JPS62230866A - Ultraviolet-curing coating compound and optical fiber using same - Google Patents

Ultraviolet-curing coating compound and optical fiber using same

Info

Publication number
JPS62230866A
JPS62230866A JP61072756A JP7275686A JPS62230866A JP S62230866 A JPS62230866 A JP S62230866A JP 61072756 A JP61072756 A JP 61072756A JP 7275686 A JP7275686 A JP 7275686A JP S62230866 A JPS62230866 A JP S62230866A
Authority
JP
Japan
Prior art keywords
ultraviolet
optical fiber
curing
coating compound
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61072756A
Other languages
Japanese (ja)
Other versions
JPH0762726B2 (en
Inventor
Hirokazu Kuzushita
葛下 弘和
Kotaro Mio
三尾 興太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP61072756A priority Critical patent/JPH0762726B2/en
Publication of JPS62230866A publication Critical patent/JPS62230866A/en
Publication of JPH0762726B2 publication Critical patent/JPH0762726B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:Optical fiber having a thin, uniform clad layer with improved durability to external force, by coating a quartz glass core with an ultraviolet-curing coating compound comprising a specific fluorine modified acrylate resin as a main component and curing the coating compound with ultraviolet rays. CONSTITUTION:A quartz glass core is coated with an ultraviolet-curing coating compound comprising a fluorine modified acrylate resin which has 300-10,000 c.p., preferably 350-4,000 c.p. viscosity at 25 deg.C, has >=80, preferably >=90 Shore hardness after ultraviolet irradiation crosslinking and 20-60wt%, preferably 30-50wt% fluorine content as a main component in thickness of 2-30mum, preferably 5-20mum and the coating compound is cured with ultraviolet rays to give optical fiber of polymer clad-quartz glass core type.

Description

【発明の詳細な説明】 崖U主匣 本発明は、石英ガラスコア光ファイバのクラッド層形成
用として好適な紫外線硬化性塗料、並びに該紫外線硬化
性塗料を用いてクラフト層を形成してなるポリマークラ
ッド−石英ガラスコア型の光ファイバに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultraviolet curable coating material suitable for forming a cladding layer of a silica glass core optical fiber, and a polymer obtained by forming a kraft layer using the ultraviolet curable coating material. The present invention relates to a clad-silica glass core type optical fiber.

鴛】ヱリえ青 石英ガラスコアの上への石英ガラスクラブト層の形成は
、CVD法、VAD法、あるいはロッドインチェープ法
などにより行うことができるが、いずれの方法を採用す
るにしても大規模な生産設備を必要とする。これに対し
て、ポリマークラッド−石英ガラスコア型の光ファイバ
は、全体が石英ガラスからなる光ファイバと同等の低損
失性を存し、しかも石英ガラスコア上へのクラッド層の
形成は基本的にはポリマーの成形加工に類することであ
るので、石英ガラスクランド層の形成と比較して簡単な
設備を用いて容易に行うことができるものと期待され実
用化研究が鋭意進められている。従来、ポリマークラッ
ド層の形成方法とじては、押出成形法、熱硬化性樹脂塗
料の塗布・焼付法、紫外線硬化性塗料の塗布硬化法など
が知られている。これら周知方法のうち、紫外線硬化性
塗料の塗布硬化法は、塗料の塗布並びに紫外線照射によ
る硬化作業の全てを室温で行うことができ、しかも紫外
線照射装置も差はど高価なものではないので、特に斯界
の注目を浴びつつある方法である。
A quartz glass crab layer can be formed on the blue quartz glass core by a CVD method, a VAD method, or a rod-in-chape method, but whichever method is used, also requires large-scale production equipment. On the other hand, polymer clad-silica glass core optical fibers have low loss properties equivalent to optical fibers made entirely of silica glass, and moreover, the formation of a cladding layer on the silica glass core is basically Since this process is similar to the molding process of polymers, it is expected that it can be easily performed using simple equipment compared to the formation of a silica glass crund layer, and research into practical application is being actively carried out. Conventionally, known methods for forming a polymer clad layer include an extrusion molding method, a method of applying and baking a thermosetting resin paint, and a method of applying and curing an ultraviolet curable paint. Among these well-known methods, the coating and curing method for ultraviolet curable paints allows the coating and curing work by ultraviolet ray irradiation to be performed at room temperature, and the ultraviolet ray irradiation equipment is not very expensive. This method is particularly attracting attention in this field.

°を すべき−占 ところで、現在各種の紫外線硬化性塗料が知られている
が、いずれも屈折率が石英ガラスのそれ(n6−1.4
58)より大きくクラッド用被覆材として適しない、ま
た、U S P4,511,209などで例示されてい
る紫外線硬化性塗料は、常温での粘度が低いために線引
きされた直後の石英ガラスコアの表面に塗布すると、部
分的な流下現象を起こして薄く且つ均一なりラッド層を
形成し難い問題がある。また、クラッド用として現在使
用されているシリコーン樹脂は、硬化皮膜の硬度が乏し
いために外力により損傷を被り易い欠点もある。
By the way, various types of ultraviolet curable paints are currently known, but all of them have a refractive index that is that of quartz glass (n6-1.4
58) Ultraviolet curable paints, which are larger in size and are not suitable as coating materials for cladding, and are exemplified in U.S.P. 4,511,209, have low viscosity at room temperature, so they cannot be used as coating materials for silica glass cores immediately after being drawn. When applied to the surface, there is a problem in that a partial flow-down phenomenon occurs, making it difficult to form a thin and uniform rad layer. Furthermore, silicone resins currently used for cladding have the disadvantage that the hardness of the cured film is poor, so that they are easily damaged by external forces.

クラッド層を厚く仕上げることにより上記の問題は多少
改善されるとしても、本質的な改善策とはなり得す、逆
に厚肉のクラッド層は光ファイバの仕上がり外径を増大
させることとなってコアの占積率が低下し、スペースフ
ァクター的に極めて不利である。
Although making the cladding layer thicker may somewhat improve the above problem, it is not a fundamental solution; on the contrary, a thicker cladding layer increases the finished outer diameter of the optical fiber. The space factor of the core decreases, which is extremely disadvantageous in terms of space factor.

朋1】すC11反 本発明は、上記の従来事情を考慮して、25℃における
粘度が300〜10.000c、p.、紫外線照射架橋
後におけるショアA硬度が少なくとも80.かつフッ素
含有量が20〜60重量%のフッ素変成アクリレート系
樹脂を主成分とする紫外線硬化性塗料、並びに該塗料を
塗布し紫外線硬化して形成した厚さ2〜30μ鶴のクラ
ッド層を有する石英ガラスコアの光ファイバを提供しよ
うとするものである。
1] C11 In consideration of the above-mentioned conventional circumstances, the present invention has a viscosity of 300 to 10.000c at 25°C, p. , Shore A hardness after crosslinking by ultraviolet irradiation is at least 80. A UV-curable paint whose main component is a fluorine-modified acrylate resin with a fluorine content of 20 to 60% by weight, and quartz having a cladding layer with a thickness of 2 to 30 μm formed by applying the paint and curing it with UV light. The aim is to provide a glass core optical fiber.

詐1じ九展 本発明の塗料は、アクリレート系樹脂を主成分とするも
のであるが、20〜60重量%のフッ素量にて変成した
ものであるために石英ガラスコアより低屈折率を有し、
したがってクラフト層構成材料として適するのみならず
、石英ガラスコアに対する良好な親和性と25℃におい
て300〜10.000c、p、との適度の粘度とをを
するために線引きされた直後の石英ガラスコアの表面に
薄くシかも均一に塗布することが可能となり、このあと
紫外線照射して均一薄層のクラッド層を形成することが
できる。また、本発明のクラッド層は紫外線照射架橋後
におけるショアA硬度が少なくとも80もの高硬度を有
するので、2〜30μm程度の薄層であっても外力に対
して優れた耐性を示す、また、上記の紫外線硬化性塗料
の硬化物にて構成され且つ厚さ2〜30μmのクラフト
層を有する本発明の石英ガラスコアー光ファイバは、低
伝送損失であり、仕上がり外径(スペースファクター)
が小さい長所をも具備する。
The paint of the present invention has an acrylate resin as its main component, but since it has been modified with a fluorine content of 20 to 60% by weight, it has a refractive index lower than that of a silica glass core. death,
Therefore, the quartz glass core immediately after being drawn is not only suitable as a material for forming the kraft layer, but also has a good affinity for the quartz glass core and a moderate viscosity of 300 to 10,000 c,p at 25°C. It is possible to apply the coating thinly and uniformly to the surface of the substrate, and then irradiate it with ultraviolet rays to form a uniformly thin cladding layer. Furthermore, since the cladding layer of the present invention has a high Shore A hardness of at least 80 after crosslinking by ultraviolet irradiation, it exhibits excellent resistance to external forces even if it is a thin layer of about 2 to 30 μm. The silica glass core optical fiber of the present invention, which is composed of a cured product of an ultraviolet curable paint and has a kraft layer with a thickness of 2 to 30 μm, has a low transmission loss and a small finished outer diameter (space factor).
It also has some small advantages.

本発明においては、変成フッ素量が20〜60重量%以
外であり、かつ、25℃における粘度が300〜10,
0OOc、p、以外である塗料を用いたのでは、線引き
された直後の石英ガラスコアの表面に薄くしかも均一に
塗布することが困難である。したがって、本発明におい
ては、変成フッ素量が 25〜55重量%、特に30〜
50重量%であり、また25℃における粘度が300〜
s、oooc、p、特に350〜4.000C9p、の
ものが好ましい、一方、用いた塗料が紫外線照射架橋後
におけるショアA硬度が、80未満の低硬度であると、
外力に対する耐性が乏しいために光ファイバの敷設時に
被る外力により大きな損傷を受け、これがために光ファ
イバの伝送損失が増大する危険性が高くなる。したがっ
て本発明の塗料は、紫外線照射架橋後におけるショアA
硬度が少なくとも85、特に少なくとも9oのものが好
ましい。
In the present invention, the amount of modified fluorine is other than 20 to 60% by weight, and the viscosity at 25°C is 300 to 10%,
If a paint other than 0OOc,p is used, it is difficult to apply the paint thinly and uniformly to the surface of the quartz glass core immediately after it has been drawn. Therefore, in the present invention, the amount of modified fluorine is 25 to 55% by weight, particularly 30 to 55% by weight.
50% by weight, and the viscosity at 25°C is 300~
s, oooc, p, especially 350 to 4.000C9p, are preferred; on the other hand, when the paint used has a low Shore A hardness of less than 80 after crosslinking by ultraviolet irradiation,
Due to the poor resistance to external forces, the optical fibers are subject to significant damage due to the external forces encountered during installation, which increases the risk of increased transmission losses in the optical fibers. Therefore, the coating material of the present invention has Shore A after crosslinking by ultraviolet irradiation.
Those with a hardness of at least 85, especially at least 9o are preferred.

本発明において用いる紫外線硬化性塗料は、必要に応じ
て各種の光重合開始剤、たとえばアセトフェノン類、ベ
ンゾフェノン類、ミヒラーケトン類、ベンジル類、ベン
ゾイン類、ベンゾインエーテル類、ベンジルジメチルケ
タール類、チオキサントン類など、との混合物、光重合
性モノマー類、たとえば、メチルメタクリレート、エチ
ルメタクリレート、2−エチルへキシルアクリレート、
2−ヒドロキシエチルアクリレート、2−ヒドロキシプ
ロピルアクリレートなどの単官能性モノマー類およびそ
れらのフッ素変成体類、1. 3−ブタンジオールジア
クリレート、1.4−ブタンジオールジアクリレート、
1.6−ヘキサンジオールジアクリレート、ジエチレン
グリコールジアクリレート、ネオペンチルグリコールジ
アクリレート、ポリエチレングリコール400ジアクリ
レート、ヒドロキシピパリン酸エステルネオペンチルグ
リコールジアクリレートなどの二官能性モノマー類およ
びそれらのフッ素変成体類、トリメチロールプロパント
リアクリレート、ペンタエリスリトールトリアクリレー
ト、ジペンタエリスリトールへキサアクリレート、ポリ
メチロールプロパンポリアクリレートなどの三官能性乃
至多官能性モノマー類およびそれらのフッ素変成体類な
どを通常量含んでいてもよい、またさらに必要に応じて
増感剤、光安定剤、可塑剤などを適当量混合しても良い
。市販品としては、たとえば大日本インキ社製の商品名
NP601〜604などを例示することができる。
The ultraviolet curable paint used in the present invention may optionally contain various photopolymerization initiators, such as acetophenones, benzophenones, Michler ketones, benzyls, benzoins, benzoin ethers, benzyl dimethyl ketals, thioxanthones, etc. mixtures with photopolymerizable monomers such as methyl methacrylate, ethyl methacrylate, 2-ethylhexyl acrylate,
Monofunctional monomers such as 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate and their fluorine modified products; 1. 3-butanediol diacrylate, 1,4-butanediol diacrylate,
1. Difunctional monomers such as 6-hexanediol diacrylate, diethylene glycol diacrylate, neopentyl glycol diacrylate, polyethylene glycol 400 diacrylate, hydroxypiparic acid ester neopentyl glycol diacrylate, and their fluorine modified products, It may contain normal amounts of trifunctional to polyfunctional monomers such as trimethylolpropane triacrylate, pentaerythritol triacrylate, dipentaerythritol hexaacrylate, polymethylolpropane polyacrylate, and their fluorine modified products. Furthermore, appropriate amounts of sensitizers, photostabilizers, plasticizers, etc. may be mixed as necessary. Examples of commercially available products include NP601-604 manufactured by Dainippon Ink Co., Ltd.

付図は、本発明のポリマークランド−石英ガラスコア型
の光ファイバの断面図であって、1は石英ガラス、たと
えば純石英ガラス、ゲルマニウムやリンなどによりドー
プされた石英ガラスなどからなる石英ガラスコアであり
、2は本発明の紫外線硬化性材料を塗布し紫外線硬化し
て形成したクランド層である。クラフト層の厚さは、前
記した通り、2〜30μmであって2μ鴎より薄いと、
たとえ本発明の塗料が硬化後において高硬度を有すると
いえども外力により損傷し光ファイバの伝送損失が増大
する危険性があり、一方30μmより大きいと、光ファ
イバのスペースファクターが過大となる問題がある。し
たがって、クラフト層の厚さは、2〜30μ個、特に5
〜20μ涌とすることが好ましい。
The attached figure is a cross-sectional view of a polymer crimp-quartz glass core type optical fiber of the present invention, in which 1 is a quartz glass core made of quartz glass, for example, pure silica glass, quartz glass doped with germanium, phosphorus, or the like. 2 is a ground layer formed by applying the ultraviolet curable material of the present invention and curing it with ultraviolet rays. As mentioned above, the thickness of the kraft layer is 2 to 30 μm and thinner than 2 μm,
Even if the coating of the present invention has high hardness after curing, there is a risk that it will be damaged by external force and increase the transmission loss of the optical fiber.On the other hand, if it is larger than 30 μm, there is a problem that the space factor of the optical fiber will be excessive. be. Therefore, the thickness of the kraft layer should be 2 to 30μ, especially 5
It is preferable to set it as 20 microliters.

本発明の光ファイバは、コア構成用の母材を通常の方法
にて線引きし、線引きされたコアファイバ上に線引き後
直ちに紫外線硬化性材料を塗布しついで紫外線硬化する
ことにより容易に製造することが可能である。
The optical fiber of the present invention can be easily manufactured by drawing a base material for the core structure in a conventional manner, applying an ultraviolet curable material onto the drawn core fiber immediately after drawing, and then curing it with ultraviolet rays. is possible.

天皇■ 以下、実施例及び比較例により本発明を一層詳細に説明
する。
Emperor ■ The present invention will be explained in more detail below with reference to Examples and Comparative Examples.

実施例1 変成フッ素含存量が45重量%、25℃における粘度が
350C,p、 、紫外線照射硬化後におけるショアA
硬度が90.屈折率が1.40の紫外線硬化性塗料。
Example 1 Modified fluorine content is 45% by weight, viscosity at 25°C is 350C, p, Shore A after curing by UV irradiation
Hardness is 90. UV-curable paint with a refractive index of 1.40.

実施例2 変成フッ素含有量が40重量%、25℃における粘度が
470C,p、 、紫外線照射硬化後におけるショアA
硬度が90、屈折率が1.41の紫外線硬化性塗料。
Example 2 Modified fluorine content is 40% by weight, viscosity at 25°C is 470C, p, Shore A after curing by UV irradiation
An ultraviolet curable paint with a hardness of 90 and a refractive index of 1.41.

実施例3 変成フッ素含有量が40重量%、25℃における粘度が
3.0OOc、p、 、紫外線照射硬化後におけるショ
アA硬度が90、屈折率が1.43の紫外線硬化性塗料
Example 3 An ultraviolet curable paint having a modified fluorine content of 40% by weight, a viscosity at 25°C of 3.0OOc,p, a Shore A hardness of 90 after curing with ultraviolet rays, and a refractive index of 1.43.

比較例1 変成フッ素含有量が40重量%、25℃における粘度が
50c、p.、紫外線照射硬化後におけるショアA硬度
が90、屈折率が1.41の紫外線硬化性塗料。
Comparative Example 1 Modified fluorine content was 40% by weight, viscosity at 25°C was 50c, p. , an ultraviolet curable paint having a Shore A hardness of 90 and a refractive index of 1.41 after curing by ultraviolet irradiation.

比較例2 25℃における粘度がs、00.OC,[)、 、加熱
硬化後におけるショアA硬度が20、屈折率が1.40
のポリマークランド用加熱硬化型シリコーン樹脂。
Comparative Example 2 Viscosity at 25°C is s, 00. OC, [), Shore A hardness after heat curing is 20, refractive index is 1.40
Heat-curing silicone resin for polymer glands.

比較例3 25℃における粘度が3,0OOc、p、 、紫外線照
射硬化後におけるショアA硬度が90、屈折率が1.5
0の市販紫外線硬化性塗料。
Comparative Example 3 Viscosity at 25°C is 3.0OOc, p, Shore A hardness after curing with ultraviolet rays is 90, refractive index is 1.5
0 commercially available UV curable paint.

実施例4〜6、比較例4〜6 線引き直後の外径が200μmであり、屈折率が1.4
58の純石英ガラスからなるコアファイバのうえに実施
例1〜3および比較例1〜3の各硬化性塗料をそれぞれ
塗布、紫外線硬化または加熱硬化して実施例4〜6、比
較例4〜6の光ファイバを得た。各光フアイバクランド
層の平均厚みは、いずれも10μmであった。
Examples 4 to 6, Comparative Examples 4 to 6 The outer diameter immediately after drawing is 200 μm, and the refractive index is 1.4
Each of the curable coatings of Examples 1 to 3 and Comparative Examples 1 to 3 was applied onto a core fiber made of pure silica glass of No. obtained optical fiber. The average thickness of each optical fiber land layer was 10 μm.

実施例、比較例の各光ファイバにつき、下記の方法にて
クラッド層のバラツキの大きさ、耐外力性並びに伝送損
失を測定した。その結果を下表に示す。
For each of the optical fibers of Examples and Comparative Examples, the magnitude of variation in the cladding layer, external force resistance, and transmission loss were measured using the following methods. The results are shown in the table below.

クラッド層のバラツキの大きさ:切断した光ファイバの
断面を顕微鏡で観察し、クラッド層厚さの最大値と最小
値とを測定した。
Size of variation in cladding layer: The cross section of the cut optical fiber was observed with a microscope, and the maximum and minimum values of the cladding layer thickness were measured.

耐外力性:光ファイバを内径300μ讃のステンレス管
に挿入してエポキシ系樹脂で固定し、−20℃〜80℃
のヒートサイクル試験(10サイクル)にかけた後の光
ファイバの突出確率を測定した。
External force resistance: Insert the optical fiber into a stainless steel tube with an inner diameter of 300μ and fix it with epoxy resin.
The protrusion probability of the optical fiber after being subjected to a heat cycle test (10 cycles) was measured.

伝送損失:分光光度計を用い、カットバンク法にてλ=
0.80μ鋼での伝送損失を測定した。
Transmission loss: Using a spectrophotometer and using the cut bank method, λ=
Transmission loss in 0.80μ steel was measured.

【図面の簡単な説明】[Brief explanation of drawings]

付図は、本発明のポリマークランド−石英ガラスコア型
の光ファイバの断面図であって、1は石英ガラスコアで
あり、2は本発明の紫外線硬化性材料を塗布し紫外線硬
化して形成したクラッド層である。
The attached figure is a cross-sectional view of a polymer clad-quartz glass core type optical fiber of the present invention, in which 1 is a quartz glass core, and 2 is a cladding formed by applying the ultraviolet curable material of the present invention and curing it with ultraviolet rays. It is a layer.

Claims (1)

【特許請求の範囲】 1、25℃における粘度が300〜 10,000c.p.、紫外線照射架橋後におけるショ
アA硬度が少なくとも80、かつフッ素含有量が20〜
60重量%のフッ素変性アクリレート系樹脂を主成分と
することを特徴とする紫外線硬化性塗料。 2、石英ガラスコアと、その上に25℃における粘度が
300〜10,000c.p.、紫外線照射架橋後にお
けるショアA硬度が少なくとも80、かつフッ素含有量
が20〜60重量%のフッ素変性アクリレート系樹脂を
主成分とする紫外線硬化性塗料を塗布し紫外線硬化して
形成した厚さ2〜30μmのクラッド層を有することを
特徴とする光ファイバ。
[Claims] 1. Viscosity at 25° C. is 300 to 10,000 c. p. , Shore A hardness after crosslinking by ultraviolet irradiation is at least 80, and fluorine content is from 20 to
An ultraviolet curable paint characterized by containing 60% by weight of a fluorine-modified acrylate resin as a main component. 2. A quartz glass core with a viscosity of 300 to 10,000 c. at 25°C. p. , which has a Shore A hardness of at least 80 after crosslinking by ultraviolet irradiation, and has a fluorine content of 20 to 60% by weight, and is formed by applying an ultraviolet curable paint whose main component is a fluorine-modified acrylate resin and curing it with ultraviolet rays. An optical fiber having a cladding layer of ~30 μm.
JP61072756A 1986-03-31 1986-03-31 Optical fiber Expired - Lifetime JPH0762726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61072756A JPH0762726B2 (en) 1986-03-31 1986-03-31 Optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61072756A JPH0762726B2 (en) 1986-03-31 1986-03-31 Optical fiber

Publications (2)

Publication Number Publication Date
JPS62230866A true JPS62230866A (en) 1987-10-09
JPH0762726B2 JPH0762726B2 (en) 1995-07-05

Family

ID=13498516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61072756A Expired - Lifetime JPH0762726B2 (en) 1986-03-31 1986-03-31 Optical fiber

Country Status (1)

Country Link
JP (1) JPH0762726B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991007441A1 (en) * 1989-11-21 1991-05-30 Sumitomo Electric Industries, Ltd. Photo-setting resin composition and plastic-clad optical fibers produced therefrom
EP0732604A1 (en) * 1994-09-16 1996-09-18 Toray Industries, Inc. Wide band optical fiber, optical fiber core wire and optical fiber cord

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830703A (en) * 1981-08-17 1983-02-23 Sumitomo Electric Ind Ltd Fiber having silicone resin clad for optical communication
JPS58187414A (en) * 1982-04-28 1983-11-01 Showa Denko Kk Photosetting composition
JPS59182256A (en) * 1983-03-28 1984-10-17 Nitto Electric Ind Co Ltd Covering material for optical glass fiber
JPS59182257A (en) * 1983-03-28 1984-10-17 Nitto Electric Ind Co Ltd Covering material for optical glass fiber
JPS6050835A (en) * 1983-08-31 1985-03-20 松下電工株式会社 Ac switch circuit
US4511209A (en) * 1982-02-24 1985-04-16 Ensign-Bickford Industries, Inc. Composition having improved optical qualities
JPS62199643A (en) * 1986-02-27 1987-09-03 Dainippon Ink & Chem Inc Low-refractive index resin composition and use thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830703A (en) * 1981-08-17 1983-02-23 Sumitomo Electric Ind Ltd Fiber having silicone resin clad for optical communication
US4511209A (en) * 1982-02-24 1985-04-16 Ensign-Bickford Industries, Inc. Composition having improved optical qualities
JPS58187414A (en) * 1982-04-28 1983-11-01 Showa Denko Kk Photosetting composition
JPS59182256A (en) * 1983-03-28 1984-10-17 Nitto Electric Ind Co Ltd Covering material for optical glass fiber
JPS59182257A (en) * 1983-03-28 1984-10-17 Nitto Electric Ind Co Ltd Covering material for optical glass fiber
JPS6050835A (en) * 1983-08-31 1985-03-20 松下電工株式会社 Ac switch circuit
JPS62199643A (en) * 1986-02-27 1987-09-03 Dainippon Ink & Chem Inc Low-refractive index resin composition and use thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991007441A1 (en) * 1989-11-21 1991-05-30 Sumitomo Electric Industries, Ltd. Photo-setting resin composition and plastic-clad optical fibers produced therefrom
US5187770A (en) * 1989-11-21 1993-02-16 Sumitomo Electric Industries, Ltd. Photosetting resin composition and plastic clad optical fiber comprising the same
EP0732604A1 (en) * 1994-09-16 1996-09-18 Toray Industries, Inc. Wide band optical fiber, optical fiber core wire and optical fiber cord
EP0732604A4 (en) * 1994-09-16 1997-10-22 Toray Industries Wide band optical fiber, optical fiber core wire and optical fiber cord

Also Published As

Publication number Publication date
JPH0762726B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
US4511209A (en) Composition having improved optical qualities
US5136682A (en) Curable compositions and methods for use in forming optical waveguide structures
CN101495911B (en) Reflective polarizer with polarization splitting microstructure
US4324575A (en) Low TG soft UV-curable coatings
JP2690433B2 (en) High-strength coated optical fiber
CN105229507A (en) There is the large effective area fiber of low bend loss
KR20020033157A (en) Resin-bond type optical element, production method therefor and optical article
US4833207A (en) Curable compositions
JPS62106969A (en) Ultraviolet curable coating composition for optical glass fiber and optical glass fiber coated therewith
WO2009059636A1 (en) Process for manufacturing an optical fiber and an optical fiber so obtained
US5945173A (en) Method of making optical fiber ribbon
JPS5991180A (en) Polyethylene terephthalate lined tacky tape
JPS6322872A (en) Ultraviolet-curing coating compound and optical fiber using same
JP2001249208A (en) Diffraction optical device and method of manufacturing the same
JPH02123172A (en) Ultraviolet-curing coating composition in low-viscosity liquid form
JPS62230866A (en) Ultraviolet-curing coating compound and optical fiber using same
JP2934782B2 (en) UV curable colorant composition for optical fiber
JPS6370210A (en) Coated optical fiber
JPS60500408A (en) Method of coating filamentous substrates
WO1996031444A1 (en) Method of coating optical fibres
JPS63161417A (en) Quartz glass-base optical fiber
JP2948952B2 (en) Carbon coated optical fiber
JPS6340104A (en) Optical fiber
JP2691765B2 (en) Method for determining the degree of crosslinking of UV-curable resin coated on optical fiber
JPS63128307A (en) Quartz glass type optical fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term