JPS62228411A - Method for transferring powdery granule to be added to metallurgical furnace - Google Patents

Method for transferring powdery granule to be added to metallurgical furnace

Info

Publication number
JPS62228411A
JPS62228411A JP7094586A JP7094586A JPS62228411A JP S62228411 A JPS62228411 A JP S62228411A JP 7094586 A JP7094586 A JP 7094586A JP 7094586 A JP7094586 A JP 7094586A JP S62228411 A JPS62228411 A JP S62228411A
Authority
JP
Japan
Prior art keywords
iron ore
converter
powder
iron
exhausted gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7094586A
Other languages
Japanese (ja)
Inventor
Hideji Takeuchi
秀次 竹内
Yukio Takahashi
幸雄 高橋
Yasuo Kishimoto
康夫 岸本
Tetsuya Fujii
徹也 藤井
Tsutomu Nozaki
野崎 努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7094586A priority Critical patent/JPS62228411A/en
Publication of JPS62228411A publication Critical patent/JPS62228411A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Details (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To utilize heat energy in exhausted gas and reduce iron ore with good productivity, by preheating powdery iron ore with high temp. exhausted gas in converter at charging iron ore, cokes to metallurgical furnace such as converter, supplying oxygen by oxygen top blown lance to reduce and melt iron ore and manufacture pig iron. CONSTITUTION:Molten pig iron is charged into a top blown converter 1 providing bottom blowing tuyere, oxygen is blown from bottom blowing tuyere and a top blowing lance 7, then lump cokes are thrown into furnace from a converter hole 2 to raise temp. of molten pig iron to about 1,520 deg.C by the combustion. Next, iron ore fines of <=200 mesh are passed from an iron ore dispenser 6 through a piping 5 for pneumatically carrying powdery granule of an exhausted gas duct 4, heated with high temp. exhausted gas, the blown from the lance 7 and reduced to molten pig iron by cokes. Since ore fines are heated to high temp., supplying velocity to converter can be enlarged, and molten pig iron can be manufactured from iron ore with superior productivity while utilizing heat energy in exhausted gas.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、冶金炉添加粉粒体の搬送方法に関し、とく
に冶金炉操業における使用エネルギーの削減を排ガス処
理の簡便化に併せて実現しようとするものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for transporting granular material added to a metallurgical furnace, and particularly aims to reduce the energy used in metallurgical furnace operation while simplifying exhaust gas treatment. It is something to do.

(従来の技術) 冶金炉操業においては、原料の供給に当り、気送配管を
通して粉粒状原料の吹き込みが行われる。
(Prior Art) In the operation of a metallurgical furnace, when supplying raw materials, powdery raw materials are blown through pneumatic piping.

たとえば溶融還元炉においては粉粒状の鉱石や炭材が、
またスクラップ溶解炉においては粉粒状の炭材が、さら
にLD転炉においてはCaO粉などの吹き込みが行われ
ている。
For example, in a smelting reduction furnace, powdery ore and carbonaceous materials are
Further, in the scrap melting furnace, granular carbonaceous materials are injected, and in the LD converter, CaO powder and the like are injected.

(発明が解決しようとする問題点) しかしなから従来は、粉体の気体搬送に当り常温のまま
で供給していたことから、かかる粉体の昇温のために余
分な熱エネルギーを必要とする、すなわち熱源としての
炭材や精錬ガスの増大を招くところに問題を残していた
(Problem to be solved by the invention) However, in the past, powder was supplied as a gas at room temperature, so extra thermal energy was required to raise the temperature of the powder. In other words, there remained a problem in that the use of carbonaceous materials and refining gas as a heat source would increase.

さらに粉体の供給設備にも制約があることから、熱の供
給が不十分となり、反応速度に制約が生じる場合もあっ
た。
Furthermore, since there are restrictions on the powder supply equipment, there are cases where the supply of heat is insufficient and the reaction rate is restricted.

この発明は、上記の問題を有利に解決するもので、排ガ
スのもつ熱エネルギーの有効利用によって、添加粉体を
昇温させるための熱源を大幅に削減すると共に、併せて
排ガスの処理も容易ならしめ得る冶金炉添加粉粒体の搬
送方法を提案することを目的とする。
This invention advantageously solves the above-mentioned problems, and by effectively utilizing the thermal energy of the exhaust gas, the heat source for raising the temperature of the additive powder can be significantly reduced, and at the same time, the exhaust gas can be easily treated. The purpose of this study is to propose a method for transporting powder and granules added to a metallurgical furnace.

(問題点を解決するための手段) すなわちこの発明は、粉粒体を冶金炉に添加するに当り
、気送粉粒体用配管の一部を該冶金炉の排ガス煙道内に
配設し、該粉粒体を排ガスの顕熱や燃焼熱によって予熱
したのち炉内に導くことから成る、冶金炉添加粉粒体の
搬送方法である。
(Means for Solving the Problems) That is, in the present invention, when adding powder and granules to a metallurgical furnace, a part of the piping for the pneumatic powder and granules is disposed in the exhaust gas flue of the metallurgical furnace, This is a method for transporting powder and granular material added to a metallurgical furnace, which comprises preheating the powder and granular material using the sensible heat of exhaust gas or combustion heat, and then introducing the powder into the furnace.

(作 用) 粉粒体は、排ガス煙道内に配設された気送粉粒体用配管
を通過中に、排ガスとの間の熱交換によって予熱されて
熱的に有利となり、一方排ガスは抜熱されて温度が降下
するのでその処理が容易になる。
(Function) While the powder and granules pass through the pneumatic powder and granule pipe installed in the exhaust gas flue, they are preheated by heat exchange with the exhaust gas and become thermally advantageous, while the exhaust gas is It is heated and the temperature drops, making it easier to process.

(実施例) 第1図に示した溶融還元設備および第2図に示したラン
スを用いて、5トン規模の転炉で行ったこの発明の実施
例を以下に示す。
(Example) An example of the present invention carried out in a 5-ton scale converter using the melting reduction equipment shown in FIG. 1 and the lance shown in FIG. 2 is shown below.

図中番号1は上底吹き転炉、2は炉口、3は集塵フード
、4は排ガス処理用ダクトであり、かかる転炉1は、炉
口2と集塵フード3の下端との間から外部空気を引き込
み、炉内で発生するCOガスを完全に燃焼させたのちに
、燃焼後のガスを排ガス煙道この例で排ガス処理用ダク
ト4に導くシ<みになっている。
In the figure, number 1 is a top-bottom blowing converter, 2 is a furnace opening, 3 is a dust collection hood, and 4 is an exhaust gas treatment duct. After the CO gas generated in the furnace is completely combusted by drawing in outside air from the furnace, the combusted gas is introduced into the exhaust gas flue (in this example, the exhaust gas treatment duct 4).

また5はダクト4内に配設された気送粉粒体用の配管、
6は粉粒体のディスペンサー、7は上吹きランスであっ
て、ディスペンサー6から切り出された粉粒体は配管5
内を経由して上吹きランス7に送給されるしくみになで
いる。
Further, 5 is a pipe for pneumatic powder and granular material arranged in the duct 4;
6 is a powder dispenser, 7 is a top blowing lance, and the powder and granules cut out from the dispenser 6 are transferred to piping 5.
The mechanism is such that the air is fed to the top-blowing lance 7 via the inside.

さらに上吹きランス7は精錬ガスと粉粒体とを個別に供
給する構造になり、8が精錬ガス用の流路、9が粉粒体
の流路、そして10が冷却水の流路である。
Furthermore, the top blowing lance 7 has a structure that supplies the refining gas and the granular material separately, and 8 is a flow path for the refining gas, 9 is a flow path for the granular material, and 10 is a flow path for cooling water. .

実施例1 さて上記の設備およびランスを用いて、以下の手順で溶
融還元操業を行った。
Example 1 Now, using the above-mentioned equipment and lance, a melting reduction operation was carried out according to the following procedure.

まず転炉1内に、約5トンの溶銑を装入したのち、上吹
きランス7および底吹き羽口から精錬ガスとして合計2
0 N+n3/minの純酸素ガスを吹き込んだ。
First, approximately 5 tons of hot metal is charged into the converter 1, and then a total of 2 tons of refining gas is supplied from the top blowing lance 7 and the bottom blowing tuyere.
Pure oxygen gas was blown at 0 N+n3/min.

5分経過後、10〜20市径のコークスを炉口2から2
0kg/minの割合で断続的に添加し初め、13分3
0秒後に溶融温度が1520℃になったことを確認した
のち、ディスペンサー6から200メツシユ以下に粉砕
した鉄鉱石粉の切り出しを開始し、配管5を経由させつ
つ上吹きランス7から溶銑中へ吹き付けた。
After 5 minutes, pour 10 to 20 pieces of coke from furnace port 2.
Started adding intermittently at a rate of 0 kg/min, 13 minutes 3
After confirming that the melting temperature had reached 1520°C after 0 seconds, the iron ore powder crushed to 200 mesh or less was started to be cut out from the dispenser 6, and was blown into the hot metal from the top blowing lance 7 while passing through the pipe 5. .

コークスの供給速度は、上述の20kg/minと一定
にしておき、5分おきの溶銑温度の測定値を参考にして
、温度が1400℃以下にならない程度になるべく多重
の鉄鉱石粉を供給し続けた。ここに鉄鉱石粉の供給速度
を大きくできれば、それだけ鉄の回収速度が大きくなる
わけであるから、生産性が向上することになる。
The coke supply rate was kept constant at the above-mentioned 20 kg/min, and with reference to the hot metal temperature measurements taken every 5 minutes, multiple iron ore powders were continued to be supplied to the extent that the temperature did not fall below 1400°C. . If the iron ore powder supply rate can be increased, the iron recovery rate will be increased accordingly, which will improve productivity.

かような操業を数回行った場合の鉄鉱石粉の供給速度を
表1に示す。
Table 1 shows the feed rate of iron ore powder when such an operation was performed several times.

なお表1には比較のため、第3図に示したような従来設
備を用い、鉄鉱石粉を排ガス処理用のダクトを通さずに
大気中を導いた場合の操業実績も併せて示した。
For comparison, Table 1 also shows the operational results when conventional equipment as shown in Figure 3 was used and iron ore powder was introduced into the atmosphere without passing through the exhaust gas treatment duct.

なお従来法に従った場合の上吹きランス手前における粉
体温度は室温のままであるのに対して、この発明法に従
った場合には300〜800℃まで予熱されていた。
Note that in the case of the conventional method, the powder temperature before the top blowing lance remains at room temperature, whereas in the case of the present invention method, it is preheated to 300 to 800°C.

表   1 同表より明らかなように、この発明法では従来法に較べ
て鉄鉱石粉の供給速度を格段に大きくすることができた
。すなわち熱源としての炭材の供給量が等しい場合には
鉄鉱石粉の処理量を増大でき、一方向遣の鉄鉱石粉を処
理する場合には炭材の使用量を削減できるのである。
Table 1 As is clear from the table, the method of this invention was able to significantly increase the supply rate of iron ore powder compared to the conventional method. That is, when the amount of carbonaceous material supplied as a heat source is the same, the amount of iron ore powder to be processed can be increased, and when one-way iron ore powder is processed, the amount of carbonaceous material used can be reduced.

また、この発明法では、鉄鉱石粉が予熱されて炉内に添
加されることから、鉄鉱石の還元が短時間で確実に進む
ため、予熱しない場合に認められたスラグの泡豆ちやス
ロッピング(これらはスラグ中の未反応の鉄鉱石に起因
すると考えられる)は全く観察されなかった。
In addition, in this invention method, since the iron ore powder is preheated and added to the furnace, the reduction of the iron ore progresses reliably in a short time. These are thought to be caused by unreacted iron ore in the slag) were not observed at all.

さらに排ガスは鉄鉱石粉との熱交換によって、その温度
が従来法の場合と比較して約50℃低下したので、集塵
機への負担も軽減し、容易に排ガス処理が行えた。
Furthermore, due to the heat exchange with the iron ore powder, the temperature of the exhaust gas was lowered by about 50°C compared to the conventional method, reducing the burden on the dust collector and making it easier to treat the exhaust gas.

実施例2 前述の設備およびランスを用い、鉄鉱石のかわりに生石
灰粉を吹き込む通常の転炉精錬を行った。
Example 2 Using the equipment and lance described above, ordinary converter smelting was carried out in which quicklime powder was injected instead of iron ore.

酸素ガスの供給速度は上底吹き合計で15 Nm”7m
1nとした。また生石灰粉の装入量は溶銑トン当り45
kgとした。
The supply speed of oxygen gas is 15 Nm”7m in total for top and bottom blowing.
It was set to 1n. In addition, the charging amount of quicklime powder is 45% per ton of hot metal.
kg.

表2に、溶銑中のSi濃度の差を補正したのちの、溶銑
(〔%C〕″=、4.5)から溶鋼(〔%C) = 0
.5)までの温度上昇量 を示す。
Table 2 shows the change from hot metal ([%C]″ = 4.5) to molten steel ([%C) = 0, after correcting the difference in Si concentration in hot metal.
.. 5) shows the amount of temperature rise.

なお同表には比較のため、従来法に従った場合の実験結
果についても併記した。
For comparison, the table also includes experimental results obtained using the conventional method.

表  2 上記の実験では脱炭債がほぼ同一で、しかもSiの酸化
発熱量は補正をしであるので、温度上昇】lTの差は添
加した生石灰粉の顕熱分の差である。
Table 2 In the above experiment, the decarburization bond was almost the same, and the oxidation calorific value of Si was corrected, so the difference in temperature rise (1T) was the difference in the sensible heat of the added quicklime powder.

なお上記の実施例2では、生石灰粉の温度上昇分はその
まま吹き止め温度の上昇に使用されたが、実炉操業にお
いては、増加熱量を鉄鉱石粉の添加lの増大やスクラッ
プ比の上昇による熱補償に利用して、出鋼歩留りの向上
に役立てることもできる。
In Example 2 above, the temperature increase of the quicklime powder was directly used to raise the blow-off temperature, but in actual furnace operation, the increased heat amount was used to increase the amount of added iron ore powder and increase the scrap ratio. It can also be used for compensation to improve the steel tapping yield.

(発明の効果) かくしてこの発明によれば、排ガスのもつ熱エネルギー
の有効利用によって、冶金炉操業における使用エネルギ
ーを大幅に削減でき、また炉内反応に対し熱的に有利で
あるので反応速度に制約が生じることもなく、さらに排
ガス処理も容易ならしめ得る。
(Effects of the Invention) Thus, according to the present invention, by effectively utilizing the thermal energy of exhaust gas, the energy used in metallurgical furnace operation can be significantly reduced. There are no restrictions, and exhaust gas treatment can also be facilitated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の実施に用いて好適な設備の模式図
、 第2図は、同じくこの発明の実施に用いて好適なランス
先端のノズル構造を示した図、第3図は、従来設備の模
式図である。 1・・・上底吹き転炉 2・・・炉口       3・・・集塵フード4・・
・排ガス処理用ダクト 5・・・気送粉粒体用配管 6・・・ディスペンサー7
・・・上吹きランス   訃・・精錬ガス用の流路9・
・・粉粒体の流路   10・・・冷却水の流路第3図
Fig. 1 is a schematic diagram of equipment suitable for carrying out the present invention, Fig. 2 is a diagram showing a nozzle structure at the tip of a lance which is also suitable for carrying out the invention, and Fig. 3 is a diagram of a conventional equipment. It is a schematic diagram of the equipment. 1... Top and bottom blowing converter 2... Furnace mouth 3... Dust collection hood 4...
・Exhaust gas treatment duct 5...Piping for pneumatic powder and granular material 6...Dispenser 7
... Top blowing lance ... Channel 9 for refining gas
... Powder flow path 10 ... Cooling water flow path Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、粉粒体を冶金炉に添加するに当り、気送粉粒体用配
管の一部を該冶金炉の排ガス煙道内に配設し、該粉粒体
を排ガスの顕熱や燃焼熱によって予熱したのち炉内に導
くことを特徴とする冶金炉添加粉粒体の搬送方法。
1. When adding powder and granules to a metallurgical furnace, a part of the piping for pneumatic powder and granules is installed in the exhaust gas flue of the metallurgical furnace, and the powder and granules are transferred by the sensible heat and combustion heat of the exhaust gas. A method for transporting powder and granules added to a metallurgical furnace, characterized by introducing the powder into the furnace after preheating.
JP7094586A 1986-03-31 1986-03-31 Method for transferring powdery granule to be added to metallurgical furnace Pending JPS62228411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7094586A JPS62228411A (en) 1986-03-31 1986-03-31 Method for transferring powdery granule to be added to metallurgical furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7094586A JPS62228411A (en) 1986-03-31 1986-03-31 Method for transferring powdery granule to be added to metallurgical furnace

Publications (1)

Publication Number Publication Date
JPS62228411A true JPS62228411A (en) 1987-10-07

Family

ID=13446147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7094586A Pending JPS62228411A (en) 1986-03-31 1986-03-31 Method for transferring powdery granule to be added to metallurgical furnace

Country Status (1)

Country Link
JP (1) JPS62228411A (en)

Similar Documents

Publication Publication Date Title
JP3058039B2 (en) Converter steelmaking method
JPS59222508A (en) Manufacture of iron from iron oxide compound
CA2408720C (en) Method and device for producing pig iron or liquid steel pre-products from charge materials containing iron ore
WO2003062474A1 (en) Process for producing molten iron
JPS6123245B2 (en)
JP2002509194A (en) Sustainable steelmaking process by effective direct reduction of iron oxide and solid waste
US2107980A (en) Method for preparing iron and steel
JPS62228411A (en) Method for transferring powdery granule to be added to metallurgical furnace
JPS62228410A (en) Method for recovering metal from granular ore by melt reduction
JPH01147009A (en) Melting and reducing method
JPH01162711A (en) Smelting reduction method
JPH0130888B2 (en)
JPS63195207A (en) Production of molten iron
JPH0242884B2 (en)
JPS63176407A (en) Production of molten iron
JPH01252712A (en) Method for operating smelting reduction furnace
SU729251A1 (en) Method of steel casting in hearth steel-melting set
JPS62188714A (en) Production of molten iron
JPH01275711A (en) Smelt-reduction method
JPH01149911A (en) Smelting reduction process
JPH0310030A (en) Treating furnace for by-product in process for producing stainless steel
JPS59110711A (en) Method for cooling furnace wall of shaft type fusion reduction furnace
JPH01195211A (en) Method for melting and reducing iron oxide
JPS62243706A (en) Method for circulating gas generated in melt reduction smelting
JPH0474819A (en) Production of chromium-containing molten iron