JP2015091627A - Cbn cutting tool - Google Patents

Cbn cutting tool Download PDF

Info

Publication number
JP2015091627A
JP2015091627A JP2015027211A JP2015027211A JP2015091627A JP 2015091627 A JP2015091627 A JP 2015091627A JP 2015027211 A JP2015027211 A JP 2015027211A JP 2015027211 A JP2015027211 A JP 2015027211A JP 2015091627 A JP2015091627 A JP 2015091627A
Authority
JP
Japan
Prior art keywords
cutting
cbn
cutting edge
tool
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015027211A
Other languages
Japanese (ja)
Inventor
力 平野
Tsutomu Hirano
力 平野
克己 岡村
Katsumi Okamura
克己 岡村
直樹 渡部
Naoki Watabe
直樹 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Original Assignee
Sumitomo Electric Hardmetal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2015027211A priority Critical patent/JP2015091627A/en
Publication of JP2015091627A publication Critical patent/JP2015091627A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PROBLEM TO BE SOLVED: To prolong a life of a cBN cutting tool used for cutting heat resistant alloys including a Ni-based one.SOLUTION: A cBN cutting tool comprises: a cutting-edge tip made of a cBN sintered body with heat conductivity of 20 to 70 W/mK using cBN particles with an average diameter between 0.5 μm and 2 μm; and an alloy holding the cutting-edge tip at a corner portion. The cutting-edge tip is provided with a cutting edge having a positive rake angle between 2° and 20°.

Description

この発明は、cBN(立方晶型窒化硼素)焼結体で切れ刃を構成したcBN切削工具、詳しくは、Ni基耐熱合金に代表される耐熱合金の高速切削用途での寿命向上を図ったcBN切削工具に関する。   The present invention relates to a cBN cutting tool having a cutting edge made of a cBN (cubic boron nitride) sintered body, and more specifically, to improve the life in high-speed cutting applications of heat-resistant alloys represented by Ni-base heat-resistant alloys. It relates to a cutting tool.

切削加工における難削材のひとつにNi基耐熱合金がある。このNi基耐熱合金を被削材とする切削加工において従来多用されている超硬合金製工具を使用すると、強度面から切削速度が早くとも80m/min以下に制限され、加工能率が高まらない。   One of difficult-to-cut materials in cutting is Ni-base heat-resistant alloy. When using a cemented carbide tool that has been widely used in the cutting work using this Ni-based heat-resistant alloy as a work material, the cutting speed is limited to 80 m / min or less at the earliest in terms of strength, and the machining efficiency does not increase.

このために、高温硬度に優れるcBN焼結体で切れ刃を構成したcBN切削工具を用いて200m/min以上の高速切削を行うことが検討されている。   For this reason, performing high-speed cutting of 200 m / min or more using a cBN cutting tool having a cutting edge made of a cBN sintered body excellent in high-temperature hardness has been studied.

ところが、cBNは超硬合金に比べて高硬度である半面、靭性が低いことから、そのcBN切削工具で耐熱合金を切削する場合、横切れ刃部に欠損が生じ、寿命維持の信頼性に欠ける。cBNはセラミックスに比べると靭性が高いが、耐熱合金の切削では靭性不足を否めない。   However, cBN has higher hardness than cemented carbide, but its toughness is low. Therefore, when a heat-resistant alloy is cut with the cBN cutting tool, a defect occurs in the side cutting edge, and the reliability for maintaining the life is lacking. Although cBN has higher toughness than ceramics, cutting to a heat-resistant alloy cannot deny the lack of toughness.

その対策として、下記特許文献1に記載されるように、切れ刃を構成するcBN焼結体の熱伝導率を低下させ、それにより、刃先で発生する熱(切削熱)で被削材を軟化させながら切削を行う試みがある。   As a countermeasure, as described in Patent Document 1 below, the thermal conductivity of the cBN sintered body constituting the cutting edge is lowered, thereby softening the work material with the heat (cutting heat) generated at the cutting edge. There is an attempt to cut while.

また、切れ刃の強化策として、ネガランドを付与するなどして刃先のすくい角を負にする方法があり、この方法は脆い材料からなる切れ刃の欠損防止に有効である。   Further, as a measure for strengthening the cutting edge, there is a method of making the rake angle of the cutting edge negative by applying a negative land or the like, and this method is effective for preventing the cutting edge made of a brittle material from being broken.

特開2011−189421号公報JP2011-189421A

靭性の低い脆い材料からなる切れ刃については、刃先の強化処理を行うことが通常なされている。その強化処理(ネガランドの付与など)を施した切れ刃は、強化処理による刃先の鈍化によって切れ味が鈍り、それにより、発生する切削熱が多くなる。   For cutting edges made of a brittle material with low toughness, the cutting edge is usually reinforced. The cutting edge that has been subjected to the strengthening process (such as application of negative land) is dull due to the blunting of the cutting edge due to the strengthening process, thereby increasing the amount of cutting heat generated.

従って、切れ刃の材料としてcBN焼結体を用い、切削熱で被削材を軟化させながら切削を進める場合には、刃先を鈍らせることが工具の寿命向上に関して有効と考えた。   Therefore, when cBN sintered body is used as the material of the cutting edge and cutting is advanced while softening the work material with cutting heat, it was considered effective to improve the tool life by blunting the cutting edge.

ところが、その方法では、cBN切削工具の寿命は十分に高まらなかった。   However, with this method, the life of the cBN cutting tool was not sufficiently increased.

そこで、この発明は、耐熱合金の切削に利用するcBN切削工具の寿命を従来敬遠されていた手法を適用して向上させることを課題としている。   Therefore, an object of the present invention is to improve the life of a cBN cutting tool used for cutting a heat-resistant alloy by applying a conventionally avoided technique.

上記の課題を解決するため、この発明においては、平均粒径が0.5μm以上、2μm以下のcBN粒子を使用した熱伝導率が20〜70W/m・KのcBN焼結体からなる刃先チップと、その刃先チップをコーナ部に保持した台金をcBN切削工具に具備させ、その工具の前記刃先チップに設けられる切れ刃に正のすくい角を付与した。   In order to solve the above problems, in the present invention, a cutting edge tip comprising a cBN sintered body having a thermal conductivity of 20 to 70 W / m · K using cBN particles having an average particle diameter of 0.5 μm or more and 2 μm or less. Then, a cBN cutting tool was provided with a base metal holding the cutting edge tip at the corner, and a positive rake angle was given to the cutting edge provided on the cutting edge tip of the tool.

この発明のcBN切削工具は、刃先チップを熱伝導率の低いcBN焼結体で形成し、その刃先チップに設けられる切れ刃に正のすくい角を付与している。   In the cBN cutting tool of the present invention, the cutting edge tip is formed of a cBN sintered body having a low thermal conductivity, and a positive rake angle is imparted to the cutting edge provided on the cutting edge tip.

切れ刃に正のすくい角を付与したcBN切削工具は、実験の結果、従来の刃先に強化処理を施した耐熱合金切削用cBN切削工具に比べて横切れ刃部境界摩耗(以下、VNと表記)や逃げ面摩耗(フランク摩耗:以下、VBと表記)が抑制され、これにより、従来の工具よりも寿命が向上することが確認された。   As a result of experiments, cBN cutting tools with a positive rake angle applied to the cutting edge have a side cutting edge boundary wear (hereinafter referred to as VN) compared to conventional cBN cutting tools for cutting heat-resistant alloys that have been reinforced. And flank wear (flank wear: hereinafter referred to as VB) were suppressed, and it was confirmed that the life was improved as compared with conventional tools.

この発明のcBN切削工具の一例を示す斜視図である。It is a perspective view which shows an example of the cBN cutting tool of this invention. この発明のcBN切削工具の他の例を示す斜視図である。It is a perspective view which shows the other example of the cBN cutting tool of this invention. 図1のcBN切削工具の刃先チップを設けたコーナ部の拡大平面図である。FIG. 2 is an enlarged plan view of a corner portion provided with a cutting edge tip of the cBN cutting tool of FIG. 1. 図3のコーナ角の2等分線CLに沿った断面図である。FIG. 4 is a sectional view taken along a bisector CL of a corner angle in FIG. 3. 刃先部の拡大斜視図である。It is an expansion perspective view of a blade edge | tip part. この発明の工具の製造に利用する研削盤の一例の要部を示す平面図である。It is a top view which shows the principal part of an example of the grinding machine utilized for manufacture of the tool of this invention. 研削盤のチャックの動きを示す正面図である。It is a front view which shows the motion of the chuck | zipper of a grinding machine. 研削盤のチャックの動きを示す平面図である。It is a top view which shows the motion of the chuck | zipper of a grinding machine. すくい面の研削状態を示す図である。It is a figure which shows the grinding state of a rake face.

以下、この発明のcBN切削工具の実施の形態を添付図面の図1〜図9に基づいて説明する。   Embodiments of a cBN cutting tool according to the present invention will be described below with reference to FIGS.

図1は、この発明を三角形cBN切削インサートに適用したものであり、また、図2はこの発明を正方形cBN切削インサートに適用したものである。   FIG. 1 shows the present invention applied to a triangular cBN cutting insert, and FIG. 2 shows the present invention applied to a square cBN cutting insert.

これ等のcBN切削工具(cBN切削インサート)1は、超硬合金、セラミックス、サーメット、焼結合金などからなる台金(形状は菱形を含む多角形)2のコーナ部にcBN焼結体の小片で構成された刃先チップ3を接合するなどして設け、切れ刃4をそのcBN焼結体で構成している。5は刃先チップ3に形成されたすくい面、6は逃げ面である。   These cBN cutting tools (cBN cutting inserts) 1 are small pieces of a cBN sintered body at a corner of a base metal (a polygon including a rhombus) 2 made of cemented carbide, ceramics, cermet, sintered alloy, or the like. The cutting edge tip 4 constituted by the above is provided by bonding or the like, and the cutting edge 4 is constituted by the cBN sintered body. Reference numeral 5 denotes a rake face formed on the cutting edge tip 3, and reference numeral 6 denotes a flank face.

刃先チップ3は、平均粒径が0.5μm以上、2μm以下のcBN粒子を使用し、そのcBN粒子の含有率を調整することによって熱伝導率を20〜70W/m・Kに設定した
cBN焼結体で作られている。
The cutting edge tip 3 uses cBN particles having an average particle size of 0.5 μm or more and 2 μm or less, and the thermal conductivity is set to 20 to 70 W / m · K by adjusting the content of the cBN particles. Made of union.

cBN焼結体の原料となすcBN粉末の平均粒径を0.5μm以上、2μm以下とし、さらに、そのcBN粉末を用いたcBN焼結体の熱伝導率を20〜70W/m・Kとなすことで後述する正のすくい角の付与と、横切れ刃部の欠損及び摩耗の抑制を両立させることができる。   The average particle diameter of the cBN powder used as the raw material for the cBN sintered body is 0.5 μm or more and 2 μm or less, and the thermal conductivity of the cBN sintered body using the cBN powder is 20 to 70 W / m · K. Thus, it is possible to achieve both the provision of a positive rake angle, which will be described later, and the suppression of wear and tear on the side cutting edge portion.

図2の工具は、その刃先チップ3が全コーナ部に設けられている。その刃先チップ3は、全コーナ部にある必要はない。図1の工具のように、1箇所のコーナ部に設けられていてもよいし、菱形切削インサートでは、2箇所の鋭角対角コーナ部に設けられていてもよい。   In the tool of FIG. 2, the cutting edge tip 3 is provided at all corners. The cutting edge tip 3 does not have to be at all corners. As in the tool of FIG. 1, it may be provided at one corner portion, or may be provided at two acute angle corner portions in the rhombus cutting insert.

cBN焼結体の刃先チップの製造は、以下に述べる方法で行える。その方法は前掲の特許文献1に詳しく記載されているので、ここでは、簡単に述べるにとどめる。   The cutting edge tip of the cBN sintered body can be manufactured by the method described below. Since this method is described in detail in the above-mentioned Patent Document 1, only a brief description will be given here.

特許文献1が記載している製造方法は、先ず、微細粒径のWC粉末とCo粉末とAl粉末を質量比で、WC:Co:Al=25:68:7の割合で混合し、これを真空中1000℃で30分間熱処理した化合物を粉砕して結合相を構成する原料粉末を得る。   In the manufacturing method described in Patent Document 1, first, WC powder, Co powder, and Al powder having a fine particle diameter are mixed at a mass ratio of WC: Co: Al = 25: 68: 7. The compound heat-treated at 1000 ° C. for 30 minutes in a vacuum is pulverized to obtain a raw material powder constituting the binder phase.

次に、これも微細粒径のAl粉末とZr粉末の混合物を窒素雰囲気中1000℃で30分間熱処理して第1化合物を得る。その後、同化合物を粗粉砕し、さらに、直径が1mmに満たないジルコニア製メディアを用いてエタノール溶媒中でメディアと粗粉砕された第1化合物を微粉砕し、メディアを除去して断熱相を構成する原料粉末を得る。   Next, a first compound is obtained by heat-treating a mixture of Al powder and Zr powder having a fine particle diameter at 1000 ° C. for 30 minutes in a nitrogen atmosphere. Thereafter, the compound is coarsely pulverized, and further, the medium and the coarsely pulverized first compound are pulverized in an ethanol solvent using a zirconia medium having a diameter of less than 1 mm, and the medium is removed to form an adiabatic phase. The raw material powder to be obtained is obtained.

次いで、得られた結合相を構成する原料粉末と断熱相を構成する原料粉末と平均粒径が0.5μm以上、2μm以下のcBN粉末を焼結後のcBN含有率が所望の体積%となるように配合、混合し、これを乾燥させる。そしてさらに、その混合粉末を金属製支持板に積層してMoカプセルに充填後、超高圧装置により、例えば,7GPa、温度1750℃で30分間焼結する。   Next, the cBN content after sintering the obtained raw material powder constituting the binder phase, the raw material powder constituting the heat insulating phase, and the cBN powder having an average particle diameter of 0.5 μm or more and 2 μm or less becomes a desired volume%. Blend and mix and dry. Further, the mixed powder is laminated on a metal support plate and filled into Mo capsules, and then sintered with, for example, 7 GPa and a temperature of 1750 ° C. for 30 minutes by an ultrahigh pressure apparatus.

そして、このようにして得られたcBN焼結体を所定の形状に切断し、台金に接合して
工具のブランク材を得る。その後、必要箇所の研削を実施して所定形状の工具に仕上げる。
Then, the cBN sintered body thus obtained is cut into a predetermined shape and joined to a base metal to obtain a tool blank. Then, grinding of a required part is performed and it finishes in the tool of a predetermined shape.

研削は、少なくとも刃先チップ3に設けるすくい面5と逃げ面6について行い、すくい面5を研削するときに切れ刃4に正のすくい角を付与する。図4に示したそのすくい角θは、2°以上、20°以下、より好ましくは5°以上、15°以下の正の値とする。   Grinding is performed on at least the rake face 5 and the flank face 6 provided on the cutting edge tip 3, and when the rake face 5 is ground, a positive rake angle is given to the cutting edge 4. The rake angle θ shown in FIG. 4 is a positive value of 2 ° or more and 20 ° or less, more preferably 5 ° or more and 15 ° or less.

また、そのすくい角θは、切れ刃先端(刃先)での値とする。図4は、図3の平面図においてコーナ角の2等分線CLに沿った断面を表したものであって、図3においてコーナ角の2等分線CLが切れ刃4と交差した位置が切れ刃先端である。   The rake angle θ is a value at the cutting edge tip (cutting edge). 4 shows a cross section along the bisector CL of the corner angle in the plan view of FIG. 3, and the position where the bisector CL of the corner angle intersects the cutting edge 4 in FIG. The tip of the cutting edge.

なお、すくい角θを上記の範囲に設定する理由は、評価試験の結果、すくい角θは2°〜5°或いは15°〜20°でも摩耗抑制の効果が確認されたが、θが5°以上、15°以下で特に摩耗抑制の効果が高かったことによる。   The reason for setting the rake angle θ in the above range is that, as a result of the evaluation test, the effect of suppressing wear was confirmed even when the rake angle θ was 2 ° to 5 ° or 15 ° to 20 °, but θ was 5 °. As described above, the effect of suppressing wear is particularly high at 15 ° or less.

工具製造時の必要箇所の研削は、NC研削盤を使用して行う。使用する研削盤は、位置と姿勢の数値制御がなされる図6に示すようなチャック11と、定位置で回転する砥石(図のそれはカップ砥石)12を有する。   An NC grinder is used to grind the necessary parts during tool manufacture. The grinder to be used has a chuck 11 as shown in FIG. 6 in which numerical control of the position and orientation is performed, and a grindstone (in the figure, a cup grindstone) 12 that rotates at a fixed position.

この研削盤に対するワーク(cBN切削工具)の搬入・搬出と、チャック11に対するワークの受け渡しは、位置制御がなされるロボットハンド(図示せず)を用いて行われる。   The work (cBN cutting tool) is carried into and out of the grinding machine, and the work is delivered to the chuck 11 using a robot hand (not shown) whose position is controlled.

この発明の工具の研削に用いた研削盤は、図7、図8に示す4軸制御、即ち、X軸、Y軸方向へのチャック移動、チャック11の軸心Oを中心にした回転及び図8のb軸方向回転の各機能(Z軸方向には動かない)を有するものであり、逃げ面、すくい面及び後述する切れ上がり面を工具を持ち替えずにいわゆるワンチャックで研削することができる。   The grinding machine used for grinding the tool of the present invention has four-axis control shown in FIGS. 7 and 8, that is, chuck movement in the X-axis and Y-axis directions, rotation around the axis O of the chuck 11 and FIG. 8 has each function of b-axis direction rotation (does not move in the Z-axis direction), and can be ground with a so-called one-chuck without changing the flank, rake face and cut-off face described later. .

すくい面5の研削加工は、cBN切削工具1を掴んだチャック11を必要な方向に回転させて図9に示すように、刃先チップ3のすくい面を砥石12の端面に平行に押しつける方法で行う。   Grinding of the rake face 5 is performed by rotating the chuck 11 holding the cBN cutting tool 1 in a required direction and pressing the rake face of the cutting edge tip 3 parallel to the end face of the grindstone 12 as shown in FIG. .

このとき、砥石12の端面に対して刃先チップ3を少し傾けて研削を行うことで、正のすくい角を有するすくい面5を生じさせることができる。   At this time, the rake face 5 having a positive rake angle can be generated by slightly inclining the cutting edge tip 3 with respect to the end face of the grindstone 12 for grinding.

この発明においては耐熱合金の切削用工具に対してその正のすくい角を付与する。   In the present invention, a positive rake angle is given to the heat-resistant alloy cutting tool.

切れ刃に正のすくい角を付与することは、靭性の高い超硬合金や高速度鋼などからなる切削工具では一般的である。   Giving a positive rake angle to the cutting edge is common for cutting tools made of cemented carbide or high speed steel with high toughness.

しかしながら、耐熱合金の切削加工に利用するcBN切削工具においてすくい角を正に設定することは、従来は行なわれていなかった。   However, setting a rake angle positive in a cBN cutting tool used for cutting heat-resistant alloys has not been conventionally performed.

その理由の一つは、cBN焼結体で形成される切れ刃は、耐熱合金の切削用途では耐欠損性を高めることが重要と考えられていたことにある。   One of the reasons is that it was thought that it was important for the cutting edge formed of the cBN sintered body to improve the fracture resistance in the cutting application of the heat-resistant alloy.

理由の2つ目は、すくい角を正にすると切れ味の向上による刃先温度の低下が起こる。これは、耐熱合金の切削を目的として熱伝導率の低いcBN焼結体を刃具材料として選択し、また、切削速度を高めて刃先温度を上げることで切削熱で被削材を軟化させながら行う切削加工法においては意に反することであり、切れ刃の欠損防止の効果を低減させると考えられていたことにある。   The second reason is that when the rake angle is made positive, the cutting edge temperature is lowered due to improved sharpness. This is done by selecting a cBN sintered body having a low thermal conductivity as the cutting tool material for the purpose of cutting a heat-resistant alloy, and increasing the cutting speed to increase the cutting edge temperature while softening the work material with the cutting heat. This is contrary to the intention in the cutting method, and is thought to reduce the effect of preventing the cutting edge from being broken.

その耐熱合金を切削する用途のcBN切削工具に、正のすくい角を付与することで切削工具の寿命を向上させ得る知見は本発明者等にもなかった。種々の模索と試験を繰り返した中で偶然その効果を見出したのである。   The present inventors have not found any knowledge that can improve the life of a cutting tool by imparting a positive rake angle to a cBN cutting tool for cutting the heat-resistant alloy. I found the effect by chance while repeating various explorations and tests.

すくい面5は平坦な面が加工性に優れて好ましい。その正のすくい角のついたすくい面5を形成すると、研削されて落ち込んだ面と研削されていない面との間に段差が生じる。   The rake face 5 is preferably a flat face because of its excellent workability. When the rake face 5 with the positive rake angle is formed, a step is generated between the ground surface that is depressed and the unground surface.

その段差が生じる箇所は、彎曲した切れ上り面7にしてその切れ上り面7をすくい面5
の終端(切れ刃から離れる側の端部)に連ならせるのがよい。
A portion where the step is generated is a curved cut-up surface 7 and the cut-up surface 7 is raked surface 5.
It is good to make it continue to the terminal (end part on the side away from the cutting edge).

彎曲した切れ上り面7は、砥石12の側面で加工することができる。砥石12は、半径が50mm〜200mm程度のものでよく、そのような砥石の側面で研削した切れ上り面7は、コーナ部が、内接円の半径rが5μm〜50μm程度の面になって切屑のカール性を良好にする。   The curved cut-up surface 7 can be processed on the side surface of the grindstone 12. The grindstone 12 may have a radius of about 50 mm to 200 mm, and the rounded surface 7 ground with the side surface of such a grindstone has a corner portion with a radius r of an inscribed circle of about 5 μm to 50 μm. Improve the curl of chips.

すくい面5の研削により、図4に示すように、コーナ角の2等分線CLに沿った断面において、切れ刃4の先端(刃先)が台金2の平坦な上面2aの延長上(上面2aと同一高さ位置)から台金下面側に向かって多少低下する。その芯下がり量(上面2aの延長上からの低下量)dは、10μm〜100μmの範囲にあるようにするのがよい。   By grinding the rake face 5, as shown in FIG. 4, in the cross section along the bisector CL of the corner angle, the tip (cutting edge) of the cutting edge 4 is an extension of the flat upper face 2a of the base metal 2 (upper face). 2a) and slightly lower toward the bottom surface of the base metal. It is preferable that the core descent amount (amount of decrease from the extension of the upper surface 2a) d is in the range of 10 μm to 100 μm.

その芯下がり量dの下限を10μmにすることで、すくい面の研削時にシャープエッジの切れ刃を生じさせることができる。   By setting the lower limit of the descent amount d to 10 μm, a sharp edge can be generated during grinding of the rake face.

一方、その芯下がり量dが大きくなる程すくい面の無駄な研削量が増える。また、芯下がり量dが大きくなるにつれて切削抵抗も増加する。これ等を考えると芯下がり量dの上限は100μm程度が許容範囲である。   On the other hand, the amount of useless grinding of the rake face increases as the descent amount d increases. Further, the cutting resistance increases as the core descent amount d increases. In consideration of these, the upper limit of the center-down amount d is about 100 μm.

なお、切れ刃4は、先端(刃先)から離れるに従って台金上面の延長上からの低下量が大きくなる。その影響で、先端から後退した位置における切れ刃各部のすくい角(平面図において切れ刃各部に直交する線に沿った断面に現われるすくい角)は、例えば、図4に示した先端でのすくい角が例えば10°の場合、後方では先端よりも小さい7°や8°と言った値になる。   In addition, the amount of reduction of the cutting edge 4 from the extension of the upper surface of the base metal increases as the distance from the tip (cutting edge) increases. As a result, the rake angle of each part of the cutting edge at the position retracted from the tip (the rake angle appearing in the cross section along the line perpendicular to each part of the cutting edge in the plan view) is, for example, the rake angle at the tip shown in FIG. For example, when the angle is 10 °, the value is 7 ° or 8 ° smaller than the tip at the rear.

切れ刃4は中心部(刃先)から離れた位置では刃先よりも強度が高くなるのが望ましく、平坦な面で構成されるすくい面にすることでその要求にも応えることができる。   It is desirable that the cutting edge 4 has a higher strength than the cutting edge at a position away from the central portion (cutting edge), and the demand can be met by making it a rake face constituted by a flat surface.

図9の方法でのすくい面5の研削により、図3に示すように、すくい面5に工具の平面視においてコーナ角の2等分線CLに対してほぼ垂直な研摩筋8が形成される。その方向に延びた研摩筋8は、切屑の溶着防止に効果を奏する。研摩筋8は厳密には砥石12の外径に近い曲率半径で彎曲しており、そのためにここではほぼ垂直と表現した。   By grinding the rake face 5 by the method of FIG. 9, as shown in FIG. 3, an abrasive bar 8 substantially perpendicular to the bisector CL of the corner angle is formed on the rake face 5 in plan view of the tool. . The abrasive bar 8 extending in that direction is effective in preventing chip welding. Strictly speaking, the polishing bar 8 is curved with a radius of curvature close to the outer diameter of the grindstone 12, and for this reason, it is expressed here as being substantially vertical.

なお、この発明のcBN切削工具は、正のすくい角の付与によって切れ刃がシャープになる。そのシャープな切れ刃は欠けやすいので、必要に応じて、切れ刃に刃先強化のための微小なRホーニング処理を施すのがよい。   In addition, the cBN cutting tool of this invention sharpens a cutting edge by provision of a positive rake angle. Since the sharp cutting edge is easily chipped, it is preferable to subject the cutting edge to a minute R honing treatment for strengthening the cutting edge as necessary.

そのRホーニングは、すくい角を正に設定すること(すなわち切れ味を高めること)の効果が損なわれないものにする。曲率半径が0.005mm以上、0.02mm以下のRホーニングであれば、その要求に応えることができる。   The R honing ensures that the effect of setting the rake angle positive (that is, enhancing the sharpness) is not impaired. If it is R honing whose curvature radius is 0.005 mm or more and 0.02 mm or less, the demand can be met.

表1に示す諸元のcBN切削工具を試作してその性能を評価した。試作工具は、図1に示した形状である。表1の試料No.1〜10に用いた刃先チップの熱伝導率とその刃先チップの切れ刃に付与した正のすくい角を表1に併せて示す。また、表1の各試料の刃先チップの組成を表2に示す。   A cBN cutting tool having the specifications shown in Table 1 was prototyped and its performance was evaluated. The prototype tool has the shape shown in FIG. Table 1 also shows the thermal conductivity of the cutting edge tip used in Sample Nos. 1 to 10 in Table 1 and the positive rake angle given to the cutting edge of the cutting edge tip. Table 2 shows the composition of the cutting edge tip of each sample in Table 1.

刃先チップを構成するcBN焼結体は、平均粒径が1μmのcBN粒子を使用したが、平均粒径が0.5μm以上、2μm以下であれば、大差の無い性能が得られる。   As the cBN sintered body constituting the cutting edge tip, cBN particles having an average particle diameter of 1 μm were used. However, when the average particle diameter is 0.5 μm or more and 2 μm or less, the performance without much difference is obtained.

試料No.1〜3及びNo.7〜10は、cBN焼結体からなる刃先チップの熱伝導率と正のすくい角の大きさのどちらも本発明の条件を満たす。試料No.4〜6は、刃先チップの熱伝導率が本発明の条件外となっている。   Samples No. 1 to No. 3 and No. 7 to No. 10 satisfy the conditions of the present invention for both the thermal conductivity of the cutting edge tip made of the cBN sintered body and the size of the positive rake angle. In Sample Nos. 4 to 6, the thermal conductivity of the blade tip is outside the conditions of the present invention.

試料No.1〜4及びNo.7〜10の刃先チップの熱伝導率はcBNの含有量を調整して異ならせた。試料No.5は、刃先チップに市販のボラゾン(Diamond Innovation社商品名)を使用し、試料No.6は、市販のβ−SiAlONセラミックス工具を使用した。   The thermal conductivity of the cutting edge tips of Sample Nos. 1 to 4 and Nos. 7 to 10 was varied by adjusting the content of cBN. Sample No. 5 used a commercially available borazon (trade name of Diamond Innovation) as a cutting edge tip, and Sample No. 6 used a commercially available β-SiAlON ceramic tool.

この試作工具を使用して被削材:HRC46の硬さの直径:120mm、長さ:250mmのインコネル718(商品名:スペシャルメタルズ社、インコネル:登録商標)の棒材を以下の条件で切削した。   Using this prototype tool, a rod of Inconel 718 (trade name: Special Metals Inc., Inconel: registered trademark) of work material: HRC46 hardness diameter: 120 mm and length: 250 mm was cut under the following conditions. .

切削条件 切削速度V:200m/min
送り f:0.1mm/rev
切り込みap:0.3mm
クーラント:20倍希釈エマルジョン
Cutting conditions Cutting speed V: 200 m / min
Feed f: 0.1mm / rev
Incision ap: 0.3 mm
Coolant: 20 times diluted emulsion

この評価試験はVNとVBのどちらか一方が0.2mmに達したときを工具の寿命とし、その寿命までの切削長を調べた。その結果を表1に併せて示す。   In this evaluation test, when one of VN and VB reached 0.2 mm, the tool life was determined, and the cutting length up to that life was examined. The results are also shown in Table 1.

Figure 2015091627
Figure 2015091627

Figure 2015091627
Figure 2015091627

この試験結果からわかるように、cBN焼結体からなる刃先チップの熱伝導率が20〜70W/m・Kの範囲にある切削工具は、熱伝導率が10W/m・Kの試料No.4や熱伝導率が100W/m・Kの試料No.5に比べて寿命が大きく延びている。その寿命向上の効果は、正のすくい角を5°〜15°にしたものが特に顕著である。   As can be seen from the test results, the cutting tool in which the thermal conductivity of the cutting edge tip made of the cBN sintered body is in the range of 20 to 70 W / m · K is Sample No. 4 having a thermal conductivity of 10 W / m · K. As compared with Sample No. 5 having a thermal conductivity of 100 W / m · K, the service life is greatly extended. The effect of improving the life is particularly remarkable when the positive rake angle is 5 ° to 15 °.

なお、この発明を適用する切削工具は、菱形、三角形、正方形、コーナ数が5以上の多角形など形状は特に問わない。また、台金のコーナ部の少なくとも1箇所にcBN焼結体の刃先チップを備えるものの全てがこの発明の適用対象となる。   The shape of the cutting tool to which the present invention is applied is not particularly limited, such as a rhombus, a triangle, a square, or a polygon having 5 or more corners. In addition, all of those having a cBN sintered body cutting edge tip at least at one corner of the base metal are applicable to this invention.

1 cBN切削工具
2 台金
2a 平坦な上面
3 刃先チップ
4 切れ刃
5 すくい面
6 逃げ面
7 切れ上り面
8 研摩筋
θ すくい角
CL コーナ角の2等分線
d 切れ刃先端の台金上面の延長上からの低下量
11 チャック
12 砥石
O チャックの軸心
DESCRIPTION OF SYMBOLS 1 cBN cutting tool 2 Base metal 2a Flat top surface 3 Cutting edge tip 4 Cutting edge 5 Rake face 6 Relief face 7 Ramp surface 8 Abrasive muscle θ Rake angle CL Corner angle bisecting line d Cutting edge top metal base surface Decrease from extension 11 Chuck 12 Grinding wheel O Chuck axis

Claims (6)

平均粒径が0.5μm以上、2μm以下のcBN粒子を使用した熱伝導率が20〜70W/m・KのcBN焼結体からなる刃先チップと、その刃先チップをコーナ部に保持した台金を具備し、工具の前記刃先チップに設けられる切れ刃に正のすくい角が付与され、そのすくい角の大きさが、2°以上、20°以下である耐熱合金切削用cBN切削工具。   A cutting edge tip made of a cBN sintered body having a thermal conductivity of 20 to 70 W / m · K using cBN particles having an average particle diameter of 0.5 μm or more and 2 μm or less, and a base metal holding the cutting edge tip in a corner portion A cBN cutting tool for heat-resistant alloy cutting, in which a positive rake angle is imparted to the cutting edge provided on the cutting edge tip of the tool, and the size of the rake angle is 2 ° or more and 20 ° or less. 前記正のすくい角の大きさが、5°以上、15°以下である請求項1に記載の耐熱合金切削用cBN切削工具。   The cBN cutting tool for heat-resistant alloy cutting according to claim 1, wherein the size of the positive rake angle is not less than 5 ° and not more than 15 °. 前記コーナ部のコーナ角の2等分線に沿った断面において、切れ刃の先端が前記台金の平坦な上面の延長上から台金下面側に向かって10μm〜100μm低下しており、先端から離れるに従って切れ刃位置の低下量が大きくなっている請求項1又は請求項2に記載の耐熱合金切削用cBN切削工具。   In the cross section along the bisector of the corner angle of the corner portion, the tip of the cutting edge is lowered by 10 μm to 100 μm from the extension of the flat upper surface of the base metal toward the base metal lower surface side. The cBN cutting tool for heat-resistant alloy cutting according to claim 1 or 2, wherein the amount of decrease in the cutting edge position increases with increasing distance. 前記刃先チップに付されるすくい面が平坦な面で構成された請求項3に記載の耐熱合金切削用cBN切削工具。   The cBN cutting tool for heat-resistant alloy cutting according to claim 3, wherein the rake face attached to the cutting edge tip is a flat surface. 前記刃先チップの、正のすくい角が付与されたすくい面の終端にR50mm〜R200mmの曲率半径を有する彎曲した切れ上り面を連ならせた請求項1〜請求項4のいずれか1項に記載の耐熱合金切削用cBN切削工具。   5. The curved cutting surface having a radius of curvature of R50 mm to R200 mm is connected to the end of the rake face to which a positive rake angle is imparted, of the cutting edge tip, according to any one of claims 1 to 4. CBN cutting tool for cutting heat-resistant alloys. すくい面の正のすくい角を有する部分が、工具の平面視において前記コーナ部のコーナ角の2等分線に対してほぼ垂直な研摩筋を有する請求項1〜請求項5のいずれか1項に記載の耐熱合金切削用cBN切削工具。   The portion of the rake face having a positive rake angle has a polishing bar substantially perpendicular to the bisector of the corner angle of the corner portion in plan view of the tool. The cBN cutting tool for heat-resistant alloy cutting of description.
JP2015027211A 2015-02-16 2015-02-16 Cbn cutting tool Pending JP2015091627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015027211A JP2015091627A (en) 2015-02-16 2015-02-16 Cbn cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015027211A JP2015091627A (en) 2015-02-16 2015-02-16 Cbn cutting tool

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013100055A Division JP5740673B2 (en) 2013-05-10 2013-05-10 cBN cutting tools

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016100313A Division JP2016190317A (en) 2016-05-19 2016-05-19 CBN Cutting tool

Publications (1)

Publication Number Publication Date
JP2015091627A true JP2015091627A (en) 2015-05-14

Family

ID=53195142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015027211A Pending JP2015091627A (en) 2015-02-16 2015-02-16 Cbn cutting tool

Country Status (1)

Country Link
JP (1) JP2015091627A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019063973A (en) * 2017-10-05 2019-04-25 株式会社豊田中央研究所 Cutting device
WO2019087496A1 (en) * 2017-10-31 2019-05-09 住友電工ハードメタル株式会社 Cutting insert
CN114433893A (en) * 2021-12-30 2022-05-06 山东大学 Cutting insert with different base body structures in circumferential direction

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271606A (en) * 1986-05-20 1987-11-25 Nippon Oil & Fats Co Ltd High hardness sintered material cutting tool
JPH03109706U (en) * 1990-02-23 1991-11-11
JPH08118113A (en) * 1994-10-21 1996-05-14 Sumitomo Electric Ind Ltd Cutting tool with chip breaker
JP2001009606A (en) * 1999-06-25 2001-01-16 Mitsubishi Materials Corp Throwaway tip
WO2007010670A1 (en) * 2005-07-15 2007-01-25 Sumitomo Electric Hardmetal Corp. Composite sintered compact
WO2007145071A1 (en) * 2006-06-12 2007-12-21 Sumitomo Electric Hardmetal Corp. Composite sinter
WO2011111261A1 (en) * 2010-03-12 2011-09-15 住友電工ハードメタル株式会社 Sintered cubic boron nitride tool
WO2012005275A1 (en) * 2010-07-06 2012-01-12 株式会社タンガロイ Coated polycrystalline cbn tool
JP2013014002A (en) * 2012-09-14 2013-01-24 Sumitomo Electric Hardmetal Corp Cubic boron nitride sintered body tool
JP5740673B2 (en) * 2013-05-10 2015-06-24 住友電工ハードメタル株式会社 cBN cutting tools

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271606A (en) * 1986-05-20 1987-11-25 Nippon Oil & Fats Co Ltd High hardness sintered material cutting tool
JPH03109706U (en) * 1990-02-23 1991-11-11
JPH08118113A (en) * 1994-10-21 1996-05-14 Sumitomo Electric Ind Ltd Cutting tool with chip breaker
JP2001009606A (en) * 1999-06-25 2001-01-16 Mitsubishi Materials Corp Throwaway tip
WO2007010670A1 (en) * 2005-07-15 2007-01-25 Sumitomo Electric Hardmetal Corp. Composite sintered compact
WO2007145071A1 (en) * 2006-06-12 2007-12-21 Sumitomo Electric Hardmetal Corp. Composite sinter
WO2011111261A1 (en) * 2010-03-12 2011-09-15 住友電工ハードメタル株式会社 Sintered cubic boron nitride tool
WO2012005275A1 (en) * 2010-07-06 2012-01-12 株式会社タンガロイ Coated polycrystalline cbn tool
JP2013014002A (en) * 2012-09-14 2013-01-24 Sumitomo Electric Hardmetal Corp Cubic boron nitride sintered body tool
JP5740673B2 (en) * 2013-05-10 2015-06-24 住友電工ハードメタル株式会社 cBN cutting tools

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019063973A (en) * 2017-10-05 2019-04-25 株式会社豊田中央研究所 Cutting device
WO2019087496A1 (en) * 2017-10-31 2019-05-09 住友電工ハードメタル株式会社 Cutting insert
CN110035851A (en) * 2017-10-31 2019-07-19 住友电工硬质合金株式会社 Cutting tool
JPWO2019087496A1 (en) * 2017-10-31 2019-11-14 住友電工ハードメタル株式会社 Cutting insert
EP3527310A4 (en) * 2017-10-31 2020-07-08 Sumitomo Electric Hardmetal Corp. Cutting insert
US11338371B2 (en) 2017-10-31 2022-05-24 Sumitomo Electric Hardmetal Corp. Cutting insert
CN114433893A (en) * 2021-12-30 2022-05-06 山东大学 Cutting insert with different base body structures in circumferential direction
CN114433893B (en) * 2021-12-30 2023-12-01 山东大学 Cutting blade with different base structures in circumferential direction

Similar Documents

Publication Publication Date Title
JP5740673B2 (en) cBN cutting tools
JP6593322B2 (en) Cutting insert and manufacturing method thereof
JP5426319B2 (en) Diamond cutting tool and manufacturing method thereof
KR102214373B1 (en) Cutting insert
CN103722174A (en) Self-sharpening polycrystalline diamond compact and preparation method thereof
CN1310069A (en) Ball end milling cutter
CN107030303A (en) Ceramic cutting insert and its manufacture method
JP2014208396A (en) METHOD OF MANUFACTURING cBN GRINDING TOOL
CN105014553B (en) A kind of ceramic microcrystalline emery wheel and its manufacture method with high-strength grinding performance
JP2015091627A (en) Cbn cutting tool
JP6029004B2 (en) PCD drill
JP2017024165A (en) Wc-based hard metal cutting tool and manufacturing method thereof
JP2016190317A (en) CBN Cutting tool
JP2001001209A (en) Rotary cutting tool
WO2011052682A1 (en) Method for processing difficult-to-cut cast iron
Makarov et al. Optimal cutting time and speed in abrasive lapping of ceramic
KR20030051700A (en) Abrasive and wear resistant material
JP2012254486A (en) Extra-high pressure sintered rotary cutting tool
JP7329323B2 (en) Ceramic sintered bodies, inserts, cutting tools, and tools for friction stir welding
JP2015202529A (en) Grinding wheel and cutting tool processed thereby
JP2977308B2 (en) Ceramic sintered body for machining
RU133765U1 (en) CERAMIC CUTTING PLATE
JP6387684B2 (en) Tungsten carbide-based cemented carbide powder, tungsten carbide-based cemented carbide sintered body, and manufacturing method of tungsten carbide-based cemented carbide cutting tool
JPS6311203A (en) Ceramics cutting tool
JPH0663261U (en) Cylinder head valve seat rubbing tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160223