JPS6223009B2 - - Google Patents

Info

Publication number
JPS6223009B2
JPS6223009B2 JP1508876A JP1508876A JPS6223009B2 JP S6223009 B2 JPS6223009 B2 JP S6223009B2 JP 1508876 A JP1508876 A JP 1508876A JP 1508876 A JP1508876 A JP 1508876A JP S6223009 B2 JPS6223009 B2 JP S6223009B2
Authority
JP
Japan
Prior art keywords
phosphorus
flame retardant
minutes
groups
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1508876A
Other languages
Japanese (ja)
Other versions
JPS5298395A (en
Inventor
Seiji Endo
Takao Kashiwara
Akitada Oyoku
Tatsuhiko Shizuki
Atsushi Ikegami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP1508876A priority Critical patent/JPS5298395A/en
Priority to US05/730,512 priority patent/US4127590A/en
Priority to FR7630829A priority patent/FR2327996A1/en
Priority to IT69470/76A priority patent/IT1078706B/en
Priority to DE2646218A priority patent/DE2646218C3/en
Priority to DE2660334A priority patent/DE2660334C2/en
Priority to GB42791/76A priority patent/GB1534092A/en
Priority to CA263,391A priority patent/CA1077499A/en
Publication of JPS5298395A publication Critical patent/JPS5298395A/en
Priority to US05/859,104 priority patent/US4157436A/en
Priority to CA323,655A priority patent/CA1075848A/en
Publication of JPS6223009B2 publication Critical patent/JPS6223009B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な含リン難燃剤の製造法に関す
る。さらに詳しくはポリエステル、ポリアミドな
どの高分子化合物に添加して成形品を製造する場
合、優れた相溶性、熱安定性を示し、高い難燃性
を付与する含リン難燃剤の製造法に関する。 線状高分子物質、特にポリエステル、ポリアミ
ドなどに難燃性を付与するための難燃剤として含
リン化合物が有効であることは知られている。し
かし、従来より知られている含リン化合物は、線
状高分子物質に添加して成形品を製造する場合
に、熱分解を起して成形品に好ましくない着色を
与えたり、高分子物質の重合度を低下させるか或
いは架橋を促進させて成形品の機械的性質を低下
させたり、目標とする難燃性を付与するために多
量使用しなければならなかつたりするなどの欠点
があつた。また難燃剤として含リン高分子化合物
を用いることにより、その熱安定性を向上させよ
うとする試みもなされているが、まだその効果が
不充分であつたり、高分子物質との相溶性が良く
なかつたりするなどの欠点があつた。 本発明者らは上記の事情に鑑み、線状高分子物
質、特にポリエステルに相溶性が良く、高温での
成形においても熱分解を起しにくく、優れた難燃
性を付与し得る難燃剤を製造するために鋭意検討
を重ねた結果、遂に以下に示す新規な含リン難燃
剤を得るに至つた。 すなわち本発明はカルボキシル基又はそのエス
テル形成性官能基を2個有する不飽和化合物と
9,10―ジヒドロ―9―オキサ―10フオスフアフ
エナンスレン―10―オキシド(以下DOPと略
す)もしくはそのベンゼン核置換体とを反応させ
て得られる下記一般式()で示されるリン化合
物aとジオールまたはそのエステル形成性誘導体
とをエステル交換反応またはエステル化反応させ
て得ることを特徴とする含リン難燃剤の製造法で
ある。 〔ただし式中R1,R2はそれぞれ同じかまたは
異なる基であつて、ハロゲン原子またはハロゲン
原子を含むことのある炭素原子数1〜6個の炭化
水素基であり、p,qはそれぞれ0〜4の整数を
表わす。またBは3価の炭素原子数2〜4個のア
ルキル基であり、R3は水素原子、炭素原子数1
〜6のアルキル基、アリール基を示す。 なお、R3が水素原子の場合、脱水反応して環
を形成した酸無水物であつてもよい。〕 一般式()において、Bとしては
The present invention relates to a novel method for producing a phosphorus-containing flame retardant. More specifically, the present invention relates to a method for producing a phosphorus-containing flame retardant that exhibits excellent compatibility and thermal stability and imparts high flame retardancy when added to a polymer compound such as polyester or polyamide to produce a molded article. It is known that phosphorus-containing compounds are effective as flame retardants for imparting flame retardancy to linear polymeric materials, particularly polyesters, polyamides, and the like. However, when conventionally known phosphorus-containing compounds are added to linear polymeric materials to produce molded products, they may cause thermal decomposition, imparting undesirable coloration to the molded products, or They have disadvantages such as lowering the degree of polymerization or accelerating crosslinking, resulting in lower mechanical properties of molded articles, and the need to use large amounts in order to impart the desired flame retardancy. Attempts have also been made to improve the thermal stability of phosphorus-containing polymeric compounds as flame retardants, but the effects are still insufficient or the compatibility with polymeric substances is poor. There were some drawbacks, such as dryness. In view of the above circumstances, the present inventors have developed a flame retardant that has good compatibility with linear polymeric substances, especially polyester, is resistant to thermal decomposition even when molded at high temperatures, and can impart excellent flame retardancy. As a result of extensive research into production, we have finally arrived at the novel phosphorus-containing flame retardant shown below. That is, the present invention relates to an unsaturated compound having two carboxyl groups or ester-forming functional groups thereof, and 9,10-dihydro-9-oxa-10phosphorphenanthrene-10-oxide (hereinafter abbreviated as DOP) or its benzene. A phosphorus-containing flame retardant obtained by subjecting a phosphorus compound a represented by the following general formula () obtained by reacting a nuclear substituted product with a diol or an ester-forming derivative thereof to a transesterification reaction or an esterification reaction. This is the manufacturing method. [However, in the formula, R 1 and R 2 are the same or different groups, and are a halogen atom or a hydrocarbon group having 1 to 6 carbon atoms that may contain a halogen atom, and p and q are each 0 Represents an integer from ~4. In addition, B is a trivalent alkyl group having 2 to 4 carbon atoms, and R 3 is a hydrogen atom and 1 carbon atom.
-6 alkyl groups and aryl groups are shown. In addition, when R 3 is a hydrogen atom, it may be an acid anhydride that forms a ring through a dehydration reaction. ] In the general formula (), B is

【式】【formula】

【式】【formula】

【式】【formula】

【式】などが挙げ られる。 なおベンゼン核への置換基R1,R2のないも
の、すなわちp,qがそれぞれoであるものが入
手しやすいことから本発明において好ましい。 リン化合物aを合成するために用いられる
DOPもしくはその核置換体は、例えば特公昭49
―45397号公報に示されているとおり、2―ヒド
ロキシビフエニルもしくはその核置換体と3塩化
リンより合成されるものである。本発明の難燃剤
を製造するためにはベンゼン核に置換基のないす
なわち前記()式においてp,qがそれぞれO
であるもの(すなわちDOP)を用いるのが特に
好ましい。 DOPもしくはそのベンゼン核置換体と反応さ
せてリン化合物aを製造するために用いられる出
発物質の不飽和化合物としてはフマル酸、マレイ
ン酸、メサコン酸、シトラコン酸、グルタコン
酸、イタコン酸などのジカルボン酸もしくはそれ
らの無水物、エステルから選ぶのが好ましく、特
に本発明において好ましい不飽和化合物としては
マレイン酸、イタコン酸またはこれらの無水物、
低級アルキルエステルが挙げられる。 上記のDOPもしくはその核置換体と不飽和化
合物を反応させてリン化合物aを製造する方法と
しては特に限定されないが、例えば次に述べる
DOPとイタコン酸ジメチルを反応させる方法に
準じて製造することができる。すなわちDOPと
イタコン酸ジメチルを不活性気体雰囲気下に加熱
還流させて反応することにより目的のリン化合物
aを容易に製造することができる。 上記のようにして製造されたリン化合物aとジ
オールまたはエステル形成性誘導体を反応させる
ことにより、本発明の含リン難燃剤が製造される
が、この時に用いられるジオールもしくはそのエ
ステル形成性誘導体としては、例えばエチレング
リコール、1,2―プロピレングリコール、トリ
メチレングリコール、テトラメチレングリコール
などの脂肪族グリコール、1,4―シクロヘキサ
ンジオール、1,4―シクロヘキサンジメタノー
ルなどの脂環族グリコールおよび下記一般式
()、()で示される芳香族を含むグリコール
などか挙げられる。 (ただし式中、Xはハロゲン原子を表わし、Y
は炭素原子数1〜6個のアルキレン基、アルキリ
デン基、シクロアルキリデン基、アラルキリデン
基、―O―、―S―、―SO―、―SO2―で示さ
れる2価の基を表わす。またm1,m2はそれぞれ
0〜4の整数を表わし、m3は0または1を表わ
す。) また上記のグリコールの炭酸エステル或いはエ
チレンオキシド、プロピレンオキシドなどのジオ
ールのエステル形成性誘導体を本発明において使
用してもよい。 リン化合物aと上記ジオールまたはそのエステ
ル形成性誘導体とを反応させて本発明の難燃剤を
製造する場合、得られる難燃剤中のリン含有量が
2000ppm以上、好ましくは5000〜90000ppmの範
囲になるように、各出発物質の使用量を調整する
のが望まれる。これはリン含有量が2000ppmを
下回るようになると得られる難燃付与性能が低下
するので、好ましいものとはいえなくなるからで
ある。一方難燃剤中のリン含有量が高くなりすぎ
ると以下に示す方法によつても満足すべきものが
得られなくなるからである。 本発明の難燃剤を製造する方法については、リ
ン化合物aとエステル形成性化合物を得られる難
燃剤のリン含有量が上記した範囲になるように用
いることを除いて、特に限定されないが、例えば
以下に述べるようにして製造することができる。 すなわち、本発明においてはリン化合物aの
R3がアルキル基またはアリール基の場合、該リ
ン化合物aとジオールを用いていわゆるエステル
交換反応によつて難燃剤を製造することができ
る。このエステル交換反応の条件としては芳香族
ポリエステルを製造する場合の条件にほぼ準じた
ものを採用することができる。すなわちエステル
交換反応の触媒として、亜鉛、マンガン、チタ
ン、コバルト、マグネシウムより選ばれる金属の
化合物を用い、常圧下約50〜約280℃の範囲の温
度で加熱還流することができる。 一方、リン化合物aが遊離の酸もしくは酸無水
物の形になつている場合には、ジオールを用い、
芳香族ポリエステルを製造する際のいわゆる直接
エステル化に準じて本発明の難燃剤を製造するこ
とができる。すなわちエステル化の触媒として上
記したエステル交換反応の場合と同じ金属化合物
或いは錫化合物を用いて常圧もしくは5Kg/cm2
での加圧下に約100〜約280℃の温度範囲に加熱す
ることにより目的とする物質を得ることができ
る。なお、この方法の場合でも或いは上記のエス
テル交換反応による場合でも反応の末期をやや高
温減圧にすれば、得られる難燃剤の軟化点が高く
なり、従つてこの難燃剤の高分子化合物への相溶
性が良くなるので、極めて実用性に富むものにな
り好ましい。難燃剤の軟化点が30℃のものでも充
分に実用性を有するが、軟化点が70℃以上のもの
の方が非常に吸いやすくなる。 上記のようにして製造される本発明の難燃剤
は、優れた難燃性付与性能を有するだけでなく、
高分子化合物、特にポリエステルに添加、配合し
て成形品を製造する場合に、熱分解したりまたポ
リエステルの重合度を低下させる作用を有しない
ので、得られるポリエステル成形品の物性、色調
に悪影響を与えることが極めて少ない。 また本発明方法で得られる難燃剤はポリエステ
ルの基本骨格と類似の化学構造を有しているため
か、極めてポリエステルと相溶性の良いものであ
る。従つて簡単な操作により、ポリエステルと混
合して種々の優れた難燃性の成形品を製造するの
に用いられる。 なお、ポリエステル形成性成分、例えばテレフ
タル酸ジメチルとエチレングリコールを出発物質
に用いてポリエステルを製造する際に、その共重
合ポリエステルを製造することができるが、この
方法の場合にはリン化合物が重合速度を遅延化す
る作用を有し、さらにリン化合物が長時間の熱履
歴を受けることになる。このため本発明の難燃剤
をポリエステルに混合して難燃成形品を製造する
方が容易にかつ色調の良いものが得られることに
なるので、より実用的である。 以下実施例に基いて本発明をさらに具体的に説
明するが、本発明は必ずしもこれらの実施例によ
り限定されるものでない。 なお、実施例において、極限粘度は試料をフエ
ノールとテトラクロロエタン6/4重量比混合液に
溶解し、ウベローデ粘度計により30℃で測定し
た。 実施例 1 圧力および温度の調整装置を備えたオートクレ
ーブに下式()に示されるリン化合物32.8部、
エチレングリコール31.0部およびシユウ酸チタニ
ルカリウム0.04部を供給し、窒素雰囲気中200℃
〜220℃の温度領域で120分間撹拌しながら、反応
をさせ、次いで反応系の圧力を徐々に減じて60分
間で1mmHgとした。引続き220℃、1mmHg以下
の条件下で120分間反応させた。得られた生成物
は軟化点75℃を有する黄色固体で、極限粘度
0.21、リン含有量は8.30%であつた。 実施例 2 実施例1で用いたのと同じオートクレーブに
9,10―ジヒドロ―10―(1,2―ジカルボキ
シ)エチル―9―オキサ―10フオスフアフエナン
スレン―10―オキシド35.8部、エチレングリコー
ル31.0部およびシユウ酸チタニルカリウム0.04部
を供給し、窒素雰囲気中160℃〜240℃の温度領域
で120分間撹拌しながら反応させ、次いで反応系
の圧力を徐々に減じ、60分間かかり1mmHgとし
た。引続き240℃、1mmHgの圧力下に60分間反応
させた。得られた生成物は軟化点約30℃を有する
黄色固体で、極限粘度0.18、リン含有量は8.90%
であつた。 実施例 3 実施例1で用いたと同じオートクレーブに9,
10―ジヒドロ―10―(2,3―ジメトキシカルボ
ニル)プロピル―9―オキサ―10―ホスフアフエ
ナンスレン―10―オキシド18.7g、1,4―シク
ロヘキサンジメタノール14.4部およびシユウ酸チ
タニルアンモニウム0.02部の混合物を窒素雰囲気
下に200〜250℃の温度領域で90分間反応させ、次
いで反応系の圧力を徐々に減じて60分間で5mm
Hgとした。引続き250℃、5mmHgの圧力下に60
分間反応させた。得られた生成物は軟化点78℃を
有する黄色固体で、極限粘度0.19、リン含有量は
6.48%であつた。 実施例 4 実施例1で用いた反応器に9,10―ジヒドロ―
10―(1,2―ジカルボキシ)エチル―9―オキ
サ―10―フオスフアフエナンスレン―10―オキシ
ド18.7部、ジメチルテレフタレート9.7部、エチ
レングリコール24.8部、酢酸亜鉛0.01部およびシ
ユウ酸チタニルカリウム0.02部を供給し、窒素雰
囲気中で150℃〜240℃の温度領域で200分間撹拌
しながら反応させ、次いで反応系の圧力を徐々に
減じて60分間かかつて1mmHgとした。引続き240
℃、1mmHg以下の圧力下で100分間反応させた。
得られた生成物は軟化点79℃を有する黄色固体
で、極限粘度0.18、リン含有量は5.41%であつ
た。 実施例 5 実施例1で用いたオートクレーブに()式で
示されるリン化合物32.8部、エチレングリコール
12.4部、2,2―ビス(3,5―ジブロモ4―ヒ
ドロキシフエニル)プロパン19.0部およびシユウ
酸チタニルカリウム0.04部を供給し、窒素雰囲気
中150℃〜200℃の温度領域で60分間反応させ、次
いで反応系の圧力を徐々に減じて80分間かかつて
1mmHgとした。引続き210℃、1mmHgで120分間
反応させた。得られた生成物は軟化点78℃を有す
る黄色固体で、極限粘度0.14、リン含有量は5.70
%、臭素含有量は17.63%であつた。 参考例 1 2500部のジメチルテレフタレート、1600部のエ
チレングリコール、ジメチルテレフタレートに対
し0.04重量%の酢酸亜鉛、および0.05重量%の三
酸化アンチモンの混合物を150℃〜230℃で120分
間エステル交換反応させた。続いて反応系の温度
を徐々に上昇せしめると同時に圧力を徐々に減圧
とし、最終的に100分後に275℃、0.09mmHgと
し、更に30分間かけて重合を行つた。得られたポ
リマーの固有粘度は0.62、日本電色工業製の色差
計101Dを用いて測定したb値は3.0であつた。こ
のペレツトに実施例3で得られた難燃剤を粒状に
粉砕したものを6.2重量%になるようにブレンダ
ーで混合し、溶融紡糸装置で285℃の紡糸温度で
常法に従つて紡速600m/minで紡糸した。得ら
れたフイラメントは固有粘度0.55、リン含有量は
0.4%であつた。このフイラメントを90℃の熱板
上で4.6倍に延伸し、得られた延伸糸をメリヤス
編みにして同様にb値を測定したところ4.5であ
つた。またこの難燃性を消防法施行令第4条―3
―第4項に定める防炎性能基準(コイル法)によ
つて測定したところ接炎回数の平均値(5回測
定)は5.0回であつた。 参考例 2 2500部のジメチルテレフタレート、1600部のエ
チレングリコール、122部9,10―ジヒドロ―10
―(2,3―ジメトキシカルボニル)プロピル―
9―オキサ―10―ホスフアフエナンスレン―10オ
キシド、ジメチルテレフタレートに対し0.04重量
%の酢酸亜鉛および0.05重量%の三酸化アンチモ
ンの混合物を150〜230℃で140分間エステル交換
反応させた。続いて反応系の温度を徐々に上昇せ
しめると同時に圧力を徐々に減圧とし、最終的に
100分後に275℃、0.09mmHgとし、更に、67分か
けて重合を行つた。得られたポリマーの固有粘度
は0.60、b値は6.1であつた。このペレツトを実
施例7と同様にして紡糸延伸し、フイラメントを
得た。このフイラメントの固有粘度は0.56、リン
含有量は0.4%であつた。またメリヤス編みにし
たもののb値は6.7であつた。またこのものの難
燃性(コイル法)は5.1回であつた。
Examples include [Formula]. In addition, in the present invention, those without substituents R 1 and R 2 on the benzene nucleus, that is, those in which p and q are each o, are preferred in the present invention because they are easily available. used to synthesize phosphorus compound a
DOP or its nuclear substituted product, for example,
As shown in Japanese Patent No. 45397, it is synthesized from 2-hydroxybiphenyl or its nuclear substituted product and phosphorus trichloride. In order to produce the flame retardant of the present invention, it is necessary that the benzene nucleus has no substituent, that is, in the above formula (), p and q are each O.
It is particularly preferred to use one that is (i.e. DOP). Unsaturated compounds as starting materials used to produce phosphorus compound a by reacting with DOP or its benzene-nucleated derivative include dicarboxylic acids such as fumaric acid, maleic acid, mesaconic acid, citraconic acid, glutaconic acid, and itaconic acid. or anhydrides and esters thereof; particularly preferred unsaturated compounds in the present invention include maleic acid, itaconic acid, and anhydrides thereof;
Examples include lower alkyl esters. The method for producing phosphorus compound a by reacting the above DOP or its nuclear substituted product with an unsaturated compound is not particularly limited, but for example, the following method is used.
It can be produced according to the method of reacting DOP and dimethyl itaconate. That is, the target phosphorus compound a can be easily produced by reacting DOP and dimethyl itaconate under heating under reflux in an inert gas atmosphere. The phosphorus-containing flame retardant of the present invention is produced by reacting the phosphorus compound a produced as described above with a diol or an ester-forming derivative. , for example, aliphatic glycols such as ethylene glycol, 1,2-propylene glycol, trimethylene glycol, and tetramethylene glycol, alicyclic glycols such as 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, and the following general formula ( ), () and glycols containing aromatic groups. (However, in the formula, X represents a halogen atom, and Y
represents an alkylene group having 1 to 6 carbon atoms, an alkylidene group, a cycloalkylidene group, an aralkylidene group, or a divalent group represented by -O-, -S-, -SO-, or -SO2- . Further, m 1 and m 2 each represent an integer from 0 to 4, and m 3 represents 0 or 1. ) Carbonic esters of the above-mentioned glycols or ester-forming derivatives of diols such as ethylene oxide and propylene oxide may also be used in the present invention. When producing the flame retardant of the present invention by reacting phosphorus compound a with the diol or its ester-forming derivative, the phosphorus content in the obtained flame retardant is
It is desirable to adjust the amount of each starting material used so that it is 2000 ppm or more, preferably in the range of 5000 to 90000 ppm. This is because if the phosphorus content becomes less than 2000 ppm, the flame retardant performance that can be obtained decreases, which is no longer desirable. On the other hand, if the phosphorus content in the flame retardant becomes too high, a satisfactory result cannot be obtained even by the method described below. The method for producing the flame retardant of the present invention is not particularly limited, except that it is used so that the phosphorus content of the flame retardant from which the phosphorus compound a and the ester-forming compound are obtained falls within the above range. It can be manufactured as described in . That is, in the present invention, phosphorus compound a
When R 3 is an alkyl group or an aryl group, a flame retardant can be produced by a so-called transesterification reaction using the phosphorus compound a and a diol. Conditions for this transesterification reaction can be substantially similar to those used for producing aromatic polyesters. That is, a metal compound selected from zinc, manganese, titanium, cobalt, and magnesium is used as a catalyst for the transesterification reaction, and the reaction can be heated to reflux at a temperature in the range of about 50 to about 280° C. under normal pressure. On the other hand, when phosphorus compound a is in the form of a free acid or acid anhydride, using a diol,
The flame retardant of the present invention can be produced according to so-called direct esterification when producing aromatic polyester. That is, by using the same metal compound or tin compound as in the case of the above-mentioned transesterification reaction as an esterification catalyst, heating to a temperature range of about 100 to about 280°C under normal pressure or an increased pressure of up to 5 kg/cm 2 . The substance can be obtained. In addition, in the case of this method or the above-mentioned transesterification reaction, if the final stage of the reaction is carried out at a slightly higher temperature and reduced pressure, the softening point of the obtained flame retardant will be increased, and therefore the phase of this flame retardant into the polymer compound will be reduced. Since the solubility is improved, it is highly practical and therefore preferred. Flame retardants with a softening point of 30°C are sufficiently practical, but those with a softening point of 70°C or higher are much easier to absorb. The flame retardant of the present invention produced as described above not only has excellent flame retardant properties but also
When a polymer compound, especially a polyester, is added or blended to produce a molded product, it does not thermally decompose or reduce the degree of polymerization of the polyester, so it does not adversely affect the physical properties and color tone of the resulting polyester molded product. Very little to give. Furthermore, the flame retardant obtained by the method of the present invention has extremely good compatibility with polyester, probably because it has a chemical structure similar to the basic skeleton of polyester. Therefore, it can be mixed with polyester and used to produce various molded articles with excellent flame retardancy through simple operations. Note that when polyester is produced using polyester-forming components such as dimethyl terephthalate and ethylene glycol as starting materials, a copolymerized polyester can be produced, but in this method, the phosphorus compound controls the polymerization rate. In addition, the phosphorus compound will undergo a long thermal history. Therefore, it is more practical to mix the flame retardant of the present invention with polyester to produce flame-retardant molded articles because it is easier to produce flame-retardant molded articles with good color tone. The present invention will be explained in more detail below based on Examples, but the present invention is not necessarily limited to these Examples. In the examples, the intrinsic viscosity was measured by dissolving a sample in a mixture of phenol and tetrachloroethane in a 6/4 weight ratio and using an Ubbelohde viscometer at 30°C. Example 1 32.8 parts of a phosphorus compound represented by the following formula () was placed in an autoclave equipped with a pressure and temperature regulator,
Supply 31.0 parts of ethylene glycol and 0.04 parts of potassium titanyl oxalate and heat at 200°C in a nitrogen atmosphere.
The reaction was carried out with stirring in the temperature range of ~220°C for 120 minutes, and then the pressure of the reaction system was gradually reduced to 1 mmHg over 60 minutes. Subsequently, the reaction was carried out for 120 minutes at 220°C and 1 mmHg or less. The product obtained is a yellow solid with a softening point of 75°C and an intrinsic viscosity of
0.21, and the phosphorus content was 8.30%. Example 2 In the same autoclave as used in Example 1, 35.8 parts of 9,10-dihydro-10-(1,2-dicarboxy)ethyl-9-oxa-10 phosphorphenanthrene-10-oxide and ethylene were added. 31.0 parts of glycol and 0.04 parts of potassium titanyl oxalate were supplied and reacted in a nitrogen atmosphere at a temperature range of 160°C to 240°C with stirring for 120 minutes, and then the pressure of the reaction system was gradually reduced to 1 mmHg over 60 minutes. . Subsequently, the reaction was carried out at 240°C and under a pressure of 1 mmHg for 60 minutes. The resulting product is a yellow solid with a softening point of about 30°C, an intrinsic viscosity of 0.18, and a phosphorus content of 8.90%.
It was hot. Example 3 In the same autoclave as used in Example 1,
18.7 g of 10-dihydro-10-(2,3-dimethoxycarbonyl)propyl-9-oxa-10-phosphaphenanthrene-10-oxide, 14.4 parts of 1,4-cyclohexanedimethanol and 0.02 part of titanyl ammonium oxalate. The mixture was allowed to react in a temperature range of 200-250℃ under nitrogen atmosphere for 90 minutes, and then the pressure of the reaction system was gradually reduced to 5 mm in 60 minutes.
It was set as Hg. Continued at 250℃ and 5mmHg pressure for 60 minutes.
Allowed to react for minutes. The product obtained is a yellow solid with a softening point of 78°C, an intrinsic viscosity of 0.19, and a phosphorus content of
It was 6.48%. Example 4 9,10-dihydro- was added to the reactor used in Example 1.
18.7 parts of 10-(1,2-dicarboxy)ethyl-9-oxa-10-phosphaphenanthrene-10-oxide, 9.7 parts of dimethyl terephthalate, 24.8 parts of ethylene glycol, 0.01 part of zinc acetate, and 0.02 parts of potassium titanyl oxalate. The reactor was reacted in a nitrogen atmosphere at a temperature range of 150°C to 240°C with stirring for 200 minutes, and then the pressure of the reaction system was gradually reduced to 1 mmHg over 60 minutes. Continued 240
The reaction was carried out for 100 minutes at a temperature of 1 mmHg or less.
The resulting product was a yellow solid with a softening point of 79°C, an intrinsic viscosity of 0.18, and a phosphorus content of 5.41%. Example 5 In the autoclave used in Example 1, 32.8 parts of a phosphorus compound represented by the formula () and ethylene glycol were added.
12.4 parts of 2,2-bis(3,5-dibromo4-hydroxyphenyl)propane and 0.04 parts of potassium titanyl oxalate were supplied, and the mixture was reacted for 60 minutes in a temperature range of 150°C to 200°C in a nitrogen atmosphere. Then, the pressure of the reaction system was gradually reduced to 1 mmHg for 80 minutes. Subsequently, the reaction was carried out at 210°C and 1 mmHg for 120 minutes. The resulting product is a yellow solid with a softening point of 78°C, an intrinsic viscosity of 0.14, and a phosphorus content of 5.70.
%, and the bromine content was 17.63%. Reference Example 1 A mixture of 2500 parts of dimethyl terephthalate, 1600 parts of ethylene glycol, 0.04% by weight of zinc acetate and 0.05% by weight of antimony trioxide relative to dimethyl terephthalate was transesterified at 150°C to 230°C for 120 minutes. . Subsequently, the temperature of the reaction system was gradually raised and at the same time the pressure was gradually reduced, and finally, after 100 minutes, the temperature was reduced to 275°C and 0.09 mmHg, and polymerization was carried out over a further 30 minutes. The intrinsic viscosity of the obtained polymer was 0.62, and the b value measured using a color difference meter 101D manufactured by Nippon Denshoku Industries was 3.0. The flame retardant obtained in Example 3 was pulverized into granules and mixed into the pellets in a blender to a concentration of 6.2% by weight, and the pellets were spun at a spinning speed of 600 m/min using a melt spinning device at a spinning temperature of 285°C according to a conventional method. Spun at min. The obtained filament has an intrinsic viscosity of 0.55 and a phosphorus content of
It was 0.4%. This filament was stretched 4.6 times on a hot plate at 90°C, and the resulting stretched yarn was knitted into knitted yarn, and the b value was measured in the same manner and found to be 4.5. In addition, this flame retardant property is defined in Article 4-3 of the Fire Service Act Enforcement Order.
- When measured according to the flame retardant performance standards (coil method) specified in Section 4, the average number of times of flame contact (measured 5 times) was 5.0 times. Reference example 2 2500 parts dimethyl terephthalate, 1600 parts ethylene glycol, 122 parts 9,10-dihydro-10
-(2,3-dimethoxycarbonyl)propyl-
A mixture of 9-oxa-10-phosphaphenanthrene-10 oxide, dimethyl terephthalate, 0.04% by weight of zinc acetate, and 0.05% by weight of antimony trioxide was transesterified at 150 to 230°C for 140 minutes. Next, the temperature of the reaction system is gradually increased and at the same time the pressure is gradually reduced, and finally
After 100 minutes, the temperature was set to 275°C and 0.09 mmHg, and polymerization was continued for a further 67 minutes. The obtained polymer had an intrinsic viscosity of 0.60 and a b value of 6.1. This pellet was spun and drawn in the same manner as in Example 7 to obtain a filament. The filament had an intrinsic viscosity of 0.56 and a phosphorus content of 0.4%. Furthermore, the b value of the stockinette knitted material was 6.7. The flame retardancy (coil method) of this product was 5.1 times.

Claims (1)

【特許請求の範囲】 1 カルボキシル基又はそのエステル形成性官能
基を2個有する不飽和化合物と9,10―ジヒドロ
―9―オキサ―10フオスフアフエナンスレン―10
―オキシドもしくはそのベンゼン核置換体とを反
応させて得られる下記一般式()で示されるリ
ン化合物aとジオールまたはそのエステル形成性
誘導体とをエステル交換反応またはエステル化反
応させて得ることを特徴とする含リン難燃剤の製
造法。 〔ただし式中R1,R2はそれぞれ同じかまたは
異なる基であつて、ハロゲン原子またはハロゲン
原子を含むことのある炭素原子数1〜6個の炭化
水素基であり、p,qはそれぞれ0〜4の整数を
表わす。またBは3価の炭素原子数2〜4個のア
ルキル基であり、R3は水素原子、炭素原子数1
〜6のアルキル基、アリール基を示す。 なお、R3が水素原子の場合、脱水反応して環
を形成した酸無水物であつてもよい。〕
[Scope of Claims] 1. An unsaturated compound having two carboxyl groups or their ester-forming functional groups and 9,10-dihydro-9-oxa-10 phosphenanthrene-10
-Produced by transesterification or esterification of a phosphorus compound a represented by the following general formula () obtained by reacting an oxide or its benzene-nucleated derivative with a diol or an ester-forming derivative thereof. A method for producing phosphorus-containing flame retardants. [However, in the formula, R 1 and R 2 are the same or different groups, and are a halogen atom or a hydrocarbon group having 1 to 6 carbon atoms that may contain a halogen atom, and p and q are each 0 Represents an integer from ~4. In addition, B is a trivalent alkyl group having 2 to 4 carbon atoms, and R 3 is a hydrogen atom and 1 carbon atom.
-6 alkyl groups and aryl groups are shown. In addition, when R 3 is a hydrogen atom, it may be an acid anhydride that forms a ring through a dehydration reaction. ]
JP1508876A 1975-10-14 1976-02-13 Phosphorus-containing incombustible agent Granted JPS5298395A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP1508876A JPS5298395A (en) 1976-02-13 1976-02-13 Phosphorus-containing incombustible agent
US05/730,512 US4127590A (en) 1975-10-14 1976-10-07 Phosphorus-containing compounds
DE2660334A DE2660334C2 (en) 1975-10-14 1976-10-13 Use of certain phosphorus-containing compounds for flame retarding polyesters
IT69470/76A IT1078706B (en) 1975-10-14 1976-10-13 PHOSPHORIZED COMPOUNDS PARTICULARLY USEFUL AS FLAME RETARDERS IN SYNTHETIC RESIN MANUFACTURES
DE2646218A DE2646218C3 (en) 1975-10-14 1976-10-13 Phosphorus-containing compounds, processes for their production and use of the same for flame-proofing
FR7630829A FR2327996A1 (en) 1975-10-14 1976-10-13 NEW PHOSPHORUS COMPOUNDS AND THEIR APPLICATION TO OBTAIN POLYESTERS MAY DELAY THE PROPAGATION OF A FLAME
GB42791/76A GB1534092A (en) 1975-10-14 1976-10-14 Phosphorus containing phenanthrene derivatives
CA263,391A CA1077499A (en) 1975-10-14 1976-10-14 Phosphorus-containing compounds
US05/859,104 US4157436A (en) 1975-10-14 1977-12-09 Phosphorus-containing polyesters
CA323,655A CA1075848A (en) 1975-10-14 1979-03-16 New-phosphorus-containing compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1508876A JPS5298395A (en) 1976-02-13 1976-02-13 Phosphorus-containing incombustible agent

Publications (2)

Publication Number Publication Date
JPS5298395A JPS5298395A (en) 1977-08-18
JPS6223009B2 true JPS6223009B2 (en) 1987-05-21

Family

ID=11879076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1508876A Granted JPS5298395A (en) 1975-10-14 1976-02-13 Phosphorus-containing incombustible agent

Country Status (1)

Country Link
JP (1) JPS5298395A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003591A (en) * 2000-06-23 2002-01-09 Toyobo Co Ltd Flame-retarded polyester resin, adhesive and method of producing the same
JP5115172B2 (en) * 2007-12-13 2013-01-09 株式会社カネカ Resin composition

Also Published As

Publication number Publication date
JPS5298395A (en) 1977-08-18

Similar Documents

Publication Publication Date Title
US4127590A (en) Phosphorus-containing compounds
US4157436A (en) Phosphorus-containing polyesters
US4033936A (en) Process for the manufacture of flame retarding linear polyesters
CA1087797A (en) Process for the manufacture of linear polyesters which contain phosphites and/or phosphates
US5003029A (en) Flame resistant polyester from di aryl-di(hydroxyalkylene oxy)aryl phosphine oxide
US4087408A (en) Bromine and phosphorus containing polyester
US4940772A (en) Process for producing flame resistant polyester
JPS6223009B2 (en)
JPH0565339A (en) Production of flame-retardant polyester
US3515700A (en) Process for the preparation of polyester for slideable film
US3997510A (en) Flame-resistant, thermoplastic polyesters
KR20010010140A (en) A manufacturing method of flame retardant polyester resin
JPS62172017A (en) Production of fire-resistant polyester
KR930011322B1 (en) Process for preparation of fire retardant polyester fiber
CA1059676A (en) Flame retardant polyester compositions
JPS5921889B2 (en) Polyester manufacturing method
JP5731340B2 (en) Flame retardant polyester
CA1075848A (en) New-phosphorus-containing compounds
US3036044A (en) Process for the manufacture of linear polyesters and copolyesters containing phosphinate structural components
JP2547820B2 (en) Aromatic copolyester
JPS63210127A (en) Aromatic copolyester
KR20000066633A (en) Manufacturing of Nonflammable Polyester Fiber
KR790001435B1 (en) Flame resistant polyester
JPS63277233A (en) Aromatic copolyester
JP2703871B2 (en) Method for producing high molecular weight polyester type flame retardant