JPS62228306A - Tool for machining ceramics - Google Patents

Tool for machining ceramics

Info

Publication number
JPS62228306A
JPS62228306A JP7234286A JP7234286A JPS62228306A JP S62228306 A JPS62228306 A JP S62228306A JP 7234286 A JP7234286 A JP 7234286A JP 7234286 A JP7234286 A JP 7234286A JP S62228306 A JPS62228306 A JP S62228306A
Authority
JP
Japan
Prior art keywords
cutting edge
tool
angle
rake
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7234286A
Other languages
Japanese (ja)
Inventor
Tetsuo Nakai
哲男 中井
Akio Hara
昭夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7234286A priority Critical patent/JPS62228306A/en
Publication of JPS62228306A publication Critical patent/JPS62228306A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve fracture and abrasion resistance and enhance machining efficiency by applying a specific value to the front top rake of a cutting edge, the intersection angle of a rake face and a flank, a side cutting edge angle, the front top rake of a heat-resisting diamond tool and the like. CONSTITUTION:When the front top rake theta1 of a sintered diamond tool is taken at -15 deg.--60 deg., and the intersection angle theta2 of a rake face and a flank at 90 deg. or more, the fracture and abrasion resistance of the tool is improved. Furthermore, in machining ceramics of high hardness and strength, the adoption of a side cutting edge angle theta3 at 60 deg.-89 deg. lessens a stress working on a cutting edge, enlarges a cutting edge length, dissipates heat generated during machining and improves the abrasion resistance of the tool. Also, a heat-resisting diamond tool is less than a normal sintered diamond tool in strength, but the application of the front top rake theta1 of -25 deg.--50 deg. to the heat-resisting diamond tool alleviates a shear force working on the cutting edge thereof and enables high speed machining, thereby improving efficiency.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明はセラミックスを高能率で切削加工する工具に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a tool for cutting ceramics with high efficiency.

口、従来技術の問題点 従来からアルミナセラミックスが切削工具や機械部品等
に使用されていたが、最近窒化硅素、炭化硅素、ジルコ
ニアなどのファインセラミックス材料がその耐熱性、耐
摩耗性、軽量性、化学安定性などにより注目され、新世
代の機械構造部品。
Problems with conventional technology Alumina ceramics have traditionally been used for cutting tools and machine parts, but recently fine ceramic materials such as silicon nitride, silicon carbide, and zirconia have improved their heat resistance, wear resistance, and light weight. A new generation of mechanical structural parts that has attracted attention due to its chemical stability.

耐摩材料、電子部品、医療部品などの用途に実用化する
ため精力的に開発が進められている。セラミックスは一
般に硬度が高く、脆いため、効率的な加工が困難である
が、これが実用化を遅らしている大きな原因であると考
えられる。
Development is actively underway to put it into practical use in wear-resistant materials, electronic parts, medical parts, and other applications. Ceramics generally have high hardness and are brittle, making it difficult to process them efficiently, and this is thought to be a major reason for the delay in their practical application.

セラミックスの加工については種々研究がなされている
が、現状の加工はダイヤモンド砥石による研削、切断あ
るいはラッピングが主体である。
Although various studies have been conducted on the processing of ceramics, the current processing mainly involves grinding, cutting, or lapping with a diamond grindstone.

適切なダイヤモンド砥石及び加工条件が設定されれば、
これらのセラミックスを加工することは可能であるが、
加工能率、加工コスト、加工形状等の点で問題がある。
If the appropriate diamond grinding wheel and processing conditions are set,
Although it is possible to process these ceramics,
There are problems in processing efficiency, processing cost, processing shape, etc.

これらの材料を使いこなすたためには加工能率が高く、
加工の柔軟性にすぐれた切削加工が可能となれば良い。
In order to make full use of these materials, processing efficiency is high,
It would be good if it were possible to perform cutting processing with excellent processing flexibility.

一般に工具材料は被削材の4〜5倍以上の硬度を有する
必要があるとされているが、この点からみるとセラミッ
クスの切削加工を行いうる工具としては・焼結ダイヤモ
ンド工具がその第1候補と考えられる。
It is generally said that tool materials need to have a hardness 4 to 5 times that of the workpiece material, but from this point of view, sintered diamond tools are the first tools that can be used to cut ceramics. Considered a candidate.

そこで第1図に示す如く、超硬合金に接合された焼結ダ
イヤモンド二をさらに超硬合金に鑞付けした工具の刃先
半径をIIIImに加工し、すくい角〜5゜rビッカー
ス硬度2000のアルミナセラミックスを切削した。そ
の結果5分切削したところ、すくい面で焼結ダイヤモン
ドが欠損し切削不能となった。
Therefore, as shown in Fig. 1, the sintered diamond 2 bonded to the cemented carbide was further brazed to the cemented carbide, and the cutting edge radius of the tool was machined to IIIm. was cut. As a result, after cutting for 5 minutes, the sintered diamond was damaged on the rake face and cutting became impossible.

またアルミナセラミックスと同様にしてビッカース硬度
1600の窒化硅素を切削したが、1分間切削した時点
ですくい面で焼結ダイヤモンドが欠損し、現状の焼結ダ
イヤモンド工具ではセラミックスを実用的に切削加工す
ることが困難である。
In addition, silicon nitride with a Vickers hardness of 1600 was cut in the same manner as alumina ceramics, but the sintered diamond broke off on the rake face after 1 minute of cutting, making it difficult to cut ceramics practically with current sintered diamond tools. is difficult.

本発明者等は、焼結ダイヤモンドの欠損が何故生しるか
を調査した。その結果セラミックスは硬度が高いため、
焼結ダイヤモンドの刃先が、被削材にくいつきにくく背
分力が高くなる (特に工具刃先が摩耗すれば、さらに
上昇する)が、焼結ダイヤモンドは脆性材料であるため
圧縮強度は高いが引張りやせん断強度が低いため、この
応力に耐えきれずに刃先チッピングしたり欠損したりす
るものと推定される。
The present inventors investigated why defects occur in sintered diamond. As a result, ceramics have high hardness,
The cutting edge of sintered diamond is difficult to stick to the workpiece, and the thrust force increases (particularly when the cutting edge of the tool wears out, the force increases further). However, since sintered diamond is a brittle material, it has high compressive strength but low tensile force. Since the shear strength is low, it is presumed that the cutting edge cannot withstand this stress and the cutting edge will chip or break.

したがって、セラミックスを実用的に加工するには、こ
の欠損を防止しなければならない。
Therefore, in order to process ceramics practically, this defect must be prevented.

ハ0問題点を解決するための手段 本発明者等は、セラミックスの切削時の刃先欠損防止に
ついて、研究を行ったところ第1図の如く焼結ダイヤモ
ンド合<い角θ+ヲts°〜−叉 60°にし、かつ、すくい面と逃げ面の交:角θ2を9
0°以上にすることにより、耐欠損性のみならず耐摩耗
性も大巾に向上することを見い出した。
Means for Solving Problems The inventors of the present invention conducted research on preventing cutting edge breakage when cutting ceramics, and as shown in Figure 1, the sintered diamond angle θ + wots° ~ - 60°, and the intersection of the rake face and flank face: angle θ2 is 9
It has been found that by adjusting the angle to 0° or more, not only fracture resistance but also wear resistance is greatly improved.

さらに硬度と強度の高いセラミックスを切削加工する場
合、第2図に示す如く横切刃角θゴを60’ 〜89°
にすれば、耐摩耗性は向上する。
Furthermore, when cutting ceramics with high hardness and strength, the side edge angle θ should be set between 60' and 89° as shown in Figure 2.
By doing so, the wear resistance will be improved.

特に焼結ダイヤモンドとして、1000を以上の耐熱性
を有するものを使用すれば、高硬度のセラミツにするこ
とにより、欠損を防止できかつ耐摩耗性が向上するのは
次の如く推定できる。
In particular, if a sintered diamond having a heat resistance of 1,000 or higher is used, it can be estimated that chipping can be prevented and wear resistance can be improved by using high hardness ceramic as follows.

セラミックス切削においては、切屑は被削材の脆性破壊
により生成されるため、主分力や送り分力は低いがセラ
ミックスの硬変が高いため、前述の如く刃先はくいつき
にくく背分力が高くなるため工具刃先には大きなせん断
部力が負荷される。
When cutting ceramics, chips are generated by brittle fracture of the workpiece material, so the principal component force and feed component force are low, but the hardness of the ceramic is high, so as mentioned above, the cutting edge is difficult to stick, and the back force is high. Therefore, a large shear force is applied to the tool cutting edge.

このせん断力は、すくい角が小さくなるほど減少牟 また、すくい角が一60’ より小さい場合背分力が異
常に高くなり、切削できな(なるため−15°ヤー叉 60°とした。すくい面と逃げ面の交=角θ2について
は、90°未満では刃先の強度が不足するため刃先は欠
損する。
This shearing force decreases as the rake angle becomes smaller.Also, if the rake angle is smaller than 160', the thrust force becomes abnormally high and cutting is impossible (this is why -15° and 60° are set. Regarding the intersection of the flank and the flank surface = angle θ2, if the angle is less than 90°, the strength of the cutting edge will be insufficient and the cutting edge will break.

セラミックス切削では、前述の如く被削材は脆性破壊に
より切屑は生成されるが、第3図に示した如く切込み深
さが大きいと破壊規模が大きくなり工具刃先に負荷され
る応力が高くなり、チッピングによる摩耗の進行が著し
い。このような場合、切込み深さを減少させるため、横
切刃角θ、を大きくすれば良い。特に硬質セラミックス
を切削する場合、θ3を60°〜89°にすれば刃先に
負荷される応力が減少するとともに切刃長が長くなるた
め、切削中に発生した熱を拡散する効果が上り有効であ
る。θ□が60°未満では効果は少なく、θ3が89°
を越えると切刃長さが大きくなり背分力が高くなる。特
に焼結ダイヤモンドは構成するダイヤモンド粒子の粒度
が粗いほどその耐摩耗性は向上するが、強度は低下する
。また、セラミックス切削では、セラミックスの熱伝導
性が低いものが多く、切屑に発生した熱が取り去られる
星も少ないため工具刃先は高温となるが、このため特願
昭59−226574号[工具用ダイヤモンド焼結体ダ
イヤモンドは通常の焼結ダイヤモンドより強度−25°
〜−50°とすることにより工具刃先に負荷されるせん
断力を緩和して使用することにより、高速でセラミック
スを切削することが可能となり、加工能率はさらに向上
する。
When cutting ceramics, chips are generated in the workpiece due to brittle fracture as described above, but as shown in Figure 3, when the depth of cut is large, the scale of the fracture increases and the stress applied to the tool edge increases. Wear progress due to chipping is significant. In such a case, in order to reduce the depth of cut, the side edge angle θ may be increased. Particularly when cutting hard ceramics, setting θ3 to 60° to 89° reduces the stress applied to the cutting edge and increases the length of the cutting edge, which is effective in dispersing the heat generated during cutting. be. The effect is small when θ□ is less than 60°, and when θ3 is 89°
If it exceeds , the cutting edge length will increase and the back force will increase. In particular, in sintered diamond, the coarser the particle size of the diamond particles, the higher the wear resistance, but the lower the strength. In addition, when cutting ceramics, many ceramics have low thermal conductivity, and there are few stars from which the heat generated in the chips can be removed, resulting in a high temperature at the cutting edge of the tool. Sintered diamond is 25° stronger than regular sintered diamond.
By setting the angle to ~-50°, the shearing force applied to the cutting edge of the tool is relaxed and used, thereby making it possible to cut ceramics at high speed and further improving machining efficiency.

本発明においては、丸チップすくい角が−15゜〜−6
0°になるようにクランプして使用すれば切込み深さに
より、横切刃角が調整できるとともに、焼結ダイヤモン
ド面が広く、熱の放散に対して有利であるうえ、刃先が
摩耗しても節単に刃先の位置を変えられるので非常に経
済的である。
In the present invention, the round chip rake angle is -15° to -6
If the cutting angle is clamped at 0°, the cross-cutting angle can be adjusted depending on the depth of cut, and the sintered diamond surface is wide, which is advantageous for heat dissipation, and the cutting edge will not wear out. It is very economical because the position of the cutting edge can be easily changed.

以下、実施例によって詳細に説明する。Examples will be described in detail below.

ンドをφ8.2mmの円板に加工し、これを種々のすく
い角をもつホルダーに固定して、曲げ強度70kg/m
m”、ビッカース硬度1500の窒化硅素を切込み0.
5mm”、送り0.05mm/rev、速度40m/m
inで3分切削叉 した。なお、すくい面と逃げ面の交=角θ2は90゜で
ある。結果を第3図に記す。
The bending strength was 70 kg/m by processing the cylindrical disc into a disc with a diameter of 8.2 mm and fixing it in holders with various rake angles.
m”, silicon nitride with a Vickers hardness of 1500 is cut to a depth of 0.
5mm”, feed 0.05mm/rev, speed 40m/m
It was cut for 3 minutes with an in. Note that the intersection of the rake face and the flank face = angle θ2 is 90°. The results are shown in Figure 3.

窒化硅素切削では逃げ面摩耗の他に横逃げ境界部に刃先
が(いつかず切削不能であった。
When cutting with silicon nitride, in addition to flank wear, the edge of the cutting edge was damaged at the border of side relief, making it impossible to cut.

実施例2 ・)粒度100 μm以下のダイヤモンド粒子が97容
量%含有し残部がCOよりなる焼結ダイヤモンドAと、
この焼結ダイヤモンドよりCOを酸処理により溶出した
耐熱性ダイヤモンドBをφ13mmに加工し一吟くい角
−15°、−25°、−45°のホルダーに固定してビ
ッカース硬度1600.曲げ強度80kg/mm”。
Example 2 ・) Sintered diamond A containing 97% by volume of diamond particles with a particle size of 100 μm or less and the remainder being CO;
The heat-resistant diamond B, in which CO was eluted from the sintered diamond by acid treatment, was processed to a diameter of 13 mm and fixed in holders with scoop angles of -15°, -25°, and -45°, and had a Vickers hardness of 1600. Bending strength: 80kg/mm.

の窒化硅素を切削速度50m/分、 Loom/分、切
込み0.5mm、送り0 、05mm/ revで10
分間切削した。
Cutting silicon nitride at 50 m/min, Loom/min, depth of cut 0.5 mm, feed 0, 05 mm/rev at 10
Cut for a minute.

結果を第1表に示す。なお耐熱性焼結ダイヤモンドBは
1000℃でも劣化しないものであった。
The results are shown in Table 1. Note that heat-resistant sintered diamond B did not deteriorate even at 1000°C.

第  1  表 粒度30ソサ焼結ダイヤモンドが超硬合金番こ接合した
ものを第4図に示す如く加工した。すくい面と逃げ面の
交叉角θ2は80’ 、 90°、120°とした。こ
のチップをすくい角が一30°となるようにホルダーに
固定し、ビッカース硬度2200のアルミナを切込み0
.5mm、送り0.1mm/rev、速度5〇−分で、
20分間切削した。結果を第2表に示す。
Table 1: A piece of cemented carbide sintered diamond with a grain size of 30 was machined as shown in FIG. The intersection angles θ2 between the rake face and the flank face were set to 80', 90°, and 120°. This tip was fixed in a holder so that the rake angle was 130°, and the alumina with a Vickers hardness of 2200 was cut into 0.
.. 5mm, feed rate 0.1mm/rev, speed 50-min,
It was cut for 20 minutes. The results are shown in Table 2.

第2表 粒度20ソ署焼結ダイヤモンドが超硬合金に接合した複
合焼結体を3mmX5mmの長方形に加工し、30°、
50°、60°、80°、85°の5種類を用意した。
Table 2: A composite sintered body in which sintered diamond with grain size of 20 mm is bonded to cemented carbide is processed into a rectangle of 3 mm x 5 mm.
Five types were prepared: 50°, 60°, 80°, and 85°.

すくい面は一30゛ とした。この工具を用いてピンカ
ース硬度1400の窒化硅素を切削速度50m/分1切
込み0.3mn+、送り0.08mm/revで切削し
た。
The rake surface was set to 130°. Using this tool, silicon nitride with a Pinkers hardness of 1400 was cut at a cutting speed of 50 m/min, 1 cutting depth of 0.3 mm+, and a feed rate of 0.08 mm/rev.

結果を第3表に示す。The results are shown in Table 3.

第  3  表 二1発明の詳細 な説明したように本発明の工具は、セラミックスの切削
に対して耐欠損性、耐摩耗性がすぐれるため特に現在注
口されている間強度ファインセラミックスの切削に使用
すれば高能率、低コストで加工可能となる。
As detailed in Table 21 of the invention, the tool of the present invention has excellent chipping resistance and wear resistance when cutting ceramics, so it is particularly suitable for cutting fine ceramics during pouring. If used, it will be possible to process with high efficiency and low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の切削工具によってセラミックを切削し
ている時の正面断面図、第2図は、第1図の上面図、第
3図は実施例1の試験結果(すく由 い角と摩耗屯)を示す図、第4図は実施例3で使用した
焼結ダイヤモンド工具の上面図(イ、ハ)と正面図(口
、二)、第5図は実施例4で使用した工具の平面図(イ
)と側面図(ロ)である。 1.5.9:セラミノクー被削材、2. 14.17.
22:すくい面、3 、15.18,25 :逃げ面、
4,6,1013.19.21 :焼結ダイヤモンド、
16,20,23 :焼結ダイヤモンドに接合された超
硬合金、24:超硬合金製シャンク、7,11:1回転
後の焼結ダイヤモンド工具の位置、8.12  :切屑
断面形状、θ、:ず面 くい角(中心線とすくい)t、のなす角で、中心線より
上部にある場合を負とする。)、θ2 :すくい面と逃
げ面の交叉角、θ3 =横切刃角。 第1図
Fig. 1 is a front sectional view when ceramic is being cut with the cutting tool of the present invention, Fig. 2 is a top view of Fig. 1, and Fig. 3 is the test result of Example 1 (rake angle and Figure 4 is a top view (a, c) and front view (opening, 2) of the sintered diamond tool used in Example 3, and Figure 5 is a diagram showing the wear rate of the tool used in Example 4. They are a plan view (a) and a side view (b). 1.5.9: Ceraminocou work material, 2. 14.17.
22: Rake face, 3, 15.18, 25: Relief face,
4,6,1013.19.21: Sintered diamond,
16, 20, 23: Cemented carbide joined to sintered diamond, 24: Cemented carbide shank, 7, 11: Position of sintered diamond tool after 1 rotation, 8.12: Chip cross-sectional shape, θ, : The angle formed by the rake angle (center line and rake) t, which is negative if it is above the center line. ), θ2: intersection angle of rake face and flank face, θ3 = side edge angle. Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)刃先の前すくい角θ_1が−15°〜−60°で
あり、かつすくい面と逃げ面との交叉角θ_2が90°
以上で工具刃先材質が焼結ダイヤモンドからなることを
特徴とするセラミック加工用工具。
(1) The front rake angle θ_1 of the cutting edge is -15° to -60°, and the intersection angle θ_2 between the rake face and flank face is 90°
The above provides a ceramic processing tool characterized in that the cutting edge material of the tool is made of sintered diamond.
(2)横切刃角θ_3が60°〜89°であることを特
徴とする特許請求の範囲第1項記載のセラミック加工用
工具。
(2) The ceramic processing tool according to claim 1, wherein the side edge angle θ_3 is 60° to 89°.
(3)該焼結ダイヤモンドが1000℃以上の耐熱性を
有することを特徴とする特許請求の範囲第1項記載のセ
ラミック加工用工具。
(3) The ceramic processing tool according to claim 1, wherein the sintered diamond has a heat resistance of 1000° C. or higher.
(4)前すくい角θ_1が−25°〜−50°であるこ
とを特徴とする特許請求の範囲第1項記載のセラミック
加工用工具。
(4) The ceramic processing tool according to claim 1, wherein the front rake angle θ_1 is -25° to -50°.
JP7234286A 1986-03-29 1986-03-29 Tool for machining ceramics Pending JPS62228306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7234286A JPS62228306A (en) 1986-03-29 1986-03-29 Tool for machining ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7234286A JPS62228306A (en) 1986-03-29 1986-03-29 Tool for machining ceramics

Publications (1)

Publication Number Publication Date
JPS62228306A true JPS62228306A (en) 1987-10-07

Family

ID=13486525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7234286A Pending JPS62228306A (en) 1986-03-29 1986-03-29 Tool for machining ceramics

Country Status (1)

Country Link
JP (1) JPS62228306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109609A (en) * 1988-10-18 1990-04-23 Sunray Reinetsu Co Ltd Tool for machining ceramic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109609A (en) * 1988-10-18 1990-04-23 Sunray Reinetsu Co Ltd Tool for machining ceramic

Similar Documents

Publication Publication Date Title
JP2709732B2 (en) Silicon carbide whisker-alumina composition coated with alumina
JP5740673B2 (en) cBN cutting tools
JPH04372306A (en) Nicked cutting tool
JP2019517930A (en) Turning insert
KR960016067B1 (en) Alumina-titanium carbide -silicon carbide composition
JP3476951B2 (en) Cutting tool for CVD diamond
JPS62228306A (en) Tool for machining ceramics
JP3479688B2 (en) Difficult-to-cut material cutting tools
JP2015091627A (en) Cbn cutting tool
JPS58177213A (en) Rotary tool made of high hardness sintered material
JPH06335816A (en) Minimum diameter end mill
JP3043782B2 (en) Tools for drilling hard and brittle materials
JPS6311203A (en) Ceramics cutting tool
JPH1148016A (en) Small-diameter drill
JPH01252307A (en) Hard sintered body tool for interrupted cutting
RU2201846C2 (en) Cutting tip
JP2004283965A (en) End mill
JP2005186214A (en) Cutting insert and cutting tool
JPS6195808A (en) Boring tool
JP2722649B2 (en) Polycrystalline diamond tools for cutting
JP2002254234A (en) Ball end mill
CN219599889U (en) Ceramic inner cavity surface roughness machining cutter
JPS62271606A (en) High hardness sintered material cutting tool
JP2016190317A (en) CBN Cutting tool
JP2002137108A (en) Drilling method for brittle material and drilling tool used therefor