実施例の
全体的構成を示した模式図である。 1・・・紫外線分解部、 2・・・半導体ウェハ、 S・・・窓板、 6・・・ヒートブロック。 8・・・調圧器。 12・・・調圧器、 15・・・冷媒体、 16・・・恒温容器、 20・・・調圧器、 21・・・カラム、 50・・・恒温槽、 55・・・記録計。 代理人弁理士 小 川 勝 男゛= 第 t 帛
[Brief Description of the Drawings] Fig. 1 is an explanatory diagram of the main parts of a specific embodiment for explaining the principle of the trace organic substance measuring device of the present invention, and Fig. 2 is a schematic diagram showing the overall configuration of the embodiment. It is. 1... Ultraviolet decomposition unit, 2... Semiconductor wafer, S... Window plate, 6... Heat block. 8...Pressure regulator. 12... Pressure regulator, 15... Refrigerant, 16... Constant temperature container, 20... Pressure regulator, 21... Column, 50... Constant temperature chamber, 55... Recorder. Representative Patent Attorney Katsutoshi Ogawa = No. t

Claims (1)

【特許請求の範囲】[Claims] 1 紫外線分解を利用した微量有機物を測定する装置に
おいて、紫外線の吸収が少ないガスで満しうる紫外線分
解装置内に試料を収納し紫外線が透過しうるセルと、前
記セル内に収納された試料上の微量有機物に紫外線を照
射するための光源と、熱を与えることのできる熱源をそ
なえ、前記セル内に酸素を供給するための酸素供給部と
前記微量有機物の分解ガスを濃縮するための濃縮カラム
と、前記濃縮カラムから分解ガスを脱離させるための加
熱部及びキャリア供給部と、前記濃縮カラムから脱離し
た分解ガスを高感度に測定できる分析装置を備えている
ことを特徴とする微量有機物測定装置。
1. In an apparatus for measuring trace amounts of organic substances using ultraviolet decomposition, a sample is housed in an ultraviolet decomposition device that can be filled with a gas that absorbs little ultraviolet rays, and a cell through which ultraviolet rays can pass; an oxygen supply section for supplying oxygen into the cell, and a concentrating column for concentrating the decomposed gas of the trace organic matter; and a heating section and a carrier supply section for desorbing the decomposed gas from the concentrating column, and an analysis device capable of measuring with high sensitivity the decomposed gas desorbed from the concentrating column. measuring device.
JP18952085A 1985-08-30 1985-08-30 Trace organic material measuring instrument Pending JPS6250660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18952085A JPS6250660A (en) 1985-08-30 1985-08-30 Trace organic material measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18952085A JPS6250660A (en) 1985-08-30 1985-08-30 Trace organic material measuring instrument

Publications (1)

Publication Number Publication Date
JPS6250660A true JPS6250660A (en) 1987-03-05

Family

ID=16242658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18952085A Pending JPS6250660A (en) 1985-08-30 1985-08-30 Trace organic material measuring instrument

Country Status (1)

Country Link
JP (1) JPS6250660A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981290A (en) * 1997-04-07 1999-11-09 The United States Of America As Represented By The Secretary Of Transportation Microscale combustion calorimeter
WO2013005332A1 (en) * 2011-07-07 2013-01-10 三菱重工業株式会社 Hydrogen concentration measuring apparatus and hydrogen concentration measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981290A (en) * 1997-04-07 1999-11-09 The United States Of America As Represented By The Secretary Of Transportation Microscale combustion calorimeter
WO2013005332A1 (en) * 2011-07-07 2013-01-10 三菱重工業株式会社 Hydrogen concentration measuring apparatus and hydrogen concentration measuring method

Similar Documents

Publication Publication Date Title
Cantrell et al. Absorption cross sections for water vapor from 183 to 193 nm
CA1058907A (en) Apparatus for measuring amount of organic carbon in aqueous solution
US3659100A (en) System and method of air pollution monitoring utilizing chemiluminescence reactions
CA1129325A (en) Analytical method and apparatus for the determination of total nitrogen contents in aqueous systems
JP2009507241A (en) Nitric oxide detection
US4077774A (en) Interferent-free fluorescence detection of sulfur dioxide
US7179422B2 (en) Apparatus for improved detection of carbon monoxide by infrared absorption spectroscopy
US3464797A (en) Instrument for determining ozone
US4698314A (en) Method for measurement of gas concentration
JPS6250660A (en) Trace organic material measuring instrument
JPS60190860A (en) Apparatus for measuring minute amount of organic substance
CA1074979A (en) Detection and measurement of no2 and o3
Konieczka et al. Utilization of thermal decomposition of immobilized compounds for the generation of gaseous standard mixtures used in the calibration of gas analysers
JPH06194353A (en) Method and system for generating carrier gas
JPS60166856A (en) Method and apparatus for measuring minute amount of organic substance
JPH0245825B2 (en) KIHATSUSEIJUKITANSONOSOKUTEIHOOYOBISOKUTEISOCHI
JPS6182162A (en) Method and instrument for measuring volatile organic carbon
JPH01134248A (en) Instrument for measuring trace of organic matter
JPH09269286A (en) Infrared spectroscopic device with thermal decomposition
JPH05504835A (en) Method and device for simultaneous measurement of sulfur-containing and non-sulfur-containing compounds
JPH0320666A (en) Method of detecting decomposable organic carbon compound
JPH1151869A (en) Total organic carbon/total nitrogen meter
JPH0546500B2 (en)
JPH11326314A (en) Method for separating and simultaneously measuring response of respiration and photosynthesis of plant and its device
JPS58131562A (en) Method and apparatus for measurement of volatile organic carbon