JPS62228617A - Combustion accelerator for internal combustion engine - Google Patents

Combustion accelerator for internal combustion engine

Info

Publication number
JPS62228617A
JPS62228617A JP7234486A JP7234486A JPS62228617A JP S62228617 A JPS62228617 A JP S62228617A JP 7234486 A JP7234486 A JP 7234486A JP 7234486 A JP7234486 A JP 7234486A JP S62228617 A JPS62228617 A JP S62228617A
Authority
JP
Japan
Prior art keywords
ultraviolet light
combustion chamber
combustion
oxide
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7234486A
Other languages
Japanese (ja)
Inventor
Yuji Akagi
赤木 裕治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP7234486A priority Critical patent/JPS62228617A/en
Publication of JPS62228617A publication Critical patent/JPS62228617A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To aim at the promotion of low fuel consumption and higher output in an internal combustion engine, by installing an irradiating device irradiating ultraviolet light to a combustion chamber at the specified, and also an oxide injection device injecting an oxide into the combustion chamber. CONSTITUTION:An ultraviolet light generating device 8 generating ultraviolet light is set up in the upper part of a combustion chamber 3. There is provided with an irradiating device 21 which is designed so as to irradiate ultraviolet light of a specified wavelength of the ultraviolet light out of the ultraviolet light generating device 8 to the inside from the center of a combustion chamber 3. Also there is provided with an oxide injection device 22 which injects an oxide into the combustion chamber 3. The ultraviolet light is irradiated to the combustion chamber at the specified timing, and a large quantity of active seeds are generated out of the preinjected oxide, while a fuel molecule is excited into a high level, and a radical reaction of this fuel molecule is activated. Thus, the promotion of low fuel consumption and higher output in an internal combustion engine is attainable.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は内燃機関の燃焼促進装置に関し、特に燃焼室の
混合気の燃焼を化学面から改善するようにしたものに関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a combustion promotion device for an internal combustion engine, and particularly to one that improves the combustion of an air-fuel mixture in a combustion chamber from a chemical standpoint.

(従来の技術) 従来、内燃機関の低燃費化、高出力化を図る技術として
、希薄燃焼方式の導入、高圧縮比化または高過給化が知
られており、これらによる効果を上げるには、着火1ヱ
れを少なくして迅速着火をさせること、及び燃焼速度を
速くして急速燃焼をさぜることが必要である。
(Conventional technology) Introducing a lean burn system, increasing the compression ratio, or increasing supercharging have been known as techniques to improve fuel efficiency and increase output of internal combustion engines. It is necessary to reduce the ignition error to achieve rapid ignition, and to increase the combustion speed to achieve rapid combustion.

(発明が解決しようとする問題点) ところで、混合気の燃料成分の燃焼反応は、下記化学反
応式に示すように、燃料の主成分であるパラフィン系成
分とアロマチック系成分とが、OH工などのラジカルの
衝突によりラジカル化するラジカル化反応と、その後の
02の取り込みによ’OR+ CHO、!l:R2CH
20とに分解する分解反応とからなる前期反応と、さら
にこのR+CHOとR2CH20とを連鎖的に崩壊せし
める急速連墳分岐反応とにより構成されることが知られ
ている。
(Problems to be Solved by the Invention) Incidentally, in the combustion reaction of the fuel components of the air-fuel mixture, as shown in the chemical reaction formula below, the paraffinic components and aromatic components, which are the main components of the fuel, undergo an OH process. Due to the radicalization reaction in which radicals are converted into radicals by collision with radicals such as 'OR+ CHO,! l:R2CH
It is known that the initial reaction consists of a decomposition reaction in which R20 is decomposed into R2CH20, and a rapid continuous branching reaction in which this R+CHO and R2CH20 are further disintegrated in a chain reaction.

シ    ト そこで、従来の火花点火式内燃機関における着火時の燃
焼過程を燃焼反応として化学面から分析するに、放電時
の瞬間的なエネルギーにより点火プラグ近(角でト」十
などのイオンやOH2なとのラジカルが発生し、これら
が燃料分子に衝突して上)ホした前記反応さらには急速
連鎖分岐反応が引き起されることにより着火がなされる
ものである。
Therefore, when analyzing the combustion process during ignition in a conventional spark-ignition internal combustion engine from a chemical perspective as a combustion reaction, it is found that the instantaneous energy during discharge causes ions such as ions and OH2 near the spark plug. Ignition is achieved by the generation of radicals, which collide with fuel molecules, triggering the above-mentioned reaction (a) and a rapid chain branching reaction.

しかし、この場合、上記ラジカル化反応の前段階に着目
Jると、放電時に燃料分子に付与するLネルギーが熱エ
ネルギーである関係上、その−Lネルギーの多くが燃料
分子の並進連軸エネルギーを増大させることに費やされ
、ラジカル化反応に向けての燃料分子の励起に寄与する
エネルギーは僅かであるので、燃焼反応がいまひとつ活
発さに欠け、放電してから着火するまでに若干の時間d
れが伴うとどもに、燃焼速魔が遅いものになるという問
題がある。
However, in this case, if we focus on the pre-stage of the radicalization reaction mentioned above, since the L energy imparted to the fuel molecules during discharge is thermal energy, much of the -L energy absorbs the translational axis energy of the fuel molecules. Since the energy used to increase the amount of fuel and contribute to the excitation of fuel molecules for the radicalization reaction is small, the combustion reaction is not very active, and it takes some time from discharge to ignition.
Along with this, there is the problem that the combustion speed becomes slow.

そとで、迅!!!着火および急速燃焼を狙うべく、例え
ば、特開昭57−28872号公報には、内燃機関の発
火装置として、内燃′1lII′IOにHe−N0ガス
レーザvi瞠又はCOzガスシー1.1″装置を配設し
、該レーザ装置から燃焼室に波長500〜70oIII
11のレーザ光を照射して、レーザ光のもつ高密麿のエ
ネルギーによって燃焼室の混合気の燃焼反応を促進する
ようにしたものが知られている。
By the way, Jin! ! ! In order to achieve ignition and rapid combustion, for example, Japanese Patent Application Laid-Open No. 57-28872 discloses that a He-N0 gas laser vi or COz gas sea 1.1'' device is installed in the internal combustion '11II'IO as an ignition device for the internal combustion engine. A wavelength of 500 to 70oIII is transmitted from the laser device to the combustion chamber.
There is a known method in which the combustion reaction of the air-fuel mixture in the combustion chamber is promoted by irradiating a laser beam of No. 11 with high-density energy of the laser beam.

しかし、この提案のものは、確かに燃料分子に対してぬ
密度なエネルギーを付与することはできるが、ラジカル
の発生反応自体は火花点火の場合と同一であるので、ラ
ジカルの発生量は火花点火の場合と大差がない。しかも
、上記エネルギー付与のメカニズムは、混合気中の02
又は燃料分子に光子を吸収させて分子の@動又は回転エ
ネルギーを増大させ、これを熱エネルギーに変換すると
いうものであるから、上記火花点火と同様に燃料分子を
へレベルに励起することができず、迅速着火、急速燃焼
という目的を十分には達成できないものである。
However, although this proposal can certainly impart dense energy to fuel molecules, the radical generation reaction itself is the same as in the case of spark ignition, so the amount of radicals generated is less than that of spark ignition. There is no big difference from the case of . Moreover, the above energy imparting mechanism is based on the 02 in the mixture.
Alternatively, photons are absorbed by fuel molecules to increase the kinetic or rotational energy of the molecules, and this is converted into thermal energy, so fuel molecules can be excited to a level similar to the above-mentioned spark ignition. However, the objectives of rapid ignition and rapid combustion cannot be fully achieved.

本考案はかかる点に鑑みてなされたものであり、その目
的とするところは、燃焼室に酸化物を注入し、かつ燃焼
室に紫外光を照射することにより、上記酸化物を解離さ
せてラジカルと同様の作用をする活性種を多量に発生さ
せるとともに燃料分子を高レベルに励起し、燃焼室内の
多点に33いて燃料分子のラジカル化反応を一気に進行
させて迅速着火および急速燃焼を図ることにある。
The present invention was developed in view of the above, and its purpose is to inject oxides into the combustion chamber and irradiate the combustion chamber with ultraviolet light to dissociate the oxides and create radicals. Generates a large amount of active species that have the same effect as 33, excites fuel molecules to a high level, and advances the radicalization reaction of fuel molecules at multiple points in the combustion chamber at once to achieve rapid ignition and rapid combustion. It is in.

(問題点を解決するための手段) 、上記]」的を達成するため、本発明の解決手段は、紫
外光を発生させる紫外光発生手段と、該紫外光発生手段
で発生した紫外光を所定タイミングで燃焼室に照射する
照射手段と、燃焼室に酸化物を注入する酸化物注入手段
とを備える構成としたしのである。
(Means for Solving the Problem) In order to achieve the above object, the solution means of the present invention includes an ultraviolet light generating means for generating ultraviolet light, and a method for distributing the ultraviolet light generated by the ultraviolet light generating means in a predetermined manner. This configuration includes an irradiation means for irradiating the combustion chamber with timing, and an oxide injection means for injecting oxide into the combustion chamber.

(作用) 上記の構成により、本発明では、燃焼室に混合気が吸入
され、酸化物が注入されて紫外光が照り・1されると、
この紫外光に応じて酸化物から多量の活性種が発生する
。また、紫外光により燃料分tが高レベルに励起され、
燃料分子への上記活性種の衝突と相俟ってラジカル化反
応芯が活性化され、このことにより燃焼過程の前記反応
の進行が促進されて、燃焼室内の多点で一気に着火がな
され急速に燃焼が行われることになる。
(Function) With the above configuration, in the present invention, when the air-fuel mixture is sucked into the combustion chamber, the oxide is injected, and the ultraviolet light is illuminated.
A large amount of active species are generated from the oxide in response to this ultraviolet light. In addition, the ultraviolet light excites the fuel component t to a high level,
Together with the collision of the active species with the fuel molecules, the radicalization reaction core is activated, which accelerates the progress of the reaction in the combustion process, causing ignition to occur at multiple points in the combustion chamber at once, resulting in rapid combustion. Combustion will take place.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の実施例に係る燃焼促進装置を備えた内
燃機関を示す。同図において1はシリンダ、2は該シリ
ンダ1内に嵌挿されたピストン、3はシリンダ1の上方
に形成された半球型の燃焼室であって、該燃焼室3には
、この燃焼室3に吸気を供給する吸気ボート4と、上記
燃焼室3から排気を排出する排気ポート5とが間口し、
該吸気ポート4には吸気弁6が、排気ポート5には排気
弁7がそれぞれ配設されている。
FIG. 1 shows an internal combustion engine equipped with a combustion promotion device according to an embodiment of the present invention. In the figure, 1 is a cylinder, 2 is a piston inserted into the cylinder 1, and 3 is a hemispherical combustion chamber formed above the cylinder 1. An intake boat 4 for supplying intake air to the combustion chamber 3 and an exhaust port 5 for discharging exhaust gas from the combustion chamber 3 are connected to each other,
The intake port 4 is provided with an intake valve 6, and the exhaust port 5 is provided with an exhaust valve 7.

また、上記燃焼室3の上方には、紫外光を発生させる紫
外光発生手段8が配置されている。該紫外光発生手段8
は、光源用電源9に接続され該光源用電源9からの通電
時に紫外光をチ1/−ジするキセノンランプ又は重水素
ランプよりなる紫外光源ランプ10と、該紫外光源ラン
プ10に巻付き且つ発光用電源11に接続され該発光用
電源11からの通電時に紫外光源ランプ10にチャージ
された紫外光を放出せしめるトリがコイル12とを備え
ている。
Further, above the combustion chamber 3, an ultraviolet light generating means 8 for generating ultraviolet light is arranged. The ultraviolet light generating means 8
includes an ultraviolet light source lamp 10 made of a xenon lamp or a deuterium lamp that is connected to a light source power source 9 and emits ultraviolet light when energized from the light source power source 9; A coil 12 is provided, which is connected to a power source 11 for light emission and causes the ultraviolet light source lamp 10 to emit ultraviolet light when energized from the power source 11 for light emission.

さらに、上記紫外光発生手段8の燃焼室側には、燃焼室
3に向って順に、紫外光を収束させる凸レンズ13と、
紫外光の中から特定波長(例えば200RII11〜3
90mm>の紫外光を選択する選択波良用フィルタ14
と、紫外光をさらに収束さぜる凸レンズ15とが配置さ
れて示されており、また燃焼室3の中央には石英製の紫
外線透過窓16が上記凸レンズ15に対峙するように配
設されていて、紫外光発生手段8からの紫外光のうちの
特定波長の紫外光を燃焼室3の中央からその内部に照射
するようにした照射手段21が構成されている。
Further, on the combustion chamber side of the ultraviolet light generating means 8, a convex lens 13 that converges the ultraviolet light in order toward the combustion chamber 3;
A specific wavelength from ultraviolet light (e.g. 200RII11-3
Selective Hara filter 14 that selects ultraviolet light of >90 mm
A convex lens 15 that further converges the ultraviolet light is shown disposed, and an ultraviolet transmitting window 16 made of quartz is disposed in the center of the combustion chamber 3 so as to face the convex lens 15. An irradiation means 21 is configured to irradiate the interior of the combustion chamber 3 with ultraviolet light of a specific wavelength among the ultraviolet light from the ultraviolet light generation means 8 from the center of the combustion chamber 3.

また、上記排気ボー1へ5からは、排気を分流する分流
通路17が分岐され、該分流通路17はインジェクタ1
8を介して燃焼室3の土壁に間口している。上記分流通
路17の途中にはエアポンプ19の吐出ボートが接続さ
れており、排気ポート5から分流した排気にエアポンプ
19からのエアを混合し、排気中のNoをエアでもって
NO2に酸化してインジェクタ18から燃焼室3内に噴
射注入するようにしている。尚、Noの酸化は吸熱反応
であるから、シリンダ1の圧縮行程においてシリンダ内
に新気が混入することによってもN。
Further, from the exhaust bow 1 to 5, a branch passage 17 for branching the exhaust gas is branched, and the branch passage 17 is connected to the injector 1.
It opens into the earthen wall of the combustion chamber 3 through a pipe 8. A discharge boat of an air pump 19 is connected to the middle of the diversion passage 17, and the air from the air pump 19 is mixed with the exhaust air diverted from the exhaust port 5, and NO in the exhaust air is oxidized to NO2. The fuel is injected into the combustion chamber 3 from the injector 18. In addition, since the oxidation of No is an endothermic reaction, N also oxidizes when fresh air enters the cylinder during the compression stroke of the cylinder 1.

2が生成される。2 is generated.

そして、上記光源用ffl源9、発光用電源11および
インジェクタ18は、エンジン回転数信号、ブースト圧
力信号及びクランク角度信号が入力されたエレキコント
ロールユニット20によって制罪される。
The light source FFL source 9, the light emitting power source 11, and the injector 18 are controlled by the electric control unit 20 to which the engine speed signal, boost pressure signal, and crank angle signal are input.

次に、上記エレキコントロールユニット20の作動につ
いて説明するに、エンジン回転数及びブースト圧力の各
信号がエレキコントロールユニット20に入力されると
、エンジン回転数及び負荷に応じた発火時期及びこれに
応じた紫外光の照射時期が決定され、光源用電源9及び
発光用電源11への信号が出力されて、燃焼室3に紫外
光が照射されるとともに、インジェクタ18へのイか号
も出力される。この照射の手順は、第2図に示ケように
、光源用電源9に、紫外光の照射時期よりも所定明間館
から定格電圧よりも低い電圧で通電して寓外光源ランプ
10に紫外光をチャージし始め、上記照射時期になると
、発光用電源11に通電して紫外光源ランプ10から紫
外光を放出せしめるとともに光源用電源9への供給電圧
を定格電圧まで上げて所定期間(例えば50μsec 
>通電するものである。また、インジェクタ18への信
号の入力は、第2図に示すように、上記発火時1月の直
前から上記光源用電源9への電圧の印加が18終了する
までの所定期間になされる。
Next, to explain the operation of the electric control unit 20, when each signal of engine rotation speed and boost pressure is input to the electric control unit 20, the ignition timing and the ignition timing according to the engine rotation speed and load are determined. The irradiation timing of the ultraviolet light is determined, signals are output to the light source power source 9 and the light emitting power source 11, the combustion chamber 3 is irradiated with the ultraviolet light, and a signal is also output to the injector 18. The procedure for this irradiation is as shown in FIG. When the light starts to be charged and the irradiation time comes, the light emitting power source 11 is energized to cause the ultraviolet light source lamp 10 to emit ultraviolet light, and the voltage supplied to the light source power source 9 is increased to the rated voltage for a predetermined period (for example, 50 μsec).
>It is energized. Further, as shown in FIG. 2, signals are input to the injector 18 during a predetermined period from just before the firing time until January 18 when the voltage application to the light source power supply 9 ends.

以上の構成により、上記紫外光発生手段8で発生した紫
外光を燃焼室3に照射する照射手段21による紫外光の
照射とタイミングをとって燃焼室3に酸化物を注入する
酸化物注入手段22が構成されている。
With the above configuration, the oxide injection means 22 injects oxide into the combustion chamber 3 in timing with the irradiation of ultraviolet light by the irradiation means 21 which irradiates the combustion chamber 3 with the ultraviolet light generated by the ultraviolet light generation means 8. is configured.

そして、インジェクタ18が作a−すると、該インジェ
クタ18から燃焼室3内にN 02が吸入され、このN
 O2が、紫外光を受註ブで次式に示す解離反窓を起こ
し、非常に反応性に富む活性種である○(’ P2 )
が生じて燃焼室3内に分散する。
Then, when the injector 18 is activated, N02 is sucked into the combustion chamber 3 from the injector 18, and this N
When exposed to ultraviolet light, O2 causes the dissociation anti-window shown in the following formula, and is a highly reactive active species ○(' P2 )
is generated and dispersed within the combustion chamber 3.

NO2(X2A+ > −NO(X’ π)十〇 (’ F’2 )一方、燃焼
室3内の燃料分子は、紫外光が照射されると、アロマチ
ック系成分では、紫外光の有するエネルギーによって電
子の配置転換が起って、熱や赤外線の分子回転あるいは
分子撮動による場合よりも高レベルの励起が10“15
 SeOのオーダーという短時間のうちになされる。ま
た、燃料分子のうちオレフィン系成分もアロマチック系
成分と同様に励起され(R+ CH= CHR2→R+
CH=CR2)、一方バラフイン系成分は紫外光に対し
て全く透明であり、励起は生じない。
NO2(X2A+ >-NO(X'π) 〇 ('F'2) On the other hand, when the fuel molecules in the combustion chamber 3 are irradiated with ultraviolet light, the aromatic components are Electron rearrangement occurs, resulting in a higher level of excitation than that caused by thermal or infrared molecular rotation or molecular imaging.
This is accomplished in a short period of time on the order of SeO. In addition, the olefinic components of the fuel molecules are also excited in the same way as the aromatic components (R+ CH= CHR2→R+
CH=CR2), whereas the varaffinic component is completely transparent to ultraviolet light and no excitation occurs.

このように、反応性に富む多量の活性種が、燃11分子
が高レベルに励起されたアロマチック系成分とオレフィ
ン系成分の燃料分子に衝突することによってこれらの成
分のラジカル化反応が活性化され、燃焼過程のna記反
応の進行が促進されて着火、燃焼が行われる。
In this way, a large amount of highly reactive active species collide with fuel molecules of aromatic components and olefinic components in which the fuel molecules are excited to a high level, thereby activating the radicalization reaction of these components. This accelerates the progress of the reactions in the combustion process, resulting in ignition and combustion.

したがって、上記実施例においては、燃焼Y33内に分
散した多聞の活性種0(3P、lが肴大核となって燃焼
室3内の多点で一気に着火がなされ、迅速着火を行う口
とができるとともに、燃料分子の励起活性化により燃焼
速度が速くなって急速燃焼を行うことができる。よって
、希薄燃焼方式、高圧縮比化または高過給化等における
内燃機関の燃焼性を向上でき、低燃費化、高出力化を実
現することができる。
Therefore, in the above embodiment, a large number of active species 0 (3P, 1) dispersed in the combustion chamber 33 become the nuke and are ignited at multiple points in the combustion chamber 3 at once, resulting in rapid ignition. At the same time, the excitation and activation of fuel molecules increases the combustion speed and enables rapid combustion.Therefore, the combustibility of internal combustion engines can be improved in lean burn systems, high compression ratios, high supercharging, etc. It is possible to achieve lower fuel consumption and higher output.

また、解離反応に供したN O2の解離エネルギー(約
73 、2 kcal、/mal )は、Co、Co、
! 。
In addition, the dissociation energy (about 73,2 kcal,/mal) of N O2 subjected to the dissociation reaction is
! .

No、02などの解離エネルギー(約100 kcal
/mat以上)よりも小さいので、真空紫外の波長域よ
りも高い200〜390IRI11の波長域の紫外光で
十分に解離反応を起こすことができ、実用的−Cある。
Dissociation energy of No., 02, etc. (approximately 100 kcal
/mat or more), the dissociation reaction can be sufficiently caused by ultraviolet light in the wavelength range of 200 to 390 IRI11, which is higher than the wavelength range of vacuum ultraviolet light, making it practical -C.

尚、上記実施例では、紫外線透過窓16の材質として、
石英の他にフッ化すチウム、フッ化カルシウム、塩化ナ
トリウム、塩化カリウム又は臭化カリウム等を使用して
もよい。
In the above embodiment, the material of the ultraviolet transmitting window 16 is as follows:
In addition to quartz, lithium fluoride, calcium fluoride, sodium chloride, potassium chloride, potassium bromide, etc. may be used.

(発明の効果) 1ス上説明したように、本発明の内燃機関の燃焼促進装
置によれば、紫外光を所定タイミングで燃焼室に照射し
、予め注入された酸化物から多量の活性種を発生させる
とともに燃料分子をへレベルに励起して、燃料分子のラ
ジカル反応を活性化するようにしたので、燃焼室内の多
点T′着火がなされ迅速着火、急速燃焼ができ、よって
希薄燃焼方式、高圧縮比化または高過給化等による内燃
機関の低燃費化、高出力化という効果を有効に1りるこ
とができるものである。
(Effects of the Invention) As explained above, according to the combustion promotion device for an internal combustion engine of the present invention, ultraviolet light is irradiated into the combustion chamber at a predetermined timing, and a large amount of active species is extracted from the oxides injected in advance. At the same time, the fuel molecules are excited to a level of 0 to activate the radical reaction of the fuel molecules, so multi-point T' ignition is achieved in the combustion chamber, allowing rapid ignition and rapid combustion. This can effectively reduce the effects of lower fuel consumption and higher output of the internal combustion engine due to higher compression ratios or higher supercharging.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す全体概略構成図、第2図
は紫外光の照射タイミングを示す説明図である。 3・・・燃焼室、8・・・紫外光発生手段、21・・・
照射手段、22・・・酸化物注入手段。
FIG. 1 is an overall schematic configuration diagram showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the irradiation timing of ultraviolet light. 3... Combustion chamber, 8... Ultraviolet light generating means, 21...
Irradiation means, 22... Oxide injection means.

Claims (1)

【特許請求の範囲】[Claims] (1)紫外光を発生させる紫外光発生手段と、該紫外光
発生手段に発生した紫外光を所定タイミングで燃焼室に
照射する照射手段と、燃焼室に酸化物を注入する酸化物
注入手段とを備えたことを特徴とする内燃機関の燃焼促
進装置。
(1) An ultraviolet light generating means for generating ultraviolet light, an irradiation means for irradiating the combustion chamber with the ultraviolet light generated by the ultraviolet light generating means at a predetermined timing, and an oxide injection means for injecting oxide into the combustion chamber. A combustion accelerating device for an internal combustion engine, characterized by comprising:
JP7234486A 1986-03-29 1986-03-29 Combustion accelerator for internal combustion engine Pending JPS62228617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7234486A JPS62228617A (en) 1986-03-29 1986-03-29 Combustion accelerator for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7234486A JPS62228617A (en) 1986-03-29 1986-03-29 Combustion accelerator for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS62228617A true JPS62228617A (en) 1987-10-07

Family

ID=13486590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7234486A Pending JPS62228617A (en) 1986-03-29 1986-03-29 Combustion accelerator for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS62228617A (en)

Similar Documents

Publication Publication Date Title
CA1188169A (en) Method and means for stimulating combustion especially of lean mixtures in internal combustion engines
JP5467219B2 (en) Internal combustion engine
CN1898468B (en) Method for igniting combustion of fuel in a combustion chamber of an engine, associated device and engine
CN104081021B (en) Fuel reaction layering in rotating Diesel engine
US5178119A (en) Combustion process and fuel supply system for engines
JPH10131764A (en) Taking-in control method for direct injection four cylinder engine
ES2127542T3 (en) METHOD TO INCREASE THE EFFICIENCY OF A CATALYST IN A DIESEL ENGINE.
CN1262033C (en) Fuel cell drive system
JP2006503223A (en) HCCI engine
US5829419A (en) Ionization combustion energizer
US20070037104A1 (en) Method and apparatus for reducing combustion residues in exhaust gases
US4161927A (en) Fuel injection for divided auxiliary chamber of engine
JPS62228617A (en) Combustion accelerator for internal combustion engine
RU2496997C2 (en) Ice and method of its operation
CN117231357A (en) In-cylinder direct injection ammonia-hydrogen internal combustion engine and control method thereof
JP3342200B2 (en) Exhaust gas purification device for internal combustion engine
US20200325862A1 (en) Reducing fuel consumption of spark ignition engines
JPH10196508A (en) Internal combustion engine and start of combustion control method
RU2496995C2 (en) Compression ignition ice and method of its operation
JPS62223411A (en) Combustion promoting equipment of internal combustion engine
JPH07217502A (en) High combustion efficiency method for diesel engine
JPH10196471A (en) Internal combustion engine
CN106050485A (en) Plasma system of natural gas engine
JPS62223412A (en) Combustion promoting equipment of internal combustion engine
JPS62206272A (en) Combustion accelerating device for internal combustion engine