JPS6223083B2 - - Google Patents

Info

Publication number
JPS6223083B2
JPS6223083B2 JP11956583A JP11956583A JPS6223083B2 JP S6223083 B2 JPS6223083 B2 JP S6223083B2 JP 11956583 A JP11956583 A JP 11956583A JP 11956583 A JP11956583 A JP 11956583A JP S6223083 B2 JPS6223083 B2 JP S6223083B2
Authority
JP
Japan
Prior art keywords
gas
raw material
fibers
pitch
drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11956583A
Other languages
Japanese (ja)
Other versions
JPS6017110A (en
Inventor
Hidemasa Honda
Juichi Yamada
Yukio Toyoda
Yasusuke Hirao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP11956583A priority Critical patent/JPS6017110A/en
Publication of JPS6017110A publication Critical patent/JPS6017110A/en
Publication of JPS6223083B2 publication Critical patent/JPS6223083B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】 本発明は、石炭系又は石油系ピツチを原料とし
て炭素繊維を製造する際に必要な不融化及び炭化
処理を効率よく行うための熱処理方法及びそれに
使用する装置に関するものである。 炭素繊維は、断熱性、耐熱性、耐薬品性、剛
性、導電性が優れているという特性を利用して、
断熱材、シール材、電気部品や機械部品の材料、
構造部材、スポーツ用具の材料などとして広く使
用されている。 従来、この炭素繊維のうち良質のものは、主と
してアクリロニトリルやセルロースなどの繊維を
焼成することにより製造されていたが、これらの
原料はコスト高になる上に、炭化収率が低いため
に工業用材料として大量に供給するには、適当な
方法とはいいがたい。このため、安価で入手容易
な各種ピツチ類を原料として高強度、高弾性の炭
素繊維を製造する技術に関する研究、開発が盛ん
に行われた結果、近年に至りかなり実現性のある
方法が多数提案されている。 ところで、ピツチ系原料から炭素繊維を製造す
るには、一般にピツチ系原料を溶融紡糸したの
ち、酸化性雰囲気中で加熱することにより不融化
し、さらに不活性雰囲気中で焼成することにより
炭化する方法がとられている。そして、この不融
化工程と炭化工程は、通常紡糸したピツチ系原料
繊維を、ローラーに巻き取る間に、酸化雰囲気又
は不活性雰囲気にした加熱炉の中を走行させるこ
とによつて行われるが、ピツチ系原料繊維は、強
度及び伸度が小さくもろいため、巻取速度を速く
することができない上に、使用する折返しローラ
ーの曲率にも制限があり、また糸切れ時の修復な
どに手間がかかるなどの改良すべき多くの問題点
が存在するし、設備の面でも大規模になる傾向が
あり工業的に実施する場合不便になるのを免れな
い。 このような問題点を解決するための改良方法と
して、これまで溶融紡糸した原料繊維をコンベア
上に載置し、コンベアとともに移行させながら、
加熱帯を通して不融化する方法(特開昭57−
175664号公報)、溶融紡糸した原料繊維を、トレ
イに配設した横棒に懸垂し、トレイごと不融化室
に導入し不融化する方法(特開昭55−6547号公
報)などが提案されている。しかしながら、これ
らの方法は、溶融紡糸の際にボビンに巻き取つた
原料繊維を巻き戻してコンベアが横棒に移した
り、あるいはボビンに巻き取ることなく特殊な装
置を用いてコンベア上に載置又は横棒に懸垂する
必要があるため操作や設備が複雑化するという欠
点がある。また、溶融紡糸の際に原料繊維をボビ
ンに巻き取りそのまま不融化、炭化処理すること
も検討された。しかし不融化工程はともかく、炭
化工程においてはかなりの量のタール状分解生成
物を発生し、これが繊維表面の汚染や繊維同士の
付着の原因となるため、これを不活性ガスのパー
ジなどにより除去することが必要となるが、ボビ
ン上の繊維間の空隙が小さく、実際上その除去は
非常に困難であつた。 このような事情のもとで、本発明者らは、ピツ
チ系原料繊維をボビンに巻き取つた状態で能率よ
く不融化、炭化のような熱処理を行い得る方法及
び装置を開発すべく鋭意研究を重ねた結果、多孔
質胴部を有する中空ドラムを用い、この胴部を介
してガスを通しながら、この上に巻き取つた原料
繊維を熱処理することによりその目的を達成しう
ることを見出し、この知見に基づいて本発明をな
すに至つた。 すなわち、本発明は、ピツチ系原料繊維を両側
面を気密的に封止した多孔質胴部を有する中空ド
ラムに巻き取り、該多孔質胴部の細孔を介して原
料繊維間に所要のガスを強制的に通しながら加熱
することを特徴とするピツチ系原料繊維の熱処理
方法及びこの方法に使用するための、調温手段を
有するガス予熱器と調温手段を有し適所にガス抜
孔を設けた加熱炉から構成され、かつ両端を閉塞
した連通孔を有する多孔質材料で形成された中空
筒状の原料繊維巻取ドラムが加熱炉内部に配置さ
れるとともに、その一方の端部適所に設けられた
ガス導入孔に、前記ガス予熱器からのガス導管が
連結されていることを特徴とする熱処理装置を提
供するものである。 次に添附図面に従つて本発明をさらに詳細に説
明する。 第1図は本発明の装置の一例を示す一部断面説
明図であり、石炭系ピツチ、石油系ピツチ又はそ
れらの混合物を溶融紡糸して得た原料繊維1は、
両側面を側板3,3で閉じた多孔質胴部2から成
る中空ドラム上に巻き取られている。この多孔質
胴部2は多数の連通孔を有する素材で作られてお
り、各側板3,3は、ガスを透過しないち密な素
材で作られている。 この中空ドラムは、温度調節器5により所定の
温度に維持された加熱炉4例えば電気炉、赤外線
加熱装置中に置かれ、加熱処理される。この間、
ガス予熱器6で予熱されたガスがガス導管8を経
て中空ドラムの側板の一方に設けられたガス導入
孔9に送られ、多孔質胴部2の連通孔から、その
上に巻かれた原料繊維層1に通されたのち、加熱
炉の上部に設けられたガス抜孔から外部に排出さ
れる。前記のガス予熱器6は、温度調節器7によ
り所定の温度に制御されている。この際に供給さ
れるガスとしては、不融化工程の場合、酸化する
必要があるので、酸素や空気のような酸化性ガス
を、また炭化工程の場合、炭化時の酸化による特
性低下を防ぐため窒素、ヘリウム、アルゴンのよ
うな不活性ガスが用いられる。 中空ドラム上に巻き取られる原料繊維1は、通
常溶融紡糸により得られた単繊維を30本程度まと
めた、いわゆるトウ又はヤーンである。この原料
繊維1の巻き取り時のあや角は0〜30゜の範囲で
任意に選ぶことができるが、通気性及び巻き戻し
時の解じよ性を考慮して、1.0゜以上にするのが
望ましい。 また、原料繊維層の厚みは、反応の容易性から
は薄い方が、生産効率からは厚い方が好ましい
が、通常は約20mm程度又はそれよりやや厚いよう
にする。 この原料繊維層1は、第1図のように、中空ド
ラム胴部2の外側に設けてもよいが、また第2図
に示すように中空ドラム胴部2の内側に設けても
よい。 この原料繊維層1を設ける胴部2の材料として
は、不融化又は炭化の際の温度及び雰囲気に耐え
ることができ、この上に設けられた原料繊維層1
にガスを均一に分散させ得るように適度の流れ抵
抗を与えるものが用いられる。このような材料の
例としては、金属、セラミツクスなどの焼結体、
炭素の焼結体、金属製網状体及びその積層体、金
属製多孔板、あるいはこれらの複合体などを挙げ
ることができる。また、この胴部2の流れ抵抗と
しては、原料繊維層1の流れ抵抗の値の少なくと
も50%以上が望ましい。必要ならば、前記の多孔
質材料に柔軟なフエルト状材料を積層させ、ガス
の均一分散をより確実にすることもできる。 本発明方法における処理温度は、不融化工程の
場合、200〜400℃であり、導入するガスの予熱温
度としては100〜400℃が好適である。他方、炭化
工程の場合の処理温度は400〜1000℃であり、ガ
スの予熱温度は300〜1000℃が好ましい。これら
の処理温度は1℃/分以上の昇温速度で加熱する
ことによつてもたらされる。 ガスの供給速度は、不融化工程では酸化反応の
反応物質の供給、反応副生物の除去及び反応熱の
除去等の必要性から決定され、炭化工程では反応
副生物を完全に除去し、繊維間の融着防止を確実
にする必要性から決定され中空ドラム胴部2の表
面積を基準とした線速度で不融化工程、炭化工程
いずれの場合でも5cm/秒以上にするのが有利で
ある。 本発明方法によれば、原料繊維を先ず酸化性ガ
スを導入しながら、不融化条件下で加熱処理した
のち、引き続いて導入ガスを不活性ガスに変え、
炭化条件下で加熱することにより、同一装置を用
いて不融化工程と炭化工程を連続的に行うことが
できる。 本発明方法は、工業的に実施する場合以下のよ
うな利点がある。 (1) 溶融紡糸した原料繊維をボビンに巻いたまま
不融化及び炭化しうる。 (2) 熱処理時の設備効率及び熱効率がきわめて高
い。 (3) 処理条件の制御が容易なため、安定した品質
の製品が得られる。 (4) 炭化時の原料繊維間の融着を防止しうる。 次に実施例により本発明をさらに詳細に説明す
る。 実施例 1 エチレンボトムオイルの残留分として得られた
ピツチを常法に従つて溶融紡糸し、径100mm、長
さ300mmのセラミツクス焼結体製中空ドラム(胴
部の開口率40%、平均孔径5μm、材料の厚み5
mm)から成る多孔質ボビンに層厚20mmになるよう
に巻き取つた。 次いで、これを電気炉に入れ、ボビン側面のガ
ス導入孔から300℃に予熱された空気を通気しな
がら、300℃で1時間加熱し、原料繊維の不融化
を行つた。この際の条件には、ガスの供給速度と
してボビン円筒面の表面積を基準とする線速度30
cm/秒、昇温速度として1℃/分をそれぞれ用い
た。 このようにして、得た不融化繊維を次にボビン
から外し繊維層の各層からサンプルを取り単糸状
にほぐした状態で赤外線加熱装置中で窒素ガスを
通しながら、10℃/分の昇温速度で1000℃まで昇
温し、この温度に30分間保持して炭化させた。 この結果、繊維層の表面、中間層及びボビン表
面に接する層のいずれにおいても繊維間の互着は
認められなかつた。このようにして得た炭素繊維
の物性を表に示す。 比較例 1 実施例1と同じ原料繊維を、実施例1と同様の
条件で多孔質ボビンに巻取り、不融化に際しては
ボビンから外すことなく通気を行なわずに他の条
件は実施例1と同様に行い、得られた不融化糸を
実施例1と同様にボビンから外して赤外線加熱装
置中で炭化処理したところ、繊維層の中間層及び
ボビン表面に接する層において繊維が完全に融解
して板状になり、目的とする炭素繊維を得ること
ができなかつた。 比較例 2 実施例1で得た不融化繊維をボビンから外すこ
となく、窒素雰囲気中、10℃/分の昇温速度で
1000℃まで昇温し、この温度に30分間保持して炭
化した。 このようにして得た繊維は各層で互着がみら
れ、物性も低かつた。この物性を表に示す。 実施例 2 実施例1で得た不融化糸をボビンから外すこと
なく、窒素雰囲気中におき、ボビン表面積を基準
として50cm/秒の速度で、雰囲気と同じ温度に予
熱された窒素ガスをボビン内部から通しながら、
10℃/分の昇温速度で1000℃まで昇温し、この温
度に30分間保持して炭化した。この際繊維の互着
は全く認められなかつた。 このようにして得た加熱処理条件及び炭素繊維
の物性を表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat treatment method for efficiently performing the infusibility and carbonization treatments necessary when producing carbon fiber using coal-based or petroleum-based pitch as a raw material, and an apparatus used therefor. be. Carbon fiber takes advantage of its excellent properties of heat insulation, heat resistance, chemical resistance, rigidity, and electrical conductivity.
Insulating materials, sealing materials, materials for electrical and mechanical parts,
It is widely used as a material for structural members and sports equipment. Conventionally, high-quality carbon fibers were mainly produced by firing fibers such as acrylonitrile and cellulose, but these raw materials are expensive and have low carbonization yields, making them difficult to use for industrial use. This is not an appropriate method for supplying large amounts of material. For this reason, as a result of active research and development into technology for producing high-strength, high-elasticity carbon fibers using various types of pituitary that are inexpensive and easily available as raw materials, a number of highly feasible methods have been proposed in recent years. has been done. By the way, in order to produce carbon fibers from pitch-based raw materials, the method generally involves melt-spinning the pitch-based raw materials, making them infusible by heating them in an oxidizing atmosphere, and then carbonizing them by firing them in an inert atmosphere. is taken. The infusibility process and the carbonization process are usually carried out by running the spun raw material fiber in a heating furnace in an oxidizing or inert atmosphere while winding it around a roller. Pitch-based raw material fibers have low strength and elongation and are brittle, so it is not possible to increase the winding speed, and there is also a limit to the curvature of the folding roller used, and it takes time and effort to repair yarn breaks. There are many problems that should be improved, such as, and the equipment tends to be large-scale, so it is inevitable that it will be inconvenient when implemented industrially. As an improved method to solve these problems, the raw material fibers that have been melt-spun are placed on a conveyor, and the fibers are transferred along with the conveyor.
Method of infusibility through heating zone
175664), a method in which the melt-spun raw material fibers are suspended from horizontal bars arranged in a tray and introduced into an infusibility chamber together with the tray to be infusible (Japanese Patent Application Laid-Open No. 1983-6547), etc. There is. However, in these methods, the raw material fibers wound on a bobbin during melt spinning are unwound and transferred to a horizontal bar by a conveyor, or they are placed on a conveyor using a special device without being wound on a bobbin. It has the disadvantage that the operation and equipment are complicated because it needs to be suspended from a horizontal bar. Also, consideration has been given to winding raw material fibers onto a bobbin during melt spinning and subjecting them to infusibility and carbonization treatment as they are. However, apart from the infusibility process, a considerable amount of tar-like decomposition products are generated in the carbonization process, which causes contamination of the fiber surface and adhesion of fibers to each other, so this is removed by purging with inert gas, etc. However, the gaps between the fibers on the bobbin are so small that it is actually very difficult to remove them. Under these circumstances, the present inventors have conducted extensive research in order to develop a method and apparatus that can efficiently perform heat treatments such as infusibility and carbonization on pitch-based raw material fibers wound around a bobbin. As a result of stacking, it was discovered that the purpose could be achieved by using a hollow drum with a porous body and heat-treating the raw material fibers wound on it while passing gas through the body. Based on this knowledge, the present invention has been made. That is, in the present invention, pitch-based raw material fibers are wound around a hollow drum having a porous body whose both sides are hermetically sealed, and the required gas is passed between the raw material fibers through the pores of the porous body. A method for heat treatment of pitch-based raw material fibers characterized by heating the fibers while forcibly passing through the fibers, and a gas preheater having a temperature control means and a gas vent hole provided at an appropriate location for use in this method. A hollow cylindrical raw fiber winding drum made of a porous material having communicating holes closed at both ends is disposed inside the heating furnace, and a drum is installed at an appropriate position at one end of the drum. The present invention provides a heat treatment apparatus characterized in that a gas conduit from the gas preheater is connected to the gas introduction hole. Next, the present invention will be explained in more detail with reference to the accompanying drawings. FIG. 1 is a partially cross-sectional explanatory diagram showing an example of the apparatus of the present invention, and raw material fiber 1 obtained by melt-spinning coal-based pitch, petroleum-based pitch, or a mixture thereof is as follows:
It is wound up on a hollow drum consisting of a porous body 2 closed on both sides by side plates 3, 3. This porous body portion 2 is made of a material having a large number of communicating holes, and each of the side plates 3, 3 is made of a dense material that does not allow gas to pass through. This hollow drum is placed in a heating furnace 4, such as an electric furnace or an infrared heating device, which is maintained at a predetermined temperature by a temperature controller 5, and is heat-treated. During this time,
The gas preheated by the gas preheater 6 is sent through the gas conduit 8 to the gas introduction hole 9 provided on one side plate of the hollow drum, and from the communication hole in the porous body 2, the raw material wound on it is sent. After being passed through the fiber layer 1, it is discharged to the outside through a gas vent provided in the upper part of the heating furnace. The gas preheater 6 is controlled to a predetermined temperature by a temperature regulator 7. The gases supplied at this time include oxidizing gases such as oxygen and air in the case of the infusible process, which needs to be oxidized, and in the case of the carbonization process, gases supplied to prevent properties from deteriorating due to oxidation during carbonization. Inert gases such as nitrogen, helium, and argon are used. The raw material fiber 1 wound onto the hollow drum is usually a so-called tow or yarn made up of about 30 single fibers obtained by melt spinning. The crisscross angle when winding up this raw fiber 1 can be arbitrarily selected within the range of 0 to 30°, but it is recommended to set it to 1.0° or more in consideration of breathability and ease of unwinding. desirable. Further, the thickness of the raw material fiber layer is preferably about 20 mm or slightly thicker, although it is preferable that it be thinner in terms of ease of reaction and thicker in terms of production efficiency. The raw material fiber layer 1 may be provided on the outside of the hollow drum body 2 as shown in FIG. 1, but it may also be provided on the inside of the hollow drum body 2 as shown in FIG. The material of the body part 2 on which the raw material fiber layer 1 is provided is one that can withstand the temperature and atmosphere during infusibility or carbonization, and the raw material fiber layer 1 provided thereon
A material that provides appropriate flow resistance is used so that the gas can be uniformly dispersed. Examples of such materials include metals, sintered bodies such as ceramics,
Examples include a sintered body of carbon, a metal mesh body and a laminate thereof, a perforated metal plate, and a composite body thereof. Further, the flow resistance of the body portion 2 is desirably at least 50% or more of the flow resistance value of the raw material fiber layer 1. If necessary, a flexible felt-like material can be laminated onto the porous material to further ensure uniform gas distribution. The treatment temperature in the method of the present invention is 200 to 400°C in the case of the infusibility step, and the preferable temperature for preheating the gas to be introduced is 100 to 400°C. On the other hand, the treatment temperature in the case of the carbonization step is 400 to 1000°C, and the gas preheating temperature is preferably 300 to 1000°C. These processing temperatures are achieved by heating at a rate of increase of 1° C./min or higher. In the infusibility process, the gas supply rate is determined by the necessity of supplying reactants for the oxidation reaction, removing reaction by-products, and removing reaction heat, and in the carbonization process, the reaction by-products are completely removed and the It is advantageous to set the linear velocity based on the surface area of the hollow drum body 2 at 5 cm/sec or more in both the infusibility process and the carbonization process. According to the method of the present invention, the raw material fibers are first heat-treated under infusibility conditions while introducing an oxidizing gas, and then the introduced gas is changed to an inert gas.
By heating under carbonization conditions, the infusibility step and the carbonization step can be performed continuously using the same device. The method of the present invention has the following advantages when implemented industrially. (1) Melt-spun raw fibers can be infusible and carbonized while being wound around a bobbin. (2) Equipment efficiency and thermal efficiency during heat treatment are extremely high. (3) Because processing conditions are easy to control, products with stable quality can be obtained. (4) It can prevent fusion between raw fibers during carbonization. Next, the present invention will be explained in more detail with reference to Examples. Example 1 Pitch obtained as a residue of ethylene bottom oil was melt-spun according to a conventional method to form a hollow drum made of ceramic sintered body with a diameter of 100 mm and a length of 300 mm (opening ratio of the body part 40%, average pore diameter 5 μm). , material thickness 5
The material was wound onto a porous bobbin (mm) to a layer thickness of 20 mm. Next, this was placed in an electric furnace and heated at 300°C for 1 hour while blowing air preheated to 300°C through the gas inlet hole on the side of the bobbin to infusible the raw material fibers. The conditions at this time include a linear velocity of 30 mm based on the surface area of the bobbin cylindrical surface as the gas supply rate.
cm/sec and 1°C/min as the heating rate. Next, the obtained infusible fibers were removed from the bobbin, samples were taken from each fiber layer, loosened into single filaments, and heated at a heating rate of 10°C/min while passing nitrogen gas through an infrared heating device. The temperature was raised to 1000°C and held at this temperature for 30 minutes to cause carbonization. As a result, no mutual adhesion between fibers was observed on the surface of the fiber layer, the intermediate layer, or the layer in contact with the bobbin surface. The physical properties of the carbon fiber thus obtained are shown in the table. Comparative Example 1 The same raw material fiber as in Example 1 was wound onto a porous bobbin under the same conditions as in Example 1, and the other conditions were the same as in Example 1, except that the material was not removed from the bobbin and no ventilation was performed during infusibility. When the resulting infusible yarn was removed from the bobbin and carbonized in an infrared heating device in the same manner as in Example 1, the fibers in the intermediate layer of the fiber layer and the layer in contact with the bobbin surface were completely melted, forming a plate. As a result, the desired carbon fiber could not be obtained. Comparative Example 2 The infusible fiber obtained in Example 1 was heated at a heating rate of 10°C/min in a nitrogen atmosphere without removing it from the bobbin.
The temperature was raised to 1000°C and maintained at this temperature for 30 minutes to carbonize. The fibers thus obtained showed mutual adhesion in each layer and had poor physical properties. The physical properties are shown in the table. Example 2 The infusible yarn obtained in Example 1 was placed in a nitrogen atmosphere without removing it from the bobbin, and nitrogen gas preheated to the same temperature as the atmosphere was injected into the bobbin at a speed of 50 cm/sec based on the bobbin surface area. While passing from
The temperature was raised to 1000°C at a heating rate of 10°C/min, and this temperature was maintained for 30 minutes for carbonization. At this time, no mutual adhesion of fibers was observed. The heat treatment conditions and physical properties of the carbon fibers thus obtained are shown in the table. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明装置の一例の部分断面説明
図、第2図は第1図とは異なつた態様の原料繊維
巻取ドラムを示す断面図である。 図中符号1は原料繊維層、2は中空ドラムの多
孔質胴部、3は側板、4は加熱炉、6はガス予熱
器である。
FIG. 1 is a partially cross-sectional explanatory view of an example of the apparatus of the present invention, and FIG. 2 is a cross-sectional view showing a raw material fiber winding drum in a different aspect from that shown in FIG. In the figure, numeral 1 is a raw material fiber layer, 2 is a porous body of a hollow drum, 3 is a side plate, 4 is a heating furnace, and 6 is a gas preheater.

Claims (1)

【特許請求の範囲】 1 ピツチ系原料繊維を両側面を気密的に封止し
た多孔質胴部を有する中空ドラムに巻き取り、該
多孔質胴部の細孔を介して原料繊維間に所要のガ
スを強制的に通しながら加熱することを特徴とす
るピツチ系原料繊維の熱処理方法。 2 原料繊維が中空ドラムの外側に巻き取られる
特許請求の範囲第1項記載の方法。 3 原料繊維が中空ドラムの内側に巻き取られる
特許請求の範囲第1項記載の方法。 4 調温手段を有するガス予熱器と調温手段を有
し適所にガス抜孔を設けた加熱炉から構成され、
かつ両端を閉塞した、連通孔を有する多孔質材料
で形成された中空筒状の原料繊維巻取ドラムが加
熱炉内部に配置されるとともに、その一方の端部
適所に設けられたガス導入孔に、前記ガス予熱器
からのガス導管が連結されていることを特徴とす
るピツチ系原料繊維の熱処理装置。
[Scope of Claims] 1. Pitch-based raw material fibers are wound around a hollow drum having a porous body whose both sides are hermetically sealed, and the required distance between the raw material fibers is passed through the pores of the porous body. A heat treatment method for pitch-based raw material fibers, which is characterized by heating while forcing gas through. 2. The method according to claim 1, wherein the raw fiber is wound around the outside of a hollow drum. 3. The method according to claim 1, wherein the raw fiber is wound inside a hollow drum. 4 Consisting of a gas preheater with temperature control means and a heating furnace with temperature control means and gas vent holes in appropriate places,
A hollow cylindrical raw fiber winding drum made of a porous material with communicating holes and closed at both ends is placed inside the heating furnace, and a gas introduction hole provided at an appropriate position at one end of the drum is placed inside the heating furnace. . A heat treatment apparatus for pitch-based raw material fibers, characterized in that a gas conduit from the gas preheater is connected.
JP11956583A 1983-07-01 1983-07-01 Heat treatment of yarn of raw material of pitch and device therefor Granted JPS6017110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11956583A JPS6017110A (en) 1983-07-01 1983-07-01 Heat treatment of yarn of raw material of pitch and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11956583A JPS6017110A (en) 1983-07-01 1983-07-01 Heat treatment of yarn of raw material of pitch and device therefor

Publications (2)

Publication Number Publication Date
JPS6017110A JPS6017110A (en) 1985-01-29
JPS6223083B2 true JPS6223083B2 (en) 1987-05-21

Family

ID=14764477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11956583A Granted JPS6017110A (en) 1983-07-01 1983-07-01 Heat treatment of yarn of raw material of pitch and device therefor

Country Status (1)

Country Link
JP (1) JPS6017110A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4576810A (en) * 1983-08-05 1986-03-18 E. I. Du Pont De Nemours And Company Carbon fiber production
US4527754A (en) * 1983-08-26 1985-07-09 E. I. Du Pont De Nemours And Company Non-thermal expanding spool for carbon fiber oxidation

Also Published As

Publication number Publication date
JPS6017110A (en) 1985-01-29

Similar Documents

Publication Publication Date Title
US3639953A (en) Method of producing carbon fibers
JP6713994B2 (en) Continuous carbonization method and carbon fiber production system
US5925591A (en) Process for the production of hollow carbon fiber membranes
JPS6223083B2 (en)
US4574077A (en) Process for producing pitch based graphite fibers
JPS58156026A (en) Preparation of carbon fiber
CN210657241U (en) Thermal stabilization device for carbon fiber production
KR100770656B1 (en) Oxidative stabilization method of nanofibers and fabric for manufacturing carbon fibers
US4788050A (en) Process for producing pitch-based carbon fibers
JPH026625A (en) Production of flame-resistant fiber
JPS63149142A (en) Multilayer molded heat insulator and manufacture thereof
JPS62177221A (en) Production of nonwoven carbon fiber fabric
GB2170491A (en) Method of producing graphite fiber and product thereof
JPS61174423A (en) Production of flameproofed fiber
JPH01162828A (en) Method for infusibilizing pitch fiber
JPS60155714A (en) Production of pitch based carbon fiber
JPS60126323A (en) Infusibilization of pitch fiber
JPH055219A (en) Production of carbon fiber
JPH03294521A (en) Production of pitch-based carbon fiber
JPH04153327A (en) Production of flame-resistant fiber
JP3024866B2 (en) Method for infusibilizing carbonaceous fiber aggregates
JPH01282330A (en) Production of pitch-based carbon fiber
JPH0197216A (en) Method for infusibilizing pitch based carbon fiber and apparatus therefor
JPH0617319A (en) Production of pitch-based carbon fiber
CN118127673A (en) Novel viscose-based carbon material preparation technical method