JPS62228475A - Formation of deposited film - Google Patents

Formation of deposited film

Info

Publication number
JPS62228475A
JPS62228475A JP61073097A JP7309786A JPS62228475A JP S62228475 A JPS62228475 A JP S62228475A JP 61073097 A JP61073097 A JP 61073097A JP 7309786 A JP7309786 A JP 7309786A JP S62228475 A JPS62228475 A JP S62228475A
Authority
JP
Japan
Prior art keywords
deposited film
gaseous
film forming
forming method
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61073097A
Other languages
Japanese (ja)
Other versions
JPH0647736B2 (en
Inventor
Yasushi Fujioka
靖 藤岡
Takashi Arai
新井 孝至
Minoru Kato
実 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61073097A priority Critical patent/JPH0647736B2/en
Publication of JPS62228475A publication Critical patent/JPS62228475A/en
Publication of JPH0647736B2 publication Critical patent/JPH0647736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To form a deposited film having uniform characteristics with conserved energy by subjecting a gaseous raw material and gaseous halogen oxidizing agent to a reaction retarding treatment, introducing the two materials into a reaction chamber and applying heat energy thereto from a substrate to hold the materials in excited state. CONSTITUTION:After the gaseous raw material such as SiH4 in a cylinder 101 is passed through a cooling tank 125, etc., the material is supplied by an introducing pipe 109 into a vacuum chamber 120. The gaseous halogen oxidizing agent such as gaseous F2 diluted with He in a cylinder 104 is passed through a cooling tank 126, etc., and is then supplied by an introducing pipe 110 into the vacuum chamber 120. The two raw materials are cooled to the extent of avoiding the condensation so that the reaction hardly progresses by the mere contact. The heat energy is applied from the substrate 18 heated in the reaction space to the two materials to cause the contact reaction, by which the precursors in the excited state are formed. The deposited film is formed on the substrate 118 from such precursors as a supply source. The control of the film quality is made easy by the above-mentioned method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は1機能性膜、殊に半導体デバイス、電子写真用
の感光デバイス、光学的画像入力装百用の先入力センザ
ーデバイス等の電子デバイスの用途1こ有用な機能性堆
積n9の形成法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is applicable to monofunctional films, especially electronic devices such as semiconductor devices, photosensitive devices for electrophotography, pre-input sensor devices for optical image input devices, etc. Device Application 1 This relates to a method of forming a useful functional deposit n9.

〔従来の技術〕[Conventional technology]

従来、半導体膜、絶縁膜、先導’to+2、磁性膜或い
は金&S膜等の非晶質乃至多結晶質の機能性膜は、所望
される物理的特性や用途等の観点から個々に適した成膜
方法が採用されている。
Conventionally, amorphous or polycrystalline functional films such as semiconductor films, insulating films, leading 'to+2' films, magnetic films, or gold & S films have been formed to suit each individual from the viewpoint of desired physical properties and applications. A membrane method is used.

堆積膜の形成には、真空蒸着法、プラズマCVD法、熱
CVD法、光CVD?に、反応性スパッタリング法、イ
オンブレーティング法などが試みられており、一般には
、プラズマCVD法が広く用いられ、企業化されている
Vacuum evaporation method, plasma CVD method, thermal CVD method, optical CVD method can be used to form the deposited film. In addition, reactive sputtering methods, ion blating methods, and the like have been attempted, and in general, plasma CVD methods are widely used and commercialized.

面乍ら、これ等堆積膜形成法によって得られる堆積膜は
より高度の機能が求められる電子デバイスや光電子デバ
イスへの適用が求められていることから電気的、光学的
特性及び、縁返し使用での疲労特性ある【パは使用環境
46シ性、更には均一・性、再現性を含めて生産性、量
産性の点において更に総合的な特性の向上を図る余地が
ある。
However, since the deposited films obtained by these deposited film formation methods are required to be applied to electronic devices and optoelectronic devices that require higher functionality, their electrical and optical properties and their ability to be used for edge reversing are important. There is room for further improvement in overall characteristics in terms of productivity and mass production, including fatigue characteristics, usage environment 46, uniformity, consistency, and reproducibility.

従来から一般化されているプラズマCVD法による堆積
■りの形成においての反応プロセスは、従来のrl’i
謂、熱CVD法に比較してかなり複雑であり、その反I
8機構も不明な点が少なくなか、った。又、その堆積膜
の形成パラメーターも多く(例えば、基体温度、導入ガ
スの流量と1t、形成時の圧力、高周波電力、電極構造
2反応容器の構造、排気速度、プラズマ発生方式など)
、これらの多くのパラメータの組み合せによるため1時
にはプラズマが不安定な状態になり、形成された堆積I
laに著しい悪影響を与えることが少なくなかった。そ
のうえ、装置特有のパラメーターを装置ごと選定しなけ
ればならず、したがって製造条件を−・膜化することが
むずかしいというのが実状であった。
The reaction process in forming a deposit by the conventional plasma CVD method is similar to the conventional rl'i
It is considerably more complicated than the so-called thermal CVD method, and its opposite
There were also many unclear points about the 8th mechanism. In addition, there are many formation parameters for the deposited film (for example, substrate temperature, flow rate and 1 t of introduced gas, pressure during formation, high frequency power, structure of the electrode structure 2 reaction vessel, pumping speed, plasma generation method, etc.)
, due to the combination of these many parameters, the plasma becomes unstable at one time, and the formed deposit I
It often had a significant negative effect on la. Moreover, parameters unique to each device must be selected for each device, making it difficult to adapt the manufacturing conditions to a single film.

その中でも、例えば電気的、光学的特性が各用途を十分
に満足させス11るものを発現させることが出来るとい
う点で、アモルファスシリコンIt)の場合には現状で
はプラズマCVD法によって形成することが最良とされ
ている。
Among them, for example, amorphous silicon (It) can be formed by plasma CVD at present because it has electrical and optical properties that fully satisfy various uses. considered to be the best.

面乍ら、堆積膜の応用用途によっては、大面積化、膜厚
の均一性、膜品質の均一性を十分に満足させて、再現性
のある量産化を図らねばならないため、プラズマCVD
法による堆積膜の形1表においては、量産装置に多大な
設備投資が必要となり、またその着席の為の管理項目も
複雑になり、管理許容幅も狭くなり、装置の調整も微妙
であることから、これらのことが、今後改善すべき問題
点として指摘されている。
However, depending on the application of the deposited film, it is necessary to fully satisfy the requirements of large area, uniformity of film thickness, and uniformity of film quality, and mass production with reproducibility.
The shape of the film deposited by the method shown in Table 1 requires a large amount of equipment investment for mass production equipment, the control items for the production are complicated, the control tolerance is narrow, and the adjustment of the equipment is delicate. These issues have been pointed out as issues that should be improved in the future.

更に、プラズマCVDではプラズマが放電空間に広く広
がって生成する為に、反応装置内の基体以外の場所にも
不要な膜又は粉体状の生成物を形成し7てしまい装置内
を汚染する。このため高品質の堆積膜を得るためには頻
繁に装置内をクリーニングする必要があり、生産性を下
げる要因となっている。
Furthermore, in plasma CVD, since plasma is generated widely in the discharge space, unnecessary films or powdery products are formed in areas other than the substrate in the reactor, contaminating the inside of the reactor. Therefore, in order to obtain a high-quality deposited film, it is necessary to frequently clean the inside of the apparatus, which is a factor that reduces productivity.

他方、通常のCVD法による従来の技術では、高温を必
要とすると共に、企業的なレベルでは必ずしも満足する
様な特性を有する堆積膜がイ)られていなかった。
On the other hand, the conventional technique using the normal CVD method requires high temperatures and has not been able to produce a deposited film having characteristics that are necessarily satisfactory at a commercial level.

また、光CVD法は、反応領域を光照射領域に限定でき
るという点で有利ではあるが、光源にそれ程多くの種類
がないこと、光源の波長も紫外に片寄っていること、工
業化する場合には大型の光源とその電源を要すること、
光源からの光を成膜空間に導入する窓が成膜時に被膜さ
れて仕舞う為に成膜中に光量の低下、強いては、光源か
らの光が成膜空間に入射されなくなるという問題点があ
る。
Furthermore, although the photoCVD method is advantageous in that the reaction area can be limited to the light irradiation area, there are not so many types of light sources, and the wavelength of the light source is biased towards the ultraviolet. Requires a large light source and its power source;
Since the window that introduces the light from the light source into the deposition space is covered with a film during deposition, there is a problem that the amount of light decreases during deposition, and in the end, the light from the light source no longer enters the deposition space. .

上述の如く、機能性膜の形成において、その実用可能な
特性の確保と、均一性を維持させながら低コストな装置
で生産性良く量産化できる堆積膜の形成方法を開発する
ことが切望されている。
As mentioned above, in the formation of functional films, there is a strong desire to develop a method for forming deposited films that can be mass-produced with high productivity using low-cost equipment while ensuring practical properties and maintaining uniformity. There is.

〔目的〕〔the purpose〕

本発明の目的は、上述した堆積膜形成法の欠点を除去す
ると同時に、従来の形成方法によらない新規な堆積膜形
成法を提供するものである。
An object of the present invention is to eliminate the drawbacks of the above-mentioned method for forming a deposited film, and at the same time to provide a new method for forming a deposited film that does not rely on conventional methods.

本発明の他の目的は、省エネルギー化を計ると同時に膜
品質の管理が容易で大面積に亘って均一特性の堆積膜が
得られる堆積膜形成法を提供するものである。
Another object of the present invention is to provide a method for forming a deposited film that saves energy, allows easy control of film quality, and provides a deposited film with uniform characteristics over a large area.

本発明の更に別の目的は、生産性、量産性に優れ、高品
質で電気的、光学的、半導体的等の物理的特性に優れた
膜が製造装置のクリーニングを頻繁に行うことなく得ら
れる堆積膜形成法を提供することでもある。
Still another object of the present invention is to obtain a film with excellent productivity, mass production, high quality, and excellent physical properties such as electrical, optical, semiconductor, etc. without frequent cleaning of manufacturing equipment. Another object of the present invention is to provide a method for forming a deposited film.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成する本発明の堆積膜形成法は、堆積膜形
成用の気体状原料物質と、該原料物質に酸化作用をする
性質を有する気体状ハロゲン系酸化剤と、を少なくとも
その一方に単に気体同士が接触しただけでは反応がほと
んど進行しないような反応の進行を抑制する処理を行っ
た後1反応空間内に導入して接触させ、加熱した基体か
ら熱エネルギーを与えることで基体近傍において反応を
進行させ、励起状態の前駆体を化学的に生成し、該前駆
体を堆積膜構成要素の供給源として成膜空間内にあるノ
、(体上に堆積膜を形成することを特徴とする。
The method for forming a deposited film of the present invention which achieves the above object simply uses a gaseous raw material for forming a deposited film and a gaseous halogen-based oxidizing agent having a property of oxidizing the raw material into at least one of them. After performing a treatment to suppress the progress of the reaction, in which the reaction hardly progresses when the gases just come into contact with each other, they are introduced into the reaction space and brought into contact, and by applying thermal energy from the heated substrate, a reaction occurs near the substrate. to chemically generate a precursor in an excited state, and use the precursor as a source of the deposited film components in the deposition space. .

〔作用〕[Effect]

に記の未発明の堆積膜形成法によれば、省エネルギー化
と同時に大面積化、膜厚均一性、膜品質の均一性を十分
満足させて管理の簡素化と量産化を図り、量産装置に多
大な設備投資も必要とせず、またその殖産の為の管理項
目も明確になり、管理許容幅も広く、装置の調整も簡単
になる。
According to the uninvented deposited film forming method described in , it is possible to save energy, increase the surface area, and achieve uniformity in film thickness and quality, simplifying management and mass production, and making it suitable for mass production equipment. It does not require a large investment in equipment, the management items for its propagation become clear, the management tolerance is wide, and the adjustment of the equipment becomes easy.

更に本発明の堆積膜形成法によれば1反応装置内の汚染
を防止でき、原料ガスが有効に使われる為量産時の膜品
質の維持と生産性の向上が可能になる。
Furthermore, according to the deposited film forming method of the present invention, contamination within one reaction device can be prevented and raw material gases can be used effectively, making it possible to maintain film quality and improve productivity during mass production.

〔本発明の詳細な説明〕[Detailed description of the invention]

本発明の堆積膜形成法に於て、使用される堆積■り形成
用の気体状原料物質は、気体状/\ロゲン系酸化剤との
接触により酸化作用をうけるものであり、目的とする堆
積膜の種類、特性。
In the deposited film forming method of the present invention, the gaseous raw material used for forming the deposit is oxidized by contact with the gaseous/\rogen-based oxidizing agent, and the desired deposition Types and characteristics of membranes.

用途等によって所望に従って適宜選択される。It is appropriately selected depending on the purpose and the like.

本発明に於ては、上記の気体状原料物質及び気体状ハロ
ゲン系酸化剤は、反応空間内に導入されて接触をする際
に気体状とされるものであればよく、通常の場合は、気
体でも液体でも固体であっても差支えない。堆積膜形成
用の原料物質あるいはハロゲン系酸化剤が液体又は固体
である場合には、Ar 、He 、N2 、H2等のキ
ャリアーガスを使用し、必要に応じて熱も加えながら/
へブリングを行なって反応空間に堆積膜形成用の原料物
質及びハロゲン系酸化剤を気体状として導入する。
In the present invention, the above-mentioned gaseous raw material and gaseous halogen-based oxidizing agent may be anything that is made into a gaseous state when introduced into the reaction space and brought into contact. It can be a gas, liquid, or solid. When the raw material for forming the deposited film or the halogen-based oxidizing agent is liquid or solid, use a carrier gas such as Ar, He, N2, H2, etc., and add heat if necessary.
Hebringing is performed to introduce a raw material for forming a deposited film and a halogen-based oxidizing agent into the reaction space in gaseous form.

この際、上記気体状原料物質及び気体状ハロゲン系酸化
剤の分圧及び混合比は、キャリアーガスの流量あるいは
堆積膜形成用の原料物質及び気体状ハロゲン系酸化剤の
蒸気圧を調節することにより設定される。
At this time, the partial pressure and mixing ratio of the gaseous raw material and the gaseous halogen-based oxidizing agent can be adjusted by adjusting the flow rate of the carrier gas or the vapor pressure of the raw material for forming the deposited film and the gaseous halogen-based oxidizing agent. Set.

本発明に於て使用される堆積膜形成用の原料物質として
は、例えば、半導体性或いは電気的絶縁性のシリコン堆
積膜やゲルマニウム堆積膜等のテトラヘドラル系の堆積
膜を得るのであれば、直鎖状、及び分岐状の鎖状シラン
化合物。
As the raw material for forming the deposited film used in the present invention, for example, if a tetrahedral deposited film such as a semiconducting or electrically insulating silicon deposited film or germanium deposited film is to be obtained, a linear deposited film may be used. linear and branched chain silane compounds.

エマ状シラン化合物、鎖状ゲルマニウム化合物等が有効
なものとして挙げることが出来る。
Effective examples include emulsion silane compounds and chain germanium compounds.

具体的には、直鎖状シラン化合物としてはSinH2n
+2 (n=1.2.3,4,5゜6.7.8)、分岐
状鎖状シラン化合物としては、5iH3SiH(SiH
3)SiH2SiH3,環状シラン化合物としてはS 
i nH2n(n=3.4,5.6)、鎖状ゲルマン化
合物としては、GemH2m+ (m=1.2.3 。
Specifically, the linear silane compound is SinH2n.
+2 (n=1.2.3,4,5゜6.7.8), as a branched chain silane compound, 5iH3SiH (SiH
3) SiH2SiH3, S as a cyclic silane compound
i nH2n (n=3.4, 5.6), and as a chain germane compound, GemH2m+ (m=1.2.3).

4.5)等が挙げられる。この他、例えばスズの堆積膜
を作成するのであればSnH4等の水素化スズを有効な
原料物質として挙げることが出来る。
4.5) etc. In addition, for example, if a deposited film of tin is to be created, tin hydride such as SnH4 can be used as an effective raw material.

勿論、これ等の原料物質は1種のみならず2挿置ト混合
しても使用できる。
Of course, these raw materials can be used not only alone but also as a mixture of two.

本発明に於いて使用されるハロゲン系酸化剤は、反応空
間内に導入される際気体状とされ、同時に反応空間内に
導入される堆積膜形成用の気体状原料物質に接触するガ
けで酸化作用をする性質を有するもので、F2.CfL
2.Br2 。
The halogen-based oxidizing agent used in the present invention is made into a gaseous state when introduced into the reaction space, and at the same time, the halogen-based oxidizing agent is used as a gas in contact with the gaseous raw material for forming a deposited film that is introduced into the reaction space. F2. CfL
2. Br2.

I2等のハロゲンガスが有効なものとして挙げることが
出来る。
Halogen gas such as I2 can be cited as an effective gas.

気体状原料物質と気体状ハロゲン系酸化剤との反応の進
行を抑制する処理としては、気体状原料物質や気体状ハ
ロゲン系酸化剤の冷却や反応時に反応に寄与する成分の
分圧を下げるための不活性ガスの混合などが有効である
Treatments to suppress the progress of the reaction between the gaseous raw material and the gaseous halogen oxidant include cooling the gaseous raw material and the gaseous halogen oxidant and lowering the partial pressure of the components that contribute to the reaction during the reaction. A mixture of inert gases is effective.

気体状原料物質や気体状ハロゲン酸化剤を冷却する場合
、その冷却温度は反応空間内に導入されて接触する際に
気体状であるように、その気圧における沸点迄の温度範
囲内で、ガス同士が接触しただけではほとんど反応が進
行しない程度に近く、かつ基体の温度で反応が効果的に
進む様な温度範囲に設定される。冷却方法としては、液
体窒素等の冷却剤の入った冷却槽に気体状原料物質や気
体状ハロゲン系酸化剤を反応空間に導くガス管を通して
冷却する方法や気体状原料物質や気体状ハロゲン系酸化
剤を細孔から減圧にした反応空間に吹き出させて断熱膨
張をさせることでジュール番トムソン効果によって冷却
する方法等がある。
When cooling a gaseous raw material or a gaseous halogen oxidizing agent, the cooling temperature is such that the gases are in a gaseous state when they are introduced into the reaction space and come into contact with each other within the temperature range up to the boiling point at the atmospheric pressure. The temperature range is set so that the reaction will hardly proceed even if the substrate is in contact with the substrate, and the reaction will proceed effectively at the temperature of the substrate. Cooling methods include cooling gaseous raw materials and gaseous halogen-based oxidants through gas pipes that lead them to the reaction space in a cooling tank containing a coolant such as liquid nitrogen; There is a method of cooling by the Joule-Thompson effect by blowing the agent out from the pores into a reaction space under reduced pressure and causing adiabatic expansion.

一方、気体状原料物質や気体状ハロゲン系酸化剤に不活
性カスを混合して反応時の反応に寄与する成分の分圧を
下げる場合、不活性ガスの混合量はガス同士が接触した
だけではほとんど反応が進行しない程度に多く、かつ基
体の温度で反応が効果的に進む様な範囲に設定される。
On the other hand, when mixing inert gas with a gaseous raw material or a gaseous halogen-based oxidizing agent to lower the partial pressure of components contributing to the reaction during the reaction, the amount of inert gas to be mixed must be The amount is set to such an extent that almost no reaction proceeds, and the range is such that the reaction proceeds effectively at the temperature of the substrate.

この時、反応室内の圧力を一定範囲内に保ちながら反応
に寄与する成分の分圧を下げるため混合する不活性ガス
の量に応じて排気能力を挙げることは言うまでもない。
At this time, it goes without saying that the exhaust capacity is increased depending on the amount of inert gas mixed in order to lower the partial pressure of components contributing to the reaction while maintaining the pressure within the reaction chamber within a certain range.

これ等の反応の進行を抑制する処理を施された気体状原
料物質と気体状ハロゲン酸化物は、所望の流量と供給圧
を与えられて反応空間内に導入されて混合衝突する番で
接触をして酸化反応を行うが、少なくともその一方に反
応を抑制する処理が行われているためこの時点ではほと
んど反応は進まない、この状態で混合ガスは基体まで運
ばれて、加熱された基板がら熱エネルギーを与えられ、
基体近傍で反応が進み化学的に励起状態の前駆体を含む
複数種の前駆体を効率的に生成する。生成される励起状
態の前駆体及び他の前駆体は、少なくともそのいずれが
1つが形成される堆積膜の構成要素の供給源としてず動
く。生成される前駆体は分解して又は反応して別の励起
状態の前駆体又は別の励起状態にある前駆体になって、
或いは必要に応じてエネルギーを放出はするがそのまま
の形態で基体表面に触れることで基体表面温度が比較的
低い場合には三次元ネットワーク構造の堆積膜が基体表
面温度が高い場合には結晶質の堆積膜が作成される。
The gaseous raw material and the gaseous halogen oxide, which have been treated to suppress the progress of these reactions, are introduced into the reaction space with the desired flow rate and supply pressure, and come into contact during mixing and collision. The oxidation reaction takes place, but at least one side is treated to suppress the reaction, so the reaction hardly progresses at this point.In this state, the mixed gas is carried to the substrate, and the heated substrate is heated. energized,
The reaction progresses near the substrate, efficiently producing multiple types of precursors including precursors in chemically excited states. The excited state precursors and other precursors that are generated serve as a source of components of the deposited film of which at least one is formed. The precursor produced decomposes or reacts to become a precursor in another excited state or a precursor in another excited state,
Alternatively, energy is released as needed, but by touching the substrate surface in its original form, the deposited film has a three-dimensional network structure when the substrate surface temperature is relatively low, whereas it forms a crystalline deposited film when the substrate surface temperature is high. A deposited film is created.

木発°明に於いては、堆積膜形成プロセスが円滑に進行
し、高品質で所望の物理特性を有する膜が形成される可
く、成膜因子としての、原料物質及びハロゲン系酸化剤
の種類と組み合せ、これ等の混合比、反応を抑制する処
理の程度、混合時の圧力、流量、成膜空間内圧、ガスの
瀉型、成膜温度(基体温度及び雰囲気温度)が所望に応
じて適宜選択される。これ等の成膜因子は有機的に関連
し、単独で決定されるものではなく相互関連の下に夫々
に応じて決定される。
In the wood invention, the deposition film formation process proceeds smoothly and a film with high quality and desired physical properties can be formed, and the use of raw materials and halogen-based oxidants as film-forming factors is important. The type and combination, the mixing ratio of these, the degree of treatment to suppress the reaction, the pressure during mixing, the flow rate, the internal pressure of the film forming space, the type of gas, and the film forming temperature (substrate temperature and ambient temperature) are determined as desired. Selected appropriately. These film-forming factors are organically related and are not determined independently, but are determined depending on each other in relation to each other.

本発明に於て、反応空間に導入される堆積膜形成用の気
体状原料物質と気体状ハロゲン系酸化剤との量の割合は
、上記成膜因子の中、関連する成膜因子との関係に於て
適宜所望に従って決められるが、導入流量比で、好まし
くは、1/20〜100/lが適当であり、とり好まし
くは115〜50/1とされるのが望ましい。
In the present invention, the ratio of the amounts of the gaseous raw material for forming a deposited film and the gaseous halogen-based oxidizing agent introduced into the reaction space is determined based on the relationship with the relevant film formation factors among the above film formation factors. The ratio of the introduced flow rate is preferably 1/20 to 100/l, and more preferably 115 to 50/1, although it can be determined as desired.

成膜空間内の圧力、即ち、その表面に成膜される基体が
配設されている空間内の圧力は、基板から熱エネルギー
を得て基板近傍の空間に於て生成される励起状態の前駆
体(E)及び場合によって該前駆体(E)より派生的に
生ずる前駆体CD)が成膜に効果的に寄与する様に適宜
所望に応じて設定される。
The pressure in the deposition space, that is, the pressure in the space where the substrate on which the film is to be deposited is located, is a precursor to the excited state generated in the space near the substrate by obtaining thermal energy from the substrate. The precursor (E) and, depending on the case, a precursor CD derived from the precursor (E)) are appropriately set as desired so as to effectively contribute to film formation.

成膜空間の内圧力は、堆積膜形成用の気体状原料物質と
気体状ハロゲン系酸化剤との流量との関連に於て、排気
装置の排気能力を変えることにより調整することが出来
る。
The internal pressure of the film forming space can be adjusted by changing the exhaust capacity of the exhaust device in relation to the flow rates of the gaseous raw material for forming the deposited film and the gaseous halogen-based oxidizing agent.

上記のようにして成膜空間内の圧力は、導入される気体
状原料物質と気体状ハロゲン酸化剤の導入流量との関係
に於て決められるが、好ましくは0.001Torr 
〜5気圧、より好ましくは0.01Torr 〜2気圧
、最適には0.05〜1気圧とされるのが望ましい。
The pressure in the film forming space as described above is determined based on the relationship between the introduced gaseous raw material and the introduction flow rate of the gaseous halogen oxidizing agent, and is preferably 0.001 Torr.
It is desirable that the pressure be ˜5 atm, more preferably 0.01 Torr to 2 atm, optimally 0.05 to 1 atm.

反応空間への前記堆積膜形成用の原料物質及びハロゲン
系酸化剤の導入の際にこれ等が均一に効率良く混合され
、前記前駆体(E)が効率的に生成され且つ成膜が支障
なく適切になされる様に、ガス導入口と基体とガス排気
口との幾何学的配置を考慮して設計される必要がある。
When the raw materials for forming the deposited film and the halogen-based oxidizing agent are introduced into the reaction space, they are mixed uniformly and efficiently, so that the precursor (E) is efficiently produced and the film formation is performed without any trouble. In order to do this properly, it is necessary to take into consideration the geometrical arrangement of the gas inlet, the substrate, and the gas outlet.

この幾何学的な配置の好適な例の1つが第1図に示され
る。
One preferred example of this geometry is shown in FIG.

成膜時の基体温度(Ts)としては、使用されるガス種
及び形成される堆積膜の種類と要求される特性に応じて
、個々に適宜所望に従って設定されるが、非晶質の膜を
得る場合には好ましくは室温から450℃、より好まし
くは50〜400℃とされるのが望ましい、殊に半導体
性や光導電性等の特性がより良好なシリコン堆積膜を形
成する場合には、基体温度(Ts)は70〜350℃と
されるのが望ましい。また、多結晶の膜を得る場合には
、好ましくは200−7^A 給1− Ll &?、−
1?l  / IQ Q A /’1 +Q凸00nと
されるのが望ましい。
The substrate temperature (Ts) during film formation is set as desired depending on the type of gas used, the type of deposited film to be formed, and the required characteristics. When forming a silicon deposited film with better properties such as semiconductor properties and photoconductivity, the temperature is preferably room temperature to 450°C, more preferably 50 to 400°C. The substrate temperature (Ts) is preferably 70 to 350°C. Moreover, when obtaining a polycrystalline film, preferably 200-7^A supply 1- Ll &? ,−
1? It is preferable that l/IQQA/'1+Q convexity 00n.

本発明に於いて使用される基体としては、形成される堆
積膜の用途に応じて適宜所望に応じて選択されるもので
あれば導電性でも電気絶縁性であっても良い。導電性基
体としては、例えば、NiCr、 ステンレス、AM、
Cr、Mo、Au、I r、Nb、Ta、V、Ti、P
t、Pd等の金属又はこれ等の合金が挙げられる。
The substrate used in the present invention may be electrically conductive or electrically insulating, as long as it is appropriately selected depending on the intended use of the deposited film to be formed. Examples of the conductive substrate include NiCr, stainless steel, AM,
Cr, Mo, Au, Ir, Nb, Ta, V, Ti, P
Examples include metals such as T, Pd, and alloys thereof.

電気絶縁性基体としては、ポリエステル、ポリエチレン
、ポリカーボネート、セルローズアセテート、ポリプロ
ピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリス
チレン、ポリアミド等の合成樹脂のフィルム又はシート
、ガラス、ゼラミツク等が通常使用される。これらの電
気絶縁性基体は、好適には少なくともその一方の表面が
導電処理され、該導電処理された表面側に他の層が設け
られるのが望ましい。
As the electrically insulating substrate, films or sheets of synthetic resins such as polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, glass, gelatin, etc. are usually used. Preferably, at least one surface of these electrically insulating substrates is subjected to a conductive treatment, and another layer is preferably provided on the conductive treated surface side.

例えばガラスであれば、その表面がNi。For example, if it is glass, its surface is Ni.

Cr、A、fL、Cr、Mo、Au、I r、Nb。Cr, A, fL, Cr, Mo, Au, Ir, Nb.

Ta、  V、  T  i 、   P  t、  
 Pd、   T  n  −1(’)っS n02、
I To (I n203+s n02)等の薄膜を設
ける事によって導電処理され、或いはポリエステルフィ
ルム等の合成樹脂フィルムチあれば、A1Cr、An、
Ag、Pb、Zn、Ni、Au、Cr、Mo、Ir、N
b、Ta、■、Ti、Pt等の金属で真空蒸着、電子ビ
ーム蒸着、スパッタリング等で処理し、又は前記金属で
ラミネート処理して、その表面が導電処理される。支持
体の形状としては1円筒状、ベルト状、板状等、任意の
形状とし得、所望によって、その形状が決定される。
Ta, V, Ti, Pt,
Pd, T n -1(') S n02,
A1Cr, An,
Ag, Pb, Zn, Ni, Au, Cr, Mo, Ir, N
The surface is treated with a metal such as b, Ta, ■, Ti, or Pt by vacuum evaporation, electron beam evaporation, sputtering, or the like, or laminated with the metal, thereby making the surface conductive. The shape of the support may be any shape, such as a cylinder, a belt, or a plate, and the shape is determined according to desire.

基体は、基体と膜との密着性及び反応性を考慮して上記
の中より選ぶのが好ましい。更に両者の熱膨張の差が大
きいと膜中に多量の歪が生じ、良品質の膜が得られない
場合であるので、両者の熱膨張の差が近接している基体
を選択して使用するのが好ましい。
The substrate is preferably selected from the above in consideration of the adhesion and reactivity between the substrate and the membrane. Furthermore, if the difference in thermal expansion between the two is large, a large amount of distortion will occur in the film, making it impossible to obtain a high-quality film, so select and use a substrate with a close difference in thermal expansion between the two. is preferable.

又、基体の表面状態は、膜の構造(配向)や錐状組織の
発生に直接関係するので、所望の特性が得られる様な膜
構造と膜組織となる様に基体の表面を処理するのが望ま
しい。
In addition, the surface condition of the substrate is directly related to the structure (orientation) of the film and the occurrence of cone-shaped structures, so it is important to treat the surface of the substrate so that it has a film structure and structure that provides the desired properties. is desirable.

第1図は本発明の堆積膜形成法を具現するに好適な装置
の1例を示すものである。
FIG. 1 shows an example of an apparatus suitable for implementing the deposited film forming method of the present invention.

第1図に示す堆積膜形成装置は、装置本体、排気系及び
ガス供給系の3つに大別される。
The deposited film forming apparatus shown in FIG. 1 is roughly divided into three parts: an apparatus main body, an exhaust system, and a gas supply system.

装置本体には、ガス導入用の配管及び外部加熱装置が設
けられている。
The main body of the apparatus is provided with piping for introducing gas and an external heating device.

101〜105は夫々、成膜する際に使用されるガスが
充填されているボンベ、101a〜105aは夫々ガス
供給バイブ、101b〜105bは夫々各ボンベからの
ガスの流量調整用のでスフロコントローラー、1o1c
 N105Cはそれぞれガス圧力計、101d〜105
d及び101e 〜105eは夫々バルブ、1otf〜
105fは夫々対応するガスボンベ内の圧力を示す圧力
計である。
101 to 105 are cylinders filled with gases used for film formation, 101a to 105a are gas supply vibes, 101b to 105b are flow controllers for adjusting the flow rate of gas from each cylinder, and 1o1c.
N105C are gas pressure gauges, 101d to 105 respectively.
d and 101e to 105e are valves, respectively, and 1otf to
105f is a pressure gauge that indicates the pressure inside the corresponding gas cylinder.

120は真空チャンバーであって、上部にガス導入用の
配管が設けられ、配管の下流に反応空間が形成される構
造を有し、且つ該配管のガス排出口に対向して、基体1
18が配置される様に基体ホールダ−112が設けられ
た成膜空間が形成される構造を有する。ガス導入用の配
管は、二重同心円配置構造となっており、中よりカスボ
ンベiot、102,103よりのガ゛スが導入される
第1のガス導入管109、ガスボンベ104,105よ
りのガスが導入される第2のガス導入管110を有する
Reference numeral 120 denotes a vacuum chamber, which has a structure in which a pipe for introducing gas is provided at the upper part and a reaction space is formed downstream of the pipe.
It has a structure in which a film forming space is formed in which a substrate holder 112 is provided such that a substrate holder 18 is disposed. The gas introduction pipes have a double concentric arrangement structure, with a first gas introduction pipe 109 into which gas from gas cylinders 102 and 103 is introduced, and a first gas introduction pipe 109 into which gas from gas cylinders 104 and 105 is introduced. It has a second gas introduction pipe 110 to be introduced.

各ガス導入管の反応空間へのガス排出には、その位置が
内側の管が基体の表面位置より遠い位置に配される設計
とされている。即ち、外側の管が内側にある管を包囲す
る様に夫々のガス導入管が配設されている。
Each gas introduction tube is designed to discharge gas into the reaction space so that the inner tube is located farther from the surface of the base. That is, the respective gas introduction pipes are arranged so that the outer pipe surrounds the inner pipe.

各導入管への各ボンベからのガスの供給は、ガス供給バ
イブライン123.124によって夫々なされる。
Gas is supplied from each cylinder to each inlet pipe by gas supply vibe lines 123 and 124, respectively.

125.126は供給ガスの冷却用に設けられた冷却槽
であり、液体窒素等の冷却剤が入ッテいる。125a、
125b、126a。
Reference numerals 125 and 126 are cooling tanks provided for cooling the supply gas, and are filled with a coolant such as liquid nitrogen. 125a,
125b, 126a.

126bは/ヘルプで冷却槽のバイパスができるように
なっている。
126b is designed to allow bypass of the cooling tank with /Help.

各カス導入管、各ガス供給バイブライン及び真空チャン
バー120はメイン真空バルブ119を介して不図示の
真空排気装置により真空排気される。
Each waste introduction pipe, each gas supply vibe line, and the vacuum chamber 120 are evacuated by a vacuum exhaust device (not shown) via the main vacuum valve 119.

基体118は基体ホルダー112を上下に移動させるこ
とによって各ガス導入管の位置より適宜所望の距離に配
置される。
The base body 118 is placed at a desired distance from the position of each gas introduction pipe by moving the base body holder 112 up and down.

本発明の場合、この基体とガス導入管のガス排出口の距
離は、形成される堆積膜の種類及びその所望される特性
、ガス流量、真空チャンバーの内圧等を考慮して適切な
状態になる様に決められるが、好ましくは、数mm〜4
0cm、より好ましくは5mm〜30cm程度と5れる
のが望ましい。
In the case of the present invention, the distance between the substrate and the gas outlet of the gas inlet pipe is determined appropriately by taking into consideration the type of deposited film to be formed, its desired characteristics, gas flow rate, internal pressure of the vacuum chamber, etc. Although it can be determined as desired, it is preferably several mm to 4 mm.
It is desirable that the length be 0 cm, more preferably about 5 mm to 30 cm.

113は、基体118を成膜時に適当な温度に加熱した
り、あるいは、成膜前に基体118を予備加熱したり、
さらには、成膜後、膜をアニールする為に加熱する基体
加熱ヒーターである。
113 heats the base 118 to an appropriate temperature during film formation, or preheats the base 118 before film formation,
Furthermore, it is a substrate heating heater that heats the film in order to anneal the film after film formation.

基体加熱用ヒータ113は、導線114奢通じて電源1
15により電力が供給される。
The heater 113 for heating the substrate is connected to the power source 1 through a conductive wire 114.
Power is supplied by 15.

116は、基体温度(Ts)の温度を測定する為の熱電
対で温度表示装置117に電気的に接続されている。
116 is a thermocouple for measuring the substrate temperature (Ts), and is electrically connected to the temperature display device 117.

以下、実施例に従って、本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained according to Examples.

実施例1 第1図に示した堆積膜形成装置を使って、次の様にして
本発明の方法により堆積膜を作成した。
Example 1 Using the deposited film forming apparatus shown in FIG. 1, a deposited film was created by the method of the present invention as follows.

バルブ125a、126aを閉じ、バルブ125b、1
26bを開いてガスが冷却槽125.126を通る様に
しておき、ポンベ101に充填されているS iHaH
eガス量30secmでガス導入管109より、ポンベ
104に充填されているHeで30%に希釈したF2ガ
スヲ流量101005eでガス導入管110より、真空
チャン八−120内に冷却槽125.126で夫々−5
0℃に冷却した後に導入した。
Close the valves 125a, 126a, close the valves 125b, 1
26b is opened to allow gas to pass through the cooling tanks 125 and 126, and the SiHaH gas filled in the pump 101 is
F2 gas diluted to 30% with He filled in the pump 104 was introduced from the gas introduction pipe 109 at a gas flow rate of 30 seconds through the gas introduction pipe 110 at a flow rate of 101005e into the vacuum chamber 120 in the cooling tanks 125 and 126, respectively. -5
It was introduced after cooling to 0°C.

このとき、真空チャン八−120内の圧力を真空バルブ
119の開閉度を調整してITorrにした。基体に石
英カラス(15cmX15cm)を用いガス導入管11
0の先端と基体との距離は15cmに設定した。
At this time, the pressure inside the vacuum chamber 120 was adjusted to ITorr by adjusting the opening/closing degree of the vacuum valve 119. Gas introduction pipe 11 using quartz glass (15cm x 15cm) as the base
The distance between the tip of the 0 and the base was set to 15 cm.

基体温度(Ts)は各試料に対して表1に示す様に室温
から400°Cまでの間に設定した。
The substrate temperature (Ts) was set for each sample between room temperature and 400°C as shown in Table 1.

この状態で3時間ガスを流すと表1に示す様な膜厚のS
i:H:F膜が基体上に堆積した。
When gas is flowed in this state for 3 hours, the film thickness of S as shown in Table 1 is obtained.
An i:H:F film was deposited on the substrate.

又膜厚の分布むらは±5%以内におさまった。成膜した
Si :H:F膜はいずれの試料も電子線回折によって
非晶質であることが確認された。
Furthermore, the unevenness in film thickness distribution was within ±5%. It was confirmed by electron diffraction that all of the deposited Si:H:F films were amorphous.

各試料の非晶質Si:H:F膜上にAMのくし形電極(
ギャップ長200ルm)を基若し、導電率測定用の試料
を作成した。各試料を真空タライオスタット中にいれ電
圧100Vを印加し、微少電流計(YHP4140B)
で電流を測定し、暗導電率(σd)を求めた。又600
n m 、 0.3 mw/ c m2の光を照射し、
光導電率(σd)を求めた。更に光の吸収より光学的バ
ンドキャップ(Eg  opt)を求めたゆこれらの結
果は表1に示した。
AM comb-shaped electrodes (
A sample for conductivity measurement was prepared based on a gap length of 200 m). Each sample was placed in a vacuum taliostat, a voltage of 100 V was applied, and a microcurrent meter (YHP4140B) was used.
The current was measured and the dark conductivity (σd) was determined. 600 again
irradiated with light of nm, 0.3 mw/cm2,
Photoconductivity (σd) was determined. Furthermore, the optical band gap (Eg opt) was determined from the absorption of light, and the results are shown in Table 1.

比較例1 原料ガスが冷却槽125,126を通らないようにバル
ブ125a、126aを開き、125b、126bを閉
じた他は実施例1と同様の条件で成膜を行った。
Comparative Example 1 Film formation was performed under the same conditions as in Example 1, except that valves 125a and 126a were opened and valves 125b and 126b were closed so that the raw material gas did not pass through the cooling tanks 125 and 126.

SiH+ガスとF 2 / Heガスとの混合域で強く
、基板近傍で弱い、青白色の発光がみられた。試料の膜
堆積速度は基板温度が300℃の時で比較して実施例1
の60%に低下し1反応装置内壁に付着する膜状の生成
物の堆積速度Cよ約3倍になったことが確認できた。
Strong bluish-white light emission was observed in the mixed region of SiH+ gas and F 2 /He gas, and weak near the substrate. The film deposition rate of the sample was compared with that of Example 1 when the substrate temperature was 300°C.
It was confirmed that the deposition rate of the film-like product adhering to the inner wall of the reactor was approximately three times that of C.

実施例1と同様にして求めた各試料の特性を表2に示し
た。
Table 2 shows the characteristics of each sample obtained in the same manner as in Example 1.

実施例2 第1図に示した堆積膜形成装置を使って、次の様にして
本発明の方法により堆積膜を形成した。
Example 2 A deposited film was formed by the method of the present invention in the following manner using the deposited film forming apparatus shown in FIG.

バルブ125a、126aを開き、バルブL25b、1
26bを閉じてガスが冷却槽125.126を通らない
ようにした0次いで、ポンベlotに充填されているS
iH4ガスを流量30 s c cmで、ポンベ102
に充填されているArガスを流量270scemで、ガ
ス導入管109より真空チャンバー120内に導入した
。同時に、ポンベ104に充填されているHeガスで3
0%に希釈したF2ガスを流量101005eで、ポン
ベ105に充填されているH eカスを流量900se
cmでガス導入¥f11Oより真空チャン八−120内
に導入した。
Open valves 125a and 126a, and open valves L25b and 1.
26b was closed to prevent gas from passing through the cooling tanks 125 and 126. Next, the S filled in the Pombe lot was
Pump 102 of iH4 gas at a flow rate of 30 s cm.
Ar gas filled in the chamber was introduced into the vacuum chamber 120 from the gas introduction pipe 109 at a flow rate of 270 scem. At the same time, the He gas filled in the pump 104
F2 gas diluted to 0% is fed at a flow rate of 101005e, and H e gas filled in the pump 105 is fed at a flow rate of 900se.
The gas was introduced into a vacuum chamber 8-120 at a gas introduction rate of 110 cm.

これにより、カス導入管109からはArで10%に希
釈したS iHaHeガスf、廣300sccmで、ガ
ス導入管110からはHeで3%に稀釈したF2が流4
11000 s e c mで11空チャン八−120
内に導入すること番こなり、比較例1に比べて導入する
夫々のガスの反応に寄与する着は変わらず、不活性カス
でl/10に希釈したことになる。
As a result, SiHaHe gas f diluted to 10% with Ar flows from the waste introduction pipe 109 at a width of 300 sccm, and F2 diluted to 3% with He flows from the gas introduction pipe 110.
11 empty Chan 8-120 at 11000 sec m
Compared to Comparative Example 1, the contribution of each introduced gas to the reaction was unchanged, but it was diluted to 1/10 with the inert residue.

このとき、真空チャンバー120内の圧力を真空バルブ
119の開閉度を調整してITorrにした。基体に石
英ガラス(15cmX15cm)を用いカス導入管11
0の先端と基体との距離は15cmに設定した。
At this time, the pressure inside the vacuum chamber 120 was adjusted to ITorr by adjusting the opening/closing degree of the vacuum valve 119. Using quartz glass (15cm x 15cm) as the base, waste introduction tube 11
The distance between the tip of the 0 and the base was set to 15 cm.

基体温度(Ts)は各試料に対して表3に示す様に室温
から400°Cまでの間に設定した。
The substrate temperature (Ts) was set for each sample between room temperature and 400°C as shown in Table 3.

この状態で3時間ガスを流すと表3に示す様な口々厚の
Si:H:F膜が基体上に堆積した。
When gas was allowed to flow in this state for 3 hours, a thick Si:H:F film as shown in Table 3 was deposited on the substrate.

試料の膜堆積速度は基板温度が300℃の時の比較で比
較例1より60%向上し、反応装置内壁に付着する膜状
の生成物の堆積速度は約1/2になった。又膜厚の分布
むらは±5%以内におさまった。成膜したSi:H:F
膜はいずれの試料も電子線回折によって非晶質であるこ
とが確認された。
The film deposition rate of the sample was improved by 60% compared to Comparative Example 1 when the substrate temperature was 300° C., and the deposition rate of the film-like product adhering to the inner wall of the reactor was reduced to about 1/2. Furthermore, the unevenness in film thickness distribution was within ±5%. Film formed Si:H:F
All samples were confirmed to be amorphous by electron diffraction.

また実施例1と同様にして求めた各試料の特性を表3に
示した。
Table 3 shows the characteristics of each sample obtained in the same manner as in Example 1.

〔効果〕〔effect〕

以上の詳細な説明及び各実施例より、本発明の堆積膜形
成法によれば、省エネルギー化を計ると同時に膜品質の
管理が容易で大面積に亘って均一物理特性の堆積膜が得
られる。又、生産性、量産性に優れ、高品質で電気的、
光学的、半導体的等の物理特性に優れた膜を簡便に得る
ことが出来る。
From the above detailed description and examples, it is clear that according to the deposited film forming method of the present invention, a deposited film with uniform physical properties over a large area can be obtained with energy saving and easy control of film quality. In addition, it has excellent productivity and mass production, and is of high quality and electrical.
A film with excellent physical properties such as optical and semiconductor properties can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の成膜装置の模式的概略図、■    
  −である。 101〜l O5−−−−−−−−−−−−−−ガスボ
ンベ、101a 〜105a −−−−−−−−ガスの
導入管、101b〜105b−−−−マスフロメーター
、101 c −105c −−−−−−−−−−ガス
圧力計、101d〜105d及び 101e 〜105e及び 125a、125b、126a、126b−−−−一−
−−−−−−−−−−−−−−−−−−−−バルブ、1
01f〜105 f  −−−−−−−−−−−−−一
圧力計、109 、110 −−−−−−−−−−−−
−−ガス導入管、L 12 −−−−−−−−−−−−
−−−−−−−一基体ホルダー。 113 −−−−−−−−−−−−−一基体加熱用ヒー
タ、−1i i 6 −−−−−−−一基体温度モニタ
ー用熱主対、118−−−−−−−−−−−−−−−−
−−−−−−−−−−−一基体、119 −−−−−−
−−−−−−−−−−−一真空排気パルブ、120 −
−−−−−−−−一−−−−−−−−真空チャンノ人−
1125、126−−−−−−−−−−−−−−−−−
一冷却槽、を夫々表わしている。
Figure 1 is a schematic diagram of the film forming apparatus of the present invention;
− is. 101~l O5------------Gas cylinder, 101a~105a------Gas introduction pipe, 101b~105b------Mass flow meter, 101c- 105c ---------- Gas pressure gauge, 101d to 105d and 101e to 105e and 125a, 125b, 126a, 126b-----
−−−−−−−−−−−−−−−−−−−−Valve, 1
01f to 105 f ---------------- One pressure gauge, 109, 110 ------------------------
--Gas introduction pipe, L 12 ---------
-----------One-substrate holder. 113 --------------Heater for heating one substrate, -1i i 6 --------- Heater pair for monitoring temperature of one substrate, 118----- −−−−−−−
---------- Monosubstrate, 119 -------
−−−−−−−−−−1 vacuum exhaust valve, 120 −
−−−−−−−−−−−−−−−−−−Vacuum Channo people−
1125, 126------------
1 cooling tank, respectively.

Claims (18)

【特許請求の範囲】[Claims] (1)堆積膜形成用の気体状原料物質と、該原料物質に
酸化作用をする性質を有する気体状ハロゲン系酸化剤と
、を少なくともその一方に単に気体同士が接触しただけ
では反応がほとんど進行しないような反応の進行を抑制
する処理を行った後、反応空間内に導入して接触させ、
加熱した基体から熱エネルギーを与えることで基体近傍
において反応を進行させ、励起状態の前駆体を化学的に
生成し、該前駆体を堆積膜構成要素の供給源として基体
上に堆積膜を形成することを特徴とする堆積膜形成法。
(1) If at least one of the gaseous raw material for forming a deposited film and the gaseous halogen-based oxidizing agent that has the property of oxidizing the raw material is brought into contact with each other, the reaction will hardly proceed. After performing treatment to suppress the progress of the reaction, it is introduced into the reaction space and brought into contact with it.
By applying thermal energy from the heated substrate, a reaction proceeds in the vicinity of the substrate to chemically generate a precursor in an excited state, and a deposited film is formed on the substrate using the precursor as a source of deposited film constituent elements. A deposited film forming method characterized by:
(2)前記反応の進行を抑制する処理は、気体状原料物
質又は気体状ハロゲン系酸化剤を凝縮しない温度範囲内
で冷却する処理である特許請求の範囲第1項に記載の堆
積膜形成法。
(2) The method for forming a deposited film according to claim 1, wherein the treatment for suppressing the progress of the reaction is a treatment for cooling the gaseous raw material or the gaseous halogen-based oxidizing agent within a temperature range that does not condense it. .
(3)前記反応の進行を抑制する処理は、気体状原料物
質又は気体状ハロゲン系酸化剤に不活性ガスを混合して
反応に寄与する成分の分圧を低下させる処理である特許
請求の範囲第1項に記載の堆積膜形成法。
(3) A claim that the treatment for suppressing the progress of the reaction is a treatment for mixing an inert gas with a gaseous raw material or a gaseous halogen-based oxidizing agent to lower the partial pressure of components contributing to the reaction. The deposited film forming method according to item 1.
(4)前記気体状原料物質は、鎖状シラン化合物である
特許請求の範囲第1項に記載の堆積膜形成法。
(4) The deposited film forming method according to claim 1, wherein the gaseous raw material is a chain silane compound.
(5)前記鎖状シラン化合物は、直鎖状シラン化合物で
ある特許請求の範囲第4項に記載の堆積膜形成法。
(5) The deposited film forming method according to claim 4, wherein the chain silane compound is a linear silane compound.
(6)前記直鎖状シラン化合物は、一般式Si_nH_
2_n_+_2(nは1〜8の整数)で示される特許請
求の範囲第5項に記載の堆積膜形成法。
(6) The linear silane compound has the general formula Si_nH_
The deposited film forming method according to claim 5, represented by 2_n_+_2 (n is an integer from 1 to 8).
(7)前記鎖状シラン化合物は、分岐状鎖状シラン化合
物である特許請求の範囲第4項に記載の堆積膜形成法。
(7) The deposited film forming method according to claim 4, wherein the chain silane compound is a branched chain silane compound.
(8)前記気体状原料物質は、硅素の環状構造を有する
シラン化合物である特許請求の範囲第1項に記載の堆積
膜形成法。
(8) The deposited film forming method according to claim 1, wherein the gaseous raw material is a silane compound having a silicon ring structure.
(9)前記気体状原料物質は、鎖状ゲルマン化合物であ
る特許請求の範囲第1項に記載の堆積膜形成法。
(9) The deposited film forming method according to claim 1, wherein the gaseous raw material is a chain germane compound.
(10)前記鎖状ゲルマン化合物は、一般式Ge_mH
_2_m_+_2(mは1〜5の整数)で示される特許
請求の範囲第9項に記載の堆積膜形成法。
(10) The linear germane compound has the general formula Ge_mH
The deposited film forming method according to claim 9, which is represented by _2_m_+_2 (m is an integer of 1 to 5).
(11)前記気体状原料物質は、水素化スズ化合物であ
る特許請求の範囲第1項に記載の堆積膜形成法。
(11) The deposited film forming method according to claim 1, wherein the gaseous raw material is a tin hydride compound.
(12)前記気体状原料物質は、テトラヘドラル系化合
物である特許請求の範囲第1項に記載の堆積膜形成法。
(12) The deposited film forming method according to claim 1, wherein the gaseous raw material is a tetrahedral compound.
(13)前記気体状ハロゲン系酸化剤は、ハロゲンガス
を含む特許請求の範囲第1項に記載の堆積膜形成法。
(13) The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent contains halogen gas.
(14)前記気体状ハロゲン系酸化剤は、弗素ガスを含
む特許請求の範囲第1項に記載の堆積膜形成法。
(14) The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent contains fluorine gas.
(15)前記気体状ハロゲン系酸化剤は、塩素ガスを含
む特許請求の範囲第1項に記載の堆積膜形成法。
(15) The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent contains chlorine gas.
(16)前記気体状ハロゲン系酸化剤は、弗素原子を構
成成分として含むガスである特許請求の範囲、第1項に
記載の堆積膜形成法。
(16) The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent is a gas containing fluorine atoms as a constituent component.
(17)前記気体状ハロゲン系酸化剤は、発生期状態の
ハロゲンを含む特許請求の範囲第1項に記載の堆積膜形
成法。
(17) The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent contains halogen in a nascent state.
(18)前記基体は前記気体状原料物質と前記気体状ハ
ロゲン系酸化剤の前記反応空間への導入方向に対して対
向する位置に配設される特許請求の範囲第1項に記載の
堆積膜形成法。
(18) The deposited film according to claim 1, wherein the substrate is disposed at a position opposite to the direction in which the gaseous raw material and the gaseous halogen-based oxidizing agent are introduced into the reaction space. Formation method.
JP61073097A 1986-03-31 1986-03-31 Deposited film formation method Expired - Fee Related JPH0647736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61073097A JPH0647736B2 (en) 1986-03-31 1986-03-31 Deposited film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61073097A JPH0647736B2 (en) 1986-03-31 1986-03-31 Deposited film formation method

Publications (2)

Publication Number Publication Date
JPS62228475A true JPS62228475A (en) 1987-10-07
JPH0647736B2 JPH0647736B2 (en) 1994-06-22

Family

ID=13508487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61073097A Expired - Fee Related JPH0647736B2 (en) 1986-03-31 1986-03-31 Deposited film formation method

Country Status (1)

Country Link
JP (1) JPH0647736B2 (en)

Also Published As

Publication number Publication date
JPH0647736B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
JPS62158874A (en) Multi-layered structure of thin film and its formation
US5160543A (en) Device for forming a deposited film
JPS62151573A (en) Deposited film forming device
JPS62156813A (en) Thin film semiconductor element and forming method thereof
JPS62228475A (en) Formation of deposited film
JPS62142780A (en) Formation of deposited film
JPS62158873A (en) Multi-layered structure of thin film and its formation
JPS62199771A (en) Formation of deposited film
JPS62142778A (en) Formation of deposited film
JPS63216331A (en) Formation of deposit film
JPH0645885B2 (en) Deposited film formation method
JPS6299463A (en) Deposited film formation
JPH0645882B2 (en) Deposited film formation method
JPS6338581A (en) Functional deposited film forming device
JP2637396B2 (en) Deposition film formation method
JPS63166214A (en) Deposition film forming method
JPS6347363A (en) Formation of functional deposited film
JPS6357773A (en) Functional deposited film forming device
JPS6299465A (en) Deposited film formation
JPS62228479A (en) Deposited film forming device
JPS62229825A (en) Deposit film forming method
JPS62158872A (en) Multi-layered structure of thin film and its formation
JPS62196374A (en) Deposited film forming device
JPS62224673A (en) Formation of deposited film
JPS62158868A (en) Deposited film forming device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees