JPS62229846A - Manufacture of ii-vi compound semiconductor element - Google Patents

Manufacture of ii-vi compound semiconductor element

Info

Publication number
JPS62229846A
JPS62229846A JP7209386A JP7209386A JPS62229846A JP S62229846 A JPS62229846 A JP S62229846A JP 7209386 A JP7209386 A JP 7209386A JP 7209386 A JP7209386 A JP 7209386A JP S62229846 A JPS62229846 A JP S62229846A
Authority
JP
Japan
Prior art keywords
temperature
heater
group
grown
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7209386A
Other languages
Japanese (ja)
Inventor
Shigeo Kaneda
金田 重男
Meiso Yokoyama
横山 明聡
Shuji Sato
修治 佐藤
Shinichi Motoyama
慎一 本山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seiki Co Ltd
Original Assignee
Nippon Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seiki Co Ltd filed Critical Nippon Seiki Co Ltd
Priority to JP7209386A priority Critical patent/JPS62229846A/en
Publication of JPS62229846A publication Critical patent/JPS62229846A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high quality, II-VI compound semiconductor element without lattice defects, by heating a group II molecular beam and a group VI molecular beam with a heater, thereby obtaining high temperature molecular beam, and setting the temperature of a growing substrate at a low temperature in a temperature range, where a single crystal having a stoichiometric composition can be grown. CONSTITUTION:A semiconductor growing apparatus 1 is provided with the following parts: a gas cell 3, which is protruded in a chamber 2; Knudsen cells 4 and 5; a growing substrate 6, which is arranged in the chamber 2; and a substrate stage 7, which supports the substrate 6 and has a heater in the inside. A cracking heater, which is used for decomposing molecules in the cruster state in group-II and group-VI molecular beams, is heated to a high temperature. the molecules are decomposed with the cracking heater. Energy for surface migration is also imparted. Thus high energy molecular beams are obtained. The temperature of the growing substrate 6 is set at a low temperature in a temperature range, where a single crystal having a stoichiometric composition can be grown.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は青色発光材料として最も有望とされているII
−Vl族化合物半導体素子の製造方法に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to II, which is considered to be the most promising blue-emitting material.
- A method for manufacturing a Vl group compound semiconductor device.

〔従来の技術〕[Conventional technology]

半W体素子の製造方法として分子線エピタキシャル成長
法(以下、MBEと略称する。)があり、気相成長法、
液相成長法に比べ成長基板温度を低く抑えることができ
、空格子点等の格子欠陥を極力少なくすることが可能で
あることから種々の研究が行われている。その中で、青
色発光材料として有望視されるIt−Vl族化合物半導
体素子の製造にMBEを適用した研究もなされており、
特開昭58−86.731号、同60−143,680
号等が知られている。
Molecular beam epitaxial growth (hereinafter abbreviated as MBE) is a method for manufacturing half-W body elements, including vapor phase epitaxy,
Various studies are being conducted on this method because it is possible to keep the temperature of the growth substrate lower than in the liquid phase growth method and to minimize lattice defects such as vacancies. Among these, research is being conducted to apply MBE to the production of It-Vl group compound semiconductor devices, which are considered promising as blue-emitting materials.
JP-A-58-86.731, JP-A No. 60-143,680
The number etc. are known.

高品質なII−Vl族化合物半導体素子を製造し、かつ
P型、N型の導伝性制御ができれば青色発光ダイオード
や短波長レーザ等のオプトエレクトロニクス素子の進歩
が約束されるが、II−Vl族化合物半導体素子の発光
材料としての実用化には至っていない。
If high-quality II-Vl group compound semiconductor devices can be manufactured and P-type and N-type conductivity can be controlled, progress in optoelectronic devices such as blue light-emitting diodes and short wavelength lasers will be possible. Practical use of group compound semiconductor devices as light-emitting materials has not yet been reached.

〔従来技術の問題点〕[Problems with conventional technology]

上記実用化に至っていない原因として、■族元素と■族
元素の各々の同一温度における蒸気圧のちがいや、イオ
ン結合性が強いこと、また不純物の混入による格子欠陥
ができ易いことや、自己補償効果が起こり易いこと等が
あげられる。
The reasons why the above-mentioned group elements have not been put to practical use include the difference in vapor pressure at the same temperature between group III elements and group III elements, strong ionic bonding, the tendency to form lattice defects due to the incorporation of impurities, and self-compensation. Examples include the fact that the effect is likely to occur.

MBEでは成長基板温度を低く抑えられることから、空
格子点の発生や基板からの不純物の混入による格子欠陥
は従来に比べ、できにくいものではあるが、実用化でき
るような高品質の単結晶薄膜は未だ得られておらず、高
品質の単結晶薄膜の成長が望まれている。
Since the growth substrate temperature can be kept low in MBE, lattice defects due to the generation of vacancies and the incorporation of impurities from the substrate are less likely to occur than in the past, but it is possible to produce high-quality single crystal thin films that can be put to practical use. has not yet been obtained, and the growth of high-quality single-crystal thin films is desired.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点に鑑みなされたもので、格子欠陥の
少ない、高品質のII−VI族化合物半導体素子を製造
し得る製造方法を提供することを目的とする。
The present invention was made in view of the above problems, and an object of the present invention is to provide a manufacturing method capable of manufacturing a high quality II-VI group compound semiconductor device with few lattice defects.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため本発明は、分子線中のクラスタ
ー状態の分子を分解する目的で用いられるクランキング
ヒータを高温とし、該クランキングヒータにより分子を
分解するのみならず表面泳動のためのエネルギーをも与
えて高エネルギー分子線とするとともに、成長基板温度
は化学量論的組成の単結晶成長が可能な温度範囲の低温
域に設定したことを特徴とする。 ′ 〔実施例〕 第1図は本発明の一実施例を示すもので、本発明者らが
行った実験の装置概略図である。
In order to achieve the above object, the present invention raises a cranking heater used for the purpose of decomposing molecules in a cluster state in a molecular beam to a high temperature, and uses the cranking heater to not only decompose molecules but also to generate energy for surface migration. The present invention is characterized in that the temperature of the growth substrate is set to a low temperature range in which growth of a single crystal with a stoichiometric composition is possible. [Example] FIG. 1 shows an example of the present invention, and is a schematic diagram of an apparatus used in an experiment conducted by the present inventors.

図中、1は半導体成長装置であって、チャンバ2内に延
出するガスセル3、クヌードセンセル4゜5、チャンバ
2内に配設された成長基板6 (GaAs:ガリウムヒ
素を使用)、該基板6を保持するとともに内部にヒータ
を有する基板台7、上記クヌードセンセル4,5のそれ
ぞれの分子線放出端近くに配設されたシャッタ8,9、
上記基板6の近くに配設されたシャッタ10、ガスセル
3のガスソースとなるHasガスのポンベ11、該ボン
ベ11のパルプ12に連結された流量調節弁13、該流
it調節弁13とガスセル3とを連結する可変リーク弁
14、チャンバ内を所望の気圧とする排気装置15より
構成される。なお、実際にはRHEEDパターン測定用
の装置や他の排気装置、質量分析計等があるが、ここで
は省略している。
In the figure, 1 is a semiconductor growth apparatus, which includes a gas cell 3 extending into a chamber 2, a Knudsen cell 4°5, a growth substrate 6 (GaAs: using gallium arsenide) disposed in the chamber 2, a substrate stand 7 that holds the substrate 6 and has a heater therein; shutters 8 and 9 disposed near the respective molecular beam emission ends of the Knudsen cells 4 and 5;
A shutter 10 disposed near the substrate 6, a Has gas cylinder 11 serving as a gas source for the gas cell 3, a flow control valve 13 connected to the pulp 12 of the cylinder 11, and the flow control valve 13 and the gas cell 3. It is comprised of a variable leak valve 14 that connects the chamber to the chamber, and an exhaust device 15 that maintains the desired pressure inside the chamber. Note that although there are actually devices for RHEED pattern measurement, other exhaust devices, a mass spectrometer, etc., they are omitted here.

第2図、第3図はそれぞれ、ガスセル3とクヌードセン
セル4の要部断面図である。
FIGS. 2 and 3 are sectional views of essential parts of the gas cell 3 and the Knudsen cell 4, respectively.

第2図中、16は透光性アルミナ管であり、該透光性ア
ルミナ管16内にはクランキングヒータ17を配設し、
透光性アルミナ管16外周位置にタンタル製熱遮蔽板1
8を配設している。これら透光性アルミナ管16、クラ
ンキングヒータ17、タンタル製熱遮蔽板18により、
ガスセル3が構成されている。
In FIG. 2, 16 is a translucent alumina tube, and a cranking heater 17 is disposed inside the translucent alumina tube 16.
Tantalum heat shielding plate 1 on the outer circumference of the translucent alumina tube 16
8 are installed. With these translucent alumina tube 16, cranking heater 17, and tantalum heat shield plate 18,
A gas cell 3 is configured.

第3図中、19は石英管であり、該石英管19内にはク
ランキングヒータ20を配設し、石英管19外周にはセ
ルヒータ21を巻回し、該セルヒータ21外側にセルヒ
ータ21を固定するアルミナ絶縁管22を配設し、アル
ミナ絶縁管22外周位置にはタンタル製熱遮蔽板23を
配設しており、これらによりクヌードセンセル4が構成
されている。
In FIG. 3, 19 is a quartz tube, a cranking heater 20 is disposed inside the quartz tube 19, a cell heater 21 is wound around the outer periphery of the quartz tube 19, and the cell heater 21 is fixed on the outside of the cell heater 21. An alumina insulating tube 22 is provided, and a tantalum heat shielding plate 23 is provided on the outer periphery of the alumina insulating tube 22, and the Knudsen cell 4 is constituted by these.

なお、クヌードセンセル5も、クヌードセンセル4と同
じ構成としている。
Note that the Knud sensor cell 5 also has the same configuration as the Knud sensor cell 4.

以上の実験装置において、クヌードセンセル4内に■族
元素の分子線源としてZn (亜鉛)、クヌードセンセ
ル5内にドーパント、ガスセルのソースとしてH,S 
 (硫化水素)を用いて実験を行った。
In the above experimental apparatus, Zn (zinc) is placed in the Knudsen cell 4 as a molecular beam source of group Ⅰ elements, dopant is placed in the Knudsen cell 5, and H and S are used as the gas cell sources.
An experiment was conducted using (hydrogen sulfide).

まず、ドーピングをせずに、クヌードセンセル4のクラ
ッキングヒータ20のクラッキング温度を850℃とし
、ガスセルのクランキングヒータ17を920℃として
実験したところ、成長基板温度310℃では第4図に示
したRHEEDパターンが見られたのに対し、成長基板
温度360℃では第5図に示したRHEEDパターンが
見られ、明らかに成長基板温度310℃ではZnS結晶
の品質が悪いことがわかる。
First, an experiment was conducted without doping, with the cracking temperature of the cracking heater 20 of the Knudsen cell 4 set at 850°C, and the cranking heater 17 of the gas cell set at 920°C. On the other hand, when the growth substrate temperature was 360° C., the RHEED pattern shown in FIG. 5 was observed, clearly indicating that the quality of the ZnS crystal was poor at the growth substrate temperature of 310° C.

次に、同じくドーピングせずにクラッキングヒータ20
の温度を約900℃とし、ガスセルのクラッキングヒー
タの温度を980℃として、基板温度220℃で成長さ
せた薄膜のRHEEDパターンを第6図に示す。また、
第7図、第8図は基板温度を220℃から250℃、2
70°Cに変えてみたもので、220℃では単結晶薄膜
となっておらず、250℃と270℃においては単結晶
薄膜が得られている。
Next, cracking heater 20 without doping
FIG. 6 shows the RHEED pattern of a thin film grown at a substrate temperature of 220° C. with a gas cell cracking heater temperature of about 900° C. and a gas cell cracking heater temperature of 980° C. Also,
Figures 7 and 8 show the substrate temperature between 220°C and 250°C.
When the temperature was changed to 70°C, no single crystal thin film was obtained at 220°C, but single crystal thin films were obtained at 250°C and 270°C.

第9図は上記第7図に示したRHEEDパターンをとっ
たときの薄膜のX線回折のグラフである。
FIG. 9 is a graph of X-ray diffraction of a thin film when the RHEED pattern shown in FIG. 7 is taken.

この図からも、単結晶薄膜が成長していることを読みと
ることができる。第10図は成長基板温度220℃、2
50℃、270℃の3点につき、成長したZnS中のZ
nの占める割合を示すグラフである。上記第6図乃至第
8図と測定装置の誤差範囲を考慮すれば、少なくとも2
50°Cは、化学量論的組成の単結晶薄膜ができる温度
範囲の低温域に入ると言える。
From this figure as well, it can be seen that a single crystal thin film is growing. Figure 10 shows a growth substrate temperature of 220°C, 2
Z in the grown ZnS at three points at 50°C and 270°C
It is a graph showing the ratio occupied by n. Considering the above figures 6 to 8 and the error range of the measuring device, at least 2
It can be said that 50°C falls within the low temperature range in which a single crystal thin film with a stoichiometric composition can be formed.

次に、成長基板温度250℃とし、Zn+  SにGa
 (ガリウム)をクヌードセンセル5からドーピングし
て成長した単結晶薄膜のフォトルミネッセンスが第11
図であり、クヌードセンセル5の温度を変化させてそれ
ぞれ成長した単結晶薄膜につき抵抗率を測定したものが
第12図のグラフである。
Next, the growth substrate temperature was set to 250°C, and Ga was added to Zn+S.
The photoluminescence of the single crystal thin film grown by doping (gallium) from the Knudsen cell 5 is the 11th photoluminescence.
The graph of FIG. 12 is a graph showing the resistivity of each single crystal thin film grown while changing the temperature of the Knudsen cell 5.

これら第11図、第12図から、フォトルミネッセンス
において従来報告されているようなSA発光Z が見られず、第貝図から抵抗率も数ΩCmと低い値であ
ることから、Gaは単結晶薄膜ZnSのZn位置を置換
しているものと考えられる。
From these figures 11 and 12, SA luminescence Z as previously reported in photoluminescence is not observed, and the resistivity is as low as several ΩCm from the figure, so Ga is a single-crystal thin film. It is thought that the Zn position of ZnS is substituted.

ここで、本実施例において、クヌードセンセル5にもク
ラッキングヒータを用いたのは、ドーパントGaにも成
長基板6表面における表面泳動をするエネルギーを与え
るためであり、セル温度で制御するドーパントの量のみ
ならず、加熱(クランキングヒータ温度約900℃)す
ることで有効にドーピングを行うためである。
In this example, the cracking heater was also used in the Knudsen cell 5 in order to give the dopant Ga energy for surface migration on the growth substrate 6 surface. This is because not only the amount but also the heating (cranking heater temperature of about 900° C.) allows effective doping.

第13図はドーパントにAg(銀)を用いて同様に成長
した単結晶薄膜のフォトルミネッセンスを示す図である
。この図から、AgはZnSのZn位置を置換している
と思われる。
FIG. 13 is a diagram showing photoluminescence of a single crystal thin film similarly grown using Ag (silver) as a dopant. From this figure, it appears that Ag replaces the Zn position of ZnS.

これは、従来より知られているAg、Gaを含むZnS
のフォトルミネッセンスは77kにおいて2.81eV
にピークをもつとされているのに対して第13図では2
.88eVと、非常に近い値を示しており、このピーク
がAg、 Gaに関係した発光と考えられ、また、Ag
のアクセプタレベルが価電子帯+0.6eVと深いもの
であるため抵抗率は非常に大きいものと考えられるのに
対して本実施例で得られた成長膜に電流がほとんど流れ
ないことから、Agは格子間にとどまっているのではな
いと考えられるからである。
This is the conventionally known ZnS containing Ag and Ga.
The photoluminescence of is 2.81eV at 77k
It is said to have a peak at 2, whereas in Fig. 13 it has a peak at
.. It shows a very close value of 88 eV, and this peak is considered to be the emission related to Ag and Ga.
Since the acceptor level of Ag is as deep as +0.6 eV in the valence band, the resistivity is considered to be very high.However, since almost no current flows through the grown film obtained in this example, Ag This is because it is thought that the particles do not remain between the lattices.

なお、ここでAgをドーピングした成長膜にGaが含ま
れると上記したが、これは成長基板温度が低くなっても
、成長基板6から混入するためである。
Note that although it was mentioned above that Ga is contained in the Ag-doped grown film, this is because Ga is mixed in from the growth substrate 6 even if the growth substrate temperature becomes low.

しかし、この混入は基板温度を下げたことにより少なく
なっており、第14図、第15図に示した質量分析スペ
クトルにより明らかである。即ち、ガスセル3のクラン
キングヒータ17の温度920°C・クヌードセンセル
4のクラッキングヒータ20の温度850°Cとして成
長基板温度を360°Cとした第5図のRHEEDパタ
ーンを測定した成長膜の質量分析スペクトルが第14図
であり、成長基板温度250°CでAgをドーピングし
た第13図のフォトルミネッセンスを測定した成長膜の
質量分析スペクトルが第15図である。両図から、成長
膜中のGaiは、後者の方がはるかに少なくなっている
ことがわかる。
However, this contamination was reduced by lowering the substrate temperature, which is clear from the mass spectra shown in FIGS. 14 and 15. That is, the grown film was measured using the RHEED pattern shown in FIG. 5, where the temperature of the cranking heater 17 of the gas cell 3 was 920°C, the temperature of the cracking heater 20 of the Knudsen cell 4 was 850°C, and the growth substrate temperature was 360°C. FIG. 14 shows the mass spectrometry spectrum of the grown film, and FIG. 15 shows the mass spectrometry spectrum of the grown film whose photoluminescence was measured in FIG. 13, which was doped with Ag at a growth substrate temperature of 250°C. From both figures, it can be seen that Gai in the grown film is much less in the latter.

以上のように■族及びVI族の分子線をクラブキングヒ
ータで加熱することにより分子線に成長基板表面での表
面泳動エネルギーを与えることができ、これにより成長
基板温度を化学量論的組成の単結晶成長が可能な温度範
囲の低温域に設定し得、従って従来よりも低い成長基板
温度での単結晶成長を可能とし、高品質な、n−VI族
化合物半導体の1つであるZnSの製造が可能となるも
のである。
As described above, by heating the molecular beams of group II and group VI with the Crab King heater, it is possible to give surface migration energy to the molecular beams on the growth substrate surface, thereby lowering the growth substrate temperature to the stoichiometric composition. ZnS, which is one of the n-VI group compound semiconductors, has high quality and can be set at a low temperature within the temperature range where single crystal growth is possible, thus enabling single crystal growth at a lower growth substrate temperature than before. This makes manufacturing possible.

また、ドーパントの分子線を加熱することで、ドーパン
トの分子線にも表面泳動のためのエネルギーを与えるこ
とで、有効なドーピングを可能とすることができたもの
である。
Moreover, by heating the dopant molecular beam, energy for surface migration is also given to the dopant molecular beam, thereby making it possible to perform effective doping.

なお、上述した実施例ではZnSのみについて述べたが
、他のn−VI族化合物半浬体素子の製造においても本
発明が適用できることはもちろんである。
Although only ZnS was described in the above-mentioned embodiments, it goes without saying that the present invention can also be applied to the production of other n-VI group compound semisolid elements.

また、上記実施例の成長基板温度は、分子線のビーム強
度や装置の構成、距離等の違い等種々の条件によって異
なってくるが、本発明を用いて分子線をヒータで加熱す
ることで成長基板の温度を化学量論的組成が可能な温度
範囲の低温域に設定できることはMBEによるII−V
I族化合物半導体素子の製造にあたり、それぞれの条件
において非常に有効である。
Furthermore, although the temperature of the growth substrate in the above embodiments varies depending on various conditions such as the beam intensity of the molecular beam, the configuration of the apparatus, and differences in distance, growth can be achieved by heating the molecular beam with a heater using the present invention. The fact that the temperature of the substrate can be set to a low temperature range within the temperature range where a stoichiometric composition can be achieved is shown in II-V by MBE.
It is very effective under various conditions in manufacturing Group I compound semiconductor devices.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、■族及びVI族の分子線をヒータで
加熱して表面泳動のためのエネルギーを与え、成長基板
温度を化学量論的組成の単結晶成長が可能な温度範囲の
うち低温域に設定することを特徴とする本発明により、
格子欠陥の少ない高品質な■−■族化合物半導体素子を
製造し得るものである。
As mentioned above, the molecular beams of group II and group VI are heated with a heater to provide energy for surface migration, and the growth substrate temperature is set to a low temperature within the temperature range that allows growth of a single crystal with a stoichiometric composition. According to the present invention, which is characterized in that the
This makes it possible to produce high-quality (1-2) group compound semiconductor devices with few lattice defects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す装置概略図、第2図は
ガスセルの要部断面図、第3図はクヌードセンセルの要
部断面図、第4図、第5図はそれぞれ基板温度310℃
、360℃としてクヌードセンセルのクラッキングヒー
タ温度850℃とし、ガスセルのクランキングヒータの
温度を920℃としたときのZnS成長膜のRHF、E
Dパターンの写真、第6図乃至第8図は成長基板温度を
220℃、250℃、270℃としてクヌードセンセル
のクランキングヒータ900℃、ガスセルのクランキン
グヒータ980℃としたときのZnS成長膜のそれぞれ
のRHEEDパターンの写真、第9図は上記第7図のR
HEEDパターンをとったときの成長膜のX線回折のグ
ラフ、第10図は成長基板温度220℃、250℃、2
70℃の3点につき成長したZnS中のZnの占める割
合を示す図、第11図はZnSにGaをドーピングした
ときのフォトルミネッセンスを示す図、第12図はGa
を入れたクヌードセンセルの温度に対する成長膜の抵抗
率を測定した結果を示す図、第13図はZnSにAgを
ドーピングしたときのフオトルミネ・ノセンスを示す図
、第14図は第5図のRHEEDパターンを測定した成
長膜の質量分析スペクトルを示す図、第15図は第13
図のフォトルミネッセンスを測定した成長膜の質量分析
スペクトルを示す図である。 3−−−−−一・−・・−ガスセル 4、・5−クヌードセンセル 6・・−・・−一−−−−成長基板 17.20−・−・クランキングヒータ第1!l 第2 図 第4因 循5 図 第9図 −→20(deg、) 鳩6= 纂7図 塾8 偉 第10因 一組り堕(°C) 第11囚 −+  photon  energy  (ev)第
12図 Ctaセル懺&(’C) 第13図 う皮、長 (nm) 1)hoton  energy   (eVl纂14
図 Mas5Nu+?Iber (atomic mass
 ur+1ts)’lA15UA −一一一一令 Mass  NIJJylber (&
torn:c mtts ur+1tx)手続主甫正書
(方式) %式% 1、事件の表示 昭和61年特許願第72.093号 2、発明の名称 II−VI族化合物半導体素子の製造方法3、補正をす
る者 昭和61年5月7日 (発送日 昭和61年5月27日) 5、補正の対象 一′)。 一! グ 6、補正の内容 (1)明細書第11頁第10行目に「ときのZnS成長
膜のRHEEDパターンの写真、」とあるを、「ときの
ZnS成長膜の結晶構造の逆格子像を示すRHEEDパ
ターンの写真、」と補正します。 (2)明細書第11頁第14行目乃至第15行目にr−
=ZnS成長膜のそれぞれのRHEEDパターンの写真
、」とあるを、[−・−・それぞれのZnS成長膜の結
晶構造の逆格子像を示すRHEEDパターンの写真、]
と補正します。
Fig. 1 is a schematic diagram of an apparatus showing an embodiment of the present invention, Fig. 2 is a sectional view of the main part of a gas cell, Fig. 3 is a sectional view of the main part of a Knudsen cell, and Figs. 4 and 5 are respectively Substrate temperature 310℃
, 360°C, the Knudsen cell cracking heater temperature is 850°C, and the gas cell cranking heater temperature is 920°C.
The photos of the D pattern, Figures 6 to 8, show ZnS growth when the growth substrate temperature was 220°C, 250°C, and 270°C, and the Knudsen cell cranking heater was 900°C, and the gas cell cranking heater was 980°C. Photographs of each RHEED pattern of the membrane, Figure 9 is R in Figure 7 above.
Figure 10 is a graph of X-ray diffraction of the grown film when a HEED pattern is taken, and the growth substrate temperature is 220℃, 250℃,
A diagram showing the proportion of Zn in ZnS grown at three points at 70°C, Figure 11 is a diagram showing photoluminescence when ZnS is doped with Ga, and Figure 12 is a diagram showing the proportion of Zn in ZnS grown at 70°C.
Figure 13 is a diagram showing the photoluminescence when ZnS is doped with Ag, and Figure 14 is a diagram showing the results of measuring the resistivity of the grown film against temperature in a Knudsen cell containing ZnS. Figure 15 shows the mass spectrometry spectrum of the grown film whose RHEED pattern was measured.
It is a figure which shows the mass spectrometry spectrum of the grown film which measured the photoluminescence of a figure. 3------1.--Gas cell 4, 5-Knudsen cell 6.--1--Growth substrate 17.20--Cranking heater 1st! l 2nd figure 4th factor cycle 5 figure 9th figure -→20 (deg,) Hato 6 = Tsuji 7th school 8 Great factor 10th factor 1 group fall (°C) 11th prisoner - + photon energy (ev)th Fig. 12 Cta cell diameter &('C) Fig. 13 Cta cell length (nm) 1) Hoton energy (eVl compilation 14
Figure Mas5Nu+? Iber (atomic mass
ur+1ts)'lA15UA -1111 Mass NIJJylber (&
torn:c mtts ur+1tx) Main procedural document (method) % formula % 1. Indication of the case 1985 Patent Application No. 72.093 2. Name of the invention Method for manufacturing a II-VI group compound semiconductor device 3. Amendment May 7, 1985 (Shipping date: May 27, 1986) 5. Subject of amendment 1'). one! 6. Contents of correction (1) On page 11, line 10 of the specification, the phrase "photo of the RHEED pattern of the ZnS grown film at that time" was replaced with "a reciprocal lattice image of the crystal structure of the ZnS grown film at A photo of the RHEED pattern shown, corrected. (2) r- on page 11, line 14 to line 15 of the specification
=Photographs of each RHEED pattern of a ZnS grown film,'' is replaced by ``Photographs of a RHEED pattern showing a reciprocal lattice image of the crystal structure of each ZnS grown film.''
I will correct it.

Claims (1)

【特許請求の範囲】[Claims] 分子線エピタキシャル法によるII−VI族化合物半導体素
子の製造方法において、II族及びVI族の分子線をヒータ
で加熱し、該加熱で分子線を高いエネルギーを持つ高温
分子線とするとともに、成長基板温度は化学量論的組成
の単結晶成長が可能な温度範囲の低温域に設定したこと
を特徴とするII−VI族化合物半導体素子の製造方法。
In a method for manufacturing II-VI group compound semiconductor devices using the molecular beam epitaxial method, group II and group VI molecular beams are heated with a heater, the heating converts the molecular beams into high-temperature molecular beams with high energy, and the growth substrate is heated. 1. A method for manufacturing a II-VI compound semiconductor device, characterized in that the temperature is set in a low temperature range in which growth of a single crystal with a stoichiometric composition is possible.
JP7209386A 1986-03-30 1986-03-30 Manufacture of ii-vi compound semiconductor element Pending JPS62229846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7209386A JPS62229846A (en) 1986-03-30 1986-03-30 Manufacture of ii-vi compound semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7209386A JPS62229846A (en) 1986-03-30 1986-03-30 Manufacture of ii-vi compound semiconductor element

Publications (1)

Publication Number Publication Date
JPS62229846A true JPS62229846A (en) 1987-10-08

Family

ID=13479445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7209386A Pending JPS62229846A (en) 1986-03-30 1986-03-30 Manufacture of ii-vi compound semiconductor element

Country Status (1)

Country Link
JP (1) JPS62229846A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297497A (en) * 1988-10-03 1990-04-10 Matsushita Electric Ind Co Ltd Production of cadmium sulfide thin film
JPH07307287A (en) * 1995-05-29 1995-11-21 Sharp Corp Compound semiconductor epitaxial growth method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720428A (en) * 1980-07-10 1982-02-02 Sanyo Electric Co Ltd Manufacture of mis type semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720428A (en) * 1980-07-10 1982-02-02 Sanyo Electric Co Ltd Manufacture of mis type semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297497A (en) * 1988-10-03 1990-04-10 Matsushita Electric Ind Co Ltd Production of cadmium sulfide thin film
JPH07307287A (en) * 1995-05-29 1995-11-21 Sharp Corp Compound semiconductor epitaxial growth method

Similar Documents

Publication Publication Date Title
US4619718A (en) Method of manufacturing a Group II-VI semiconductor device having a PN junction
JPH0350834B2 (en)
US4526632A (en) Method of fabricating a semiconductor pn junction
US4868615A (en) Semiconductor light emitting device using group I and group VII dopants
Kukimoto Conductivity control of ZnSe grown by MOVPE and its application for blue electroluminescence
Taguchi et al. Growth of high-purity ZnTe single crystals by the sublimation travelling heater method
Heinecke et al. Doping of GaAs in metalorganic MBE using gaseous sources
Panish et al. Photoluminescence and solution growth of gallium arsenide
Macksey et al. Crystal and luminescence properties of constant‐temperature liquid‐phase‐expitaxial In1− x Ga x P (x [inverted lazy s] 0.7) grown on (100) GaAs1− x P x (x [inverted lazy s] 0.4)
Chubenko et al. Optical properties of hydrothermally deposited Ni and Co doped nanostructured ZnO thin films as scintillating coatings for beta-particles detection
JPS62229846A (en) Manufacture of ii-vi compound semiconductor element
Asahi et al. Properties of Molecular Beam Epitaxial InxGa1-xAs (x≈ 0.53) Layers Grown on InP Substrates
Ritenour et al. Towards high-efficiency GaAs thin-film solar cells grown via close space vapor transport from a solid source
JPS60111482A (en) Method of producing light emitting diode
Richman Vapor phase growth and properties of aluminum phosphide
JPH04133367A (en) Manufacture of znse blue light-emitting element
JPH0647515B2 (en) Compound semiconductor epitaxial growth method
Butanovs et al. Preparation of functional Ga2S3 and Ga2Se3 shells around Ga2O3 nanowires via sulfurization or selenization
Amiri et al. Vapor–liquid–solid growth of highly stoichiometric gallium phosphide nanowires on silicon: restoration of chemical balance, congruent sublimation and maximization of band-edge emission
Amiri et al. Growth of InGaP alloy nanowires with widely tunable bandgaps on silicon substrates
Wang et al. Controllable growth of centimeter-size 2D perovskite heterostructural single crystals for highly narrow dual-band photodetectors
US3746943A (en) Semiconductor electronic device
Belouet Kinetics of vapour-phase epitaxial growth of GaAs1− xPx
Lloyd et al. Zinc Selenide Surface Passivation Layer for Single-Crystalline CZTSe Solar Cells
JPH0425238B2 (en)