JPS62228293A - Production of inulooligosaccharide - Google Patents

Production of inulooligosaccharide

Info

Publication number
JPS62228293A
JPS62228293A JP61068773A JP6877386A JPS62228293A JP S62228293 A JPS62228293 A JP S62228293A JP 61068773 A JP61068773 A JP 61068773A JP 6877386 A JP6877386 A JP 6877386A JP S62228293 A JPS62228293 A JP S62228293A
Authority
JP
Japan
Prior art keywords
inulin
inulinase
endo
type
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61068773A
Other languages
Japanese (ja)
Other versions
JPH0561910B2 (en
Inventor
Sohei Morita
森田 壮平
Hiroaki Tamaya
弘明 玉谷
Satoo Takahashi
高橋 聰雄
Fuminobu Yoshimi
文伸 吉見
Takuya Suzuki
拓也 鈴木
Kazuo Sato
一雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP61068773A priority Critical patent/JPS62228293A/en
Publication of JPS62228293A publication Critical patent/JPS62228293A/en
Priority to JP5021074A priority patent/JPH06102033B2/en
Publication of JPH0561910B2 publication Critical patent/JPH0561910B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To industrially and advantageously obtain the titled compound in high yield without forming colored materials or by-products, by reacting endo- form inulinase which is a mold of the genus Penicillium with inulin. CONSTITUTION:Endo-form inulinase which is a mold of the genus Penicillium is reacted with inulin, preferably at 60 deg.C reaction temperature and 4-5.5pH to hydrolyze the inulin and afford the aimed compound. The above-mentioned endo-form inulinase is obtained by cultivating Penicillium trzebinskii at 25-35 deg.C cultivation temperature, 5-7 initial pH and 2.5-7pH during cultivation, separating microbial cells from the culture fluid and treating the resultant supernatant liquid.

Description

【発明の詳細な説明】 皇栗分亘 本発明はイヌリンの酵素分解によるイヌロオリゴ糖の調
製に関するものであり、詳しくはペニシリウム属カビの
エンド型イヌリナーゼを用いてイヌリンを加水分解しイ
ヌロオリゴ糖を調製する方法に関するものである。
[Detailed Description of the Invention] The present invention relates to the preparation of inulooligosaccharides by enzymatic decomposition of inulin, and more specifically, the preparation of inulooligosaccharides by hydrolyzing inulin using endo-type inulinase of molds of the genus Penicillium. It is about the method.

従来技術 イヌリンは直鎖のフラクトースポリマーであり、その結
合様式はβ−1,2でグルコース分子を末端に有する約
35個のβ−フラクトフラノース残基から構成されてい
る。
Prior Art Inulin is a linear fructose polymer, consisting of approximately 35 β-fructofuranose residues terminated by a glucose molecule in a β-1,2 bonding mode.

イヌリンは種々の植物、特にキク科のダリャ、キクイモ
の塊茎、チコリ−の根などに存在し、熱水によって容易
に抽出する事ができビート糖と同様に石灰処理等によっ
て精製する事ができる。
Inulin exists in various plants, especially in the roots of dahlia of the Asteraceae family, tubers of Jerusalem artichoke, and chicory, and can be easily extracted with hot water and purified by treatment with lime, etc. in the same way as beet sugar.

イヌリンを酸或いは酵素で分解しフラクトースを得る事
は以前より研究され、工業的に実施された事もある。酸
で分解する場合はpH1〜2、温度70〜90℃で数時
間加水分解する事によってほぼ目的を達するが着色物質
の生成やシフラクトースアンハイドライドのような副生
成物が出来るため収率が低いなどの欠点がある。一方酵
素で分解する場合はこれらの欠点がなく工業的にも有利
と考えられている。
Obtaining fructose by decomposing inulin with acid or enzymes has been studied for some time, and has even been carried out industrially. When decomposing with acid, most of the objectives are achieved by hydrolyzing at pH 1-2 and temperature 70-90℃ for several hours, but the yield is low due to the formation of colored substances and by-products such as cyfructose anhydride. There are drawbacks such as. On the other hand, enzymatic decomposition does not have these drawbacks and is considered to be industrially advantageous.

イヌリンを分解する酵素は、イヌリン含有植物中に、或
いは微生物中に数多く発見され研究例も多い(文献1゜
後記。各文献以下間じ)。
Numerous enzymes that degrade inulin have been discovered in inulin-containing plants and microorganisms, and many examples of research have been conducted (Reference 1, below; references below).

微生物酵素の代表的なものは酵母ではKluyver。A typical microbial enzyme is Kluyver in yeast.

myces fragilisやCandida ps
eudotropicalisのものが、糸状菌では八
spergillus、 FusariumやPeni
cilliumのものである。中でもPenicill
ium属のエキソ型イヌリナーゼ(文献2)、及びAs
pergil−lus nigerのもの(文献3)の
エンド型イヌリナーゼ及びエキソ型イヌリナーゼ(文献
4)はそれぞれ精製されて性質が調べられている。
myces fragilis and Candida ps
eudotropicalis, but among filamentous fungi there are eight supergillus, Fusarium, and Peni.
It is from cillium. Among them, Penicill
exo-type inulinase of the genus Ium (Reference 2), and As
Endo-type inulinase and exo-type inulinase (Reference 4) from Pergil-lus niger (Reference 3) have been purified and their properties have been investigated.

然しPenicillium属についてエンド型イヌリ
ナーゼは全く知られていない。
However, no endo-type inulinase is known for the genus Penicillium.

またAspergil lus属カビのエンド型イヌリ
ナーゼについてはAsp、 ficuumについて後に
記す文献5があり又その菌についてはそこにエキソ型イ
ヌリナーゼについても記され、イヌリン完全分解のため
の両酵素の最適混合比についても知見が述べられている
。(文献5゜) エキソ型イヌリナーゼはイヌリンのGlucose残基
側と反対のフラクトース側から一個ずつフラクトースを
遊離し、一方エンド型イヌリナーゼは任意の結合からイ
ヌリン直鎖を切断し、最終的に主に3〜6種類のオリゴ
糖を生成する。また両者が共存するとエキソ型イヌリナ
ーゼの基質が増加するためフラクトースを生成する反応
速度が早まる事は容易に想像されることでありイヌロオ
リゴ糖が生成してもそれは速やかにフラクトースになっ
てしまう。
Regarding the endo-type inulinase of the Aspergillus genus mold, there is a document 5 that will be described later on Asp and ficuum, and the exo-type inulinase of the fungus is also described there, and the optimal mixing ratio of both enzymes for complete decomposition of inulin is also described. The findings are stated. (Reference 5゜) Exo-type inulinase releases fructose one by one from the glucose residue side of inulin and the opposite fructose side, while endo-type inulinase cleaves the inulin linear chain from any bond, and finally mainly 3 Produces ~6 types of oligosaccharides. Furthermore, it is easy to imagine that when the two coexist, the substrate for exo-type inulinase increases, so the reaction rate for producing fructose becomes faster, and even if inulooligosaccharide is produced, it quickly becomes fructose.

中村らはPenicillium属のイヌリナーゼには
エンド型が見出されなかったとしている(文献2)し、
また前記のように今までにそれを否定するような報告も
ない。
Nakamura et al. reported that no endotype was found in inulinase of the genus Penicillium (Reference 2).
Also, as mentioned above, there have been no reports to date denying this.

イヌリナーゼの研究、利用は主としてフラクトースの生
成を目的としてなされており、酵素を用いてイヌリンの
部分分解物、すなわちイヌロオリゴ糖を積極的に得よう
とする試みはなされていない。また酸を用いたイヌロオ
リゴ糖調製の研究もほとんど知られていない。
Research and utilization of inulinase has been carried out mainly for the purpose of producing fructose, and no attempt has been made to actively obtain a partial decomposition product of inulin, that is, inulooligosaccharide, using the enzyme. Furthermore, research on the preparation of inulooligosaccharides using acids is also hardly known.

我々はエンド型イヌリナーゼを用いてイヌロオリゴ糖を
調製することを目的としてオリゴ糖生産能の強い微生物
を求めて土壌中機生物の検索を行ってきた結果、我々の
目的に合致する数種類の微生物を見出した。
With the aim of preparing inulooligosaccharides using endo-type inulinase, we have been searching for microorganisms with strong oligosaccharide-producing ability in soil, and as a result, we have found several types of microorganisms that meet our purpose. Ta.

そしてこれらのうちの2種のカビはその菌学的性質から
Penicillium属カビに属しその中でもP。
Two of these molds belong to the genus Penicillium due to their mycological properties, and among them, P.

purprogenum var rubriscle
rotium及びP、 trze−binskii と
同定された。
purprogenum var rubriscle
rotium and P. trze-binskii.

尚、これらのカビは法定の機関に寄託してありまたその
名称も上に記したのでその菌学的性質の記載は省略する
Since these molds have been deposited with legal institutions and their names are also listed above, a description of their mycological properties will be omitted.

酵素を用いたイヌロオリゴ糖の生成について研究された
例は、例えばAspergillus nigerの培
養液中イヌリン直鎖より精製分離したエンド型イヌリナ
ーゼによりイヌリンの分解物が主としてイヌロトリオー
ス、イヌロチトラオース、イヌリン分解物中となる事が
知られている(文献3)。又、Asp、ficuumに
ついてもエンド型イヌリナーゼの存在及びイヌリン分解
によるフラクトース生産におけるエキソ型イヌリナーゼ
との混合割合について論ぜられている(文献5)。
Examples of research on the production of inulooligosaccharides using enzymes include, for example, in the culture of Aspergillus niger, endo-type inulinase purified and separated from inulin linear chains was used to convert inulin decomposition products into inulotriose, inulochitraose, and inulin decomposition products. It is known that (Reference 3). Furthermore, regarding Asp and ficuum, the existence of endo-type inulinase and the mixing ratio with exo-type inulinase in fructose production by inulin decomposition have been discussed (Reference 5).

しかしながら本発明に示すようなイヌロオリゴ糖生成酵
素を生産するPenicillium属については知ら
れておらず、またそれを用いて積極的にイヌロオリゴ糖
を生産する方法も知られていない。
However, the genus Penicillium that produces the enzyme for producing canine oligosaccharides as shown in the present invention is not known, nor is a method for actively producing canine oligosaccharides using it.

さらにPenicillium属カビはその培養液中に
イヌロオリゴ糖生産活性が主体となり、この酵素を用い
たイヌリン分解物中にフラクトースの生産が非常に少な
いという特徴を有する点で今までのアスペルギルス属イ
ヌリナーゼのようにエキソ型イヌリナーゼと共に存在し
ているエンド型イヌリナーゼとは趣を異にしている。
Furthermore, the Penicillium genus inulinase is characterized by having inulooligosaccharide producing activity as the main ingredient in its culture solution, and very little fructose is produced in the inulin decomposition product using this enzyme, unlike the conventional Aspergillus genus inulinase. It is different from endo-type inulinase, which exists together with exo-type inulinase.

本発明の方法を実施するにあたっては、Pen1c〜i
11ium属のイヌロオリゴ糖生成酵素生産国を天然又
は人工培地として一般に使用される各種組成の栄養源を
含む固体又は液体の培養基に表面培養又は深部培養する
In carrying out the method of the present invention, Pen1c~i
The canine oligosaccharide producing enzyme of the genus 11ium is surface cultured or submerged in a solid or liquid culture medium containing nutrients of various compositions commonly used as a natural or artificial medium.

イヌロオリゴ糖生成酵素生産国は、培地条件によっては
エキソ型酵素の生成も活発となりその場合はイスリン分
解生成物がフラクトースとなるのでできるだけエンド型
活性が主体となるように工夫を要する。この点の配慮と
しては出来るだけ有機態窒素を用いないで培養すること
である。
In countries producing canine oligosaccharide-forming enzymes, production of exo-type enzymes may also be active depending on the culture medium conditions, and in that case, the issulin degradation product becomes fructose, so efforts must be made to ensure that endo-type activity is predominant as much as possible. A consideration in this regard is to culture without using organic nitrogen as much as possible.

エンド型及びエキソ型の酵素混合物から例えば硫安分画
、種々のゲルクロマトグラフィー等の酵素蛋白分離技術
を用いてエンド型のみを分離し、イヌリンに作用させイ
ヌロオリゴ糖を得る事は可能であるが該微生物が主とし
てエンド型の酵素活性を呈する事は本発明の実施におい
て極めて好都合な事である。
It is possible to separate only the endo-type from an enzyme mixture of the endo-type and exo-type using enzyme protein separation techniques such as ammonium sulfate fractionation and various gel chromatography, and to make it act on inulin to obtain inulooligosaccharide. It is extremely advantageous for the practice of the present invention that microorganisms exhibit primarily endo-type enzymatic activity.

培養における栄養源としてはフスマ、大豆粉、ペプトン
、肉エキス、酵母エキス、コーンステイープリカーなど
と、主たる炭素源としてフラクトース、イヌリンさらに
これらを補足する無機窒素源、リン酸塩、マグネシウム
塩及び少量の金属塩を含む培地が使用されるが、Pen
 ic i l l ium属における強力なイヌリナ
ーゼ活性の発現には有機態の窒素が必要とされ、無機窒
素源としてはリン酸第1アンモニウム、リン酸第2アン
モニウムが効果的との報告がある(文献6)。
Nutrient sources for culture include bran, soybean flour, peptone, meat extract, yeast extract, cornstarch liquor, etc., and main carbon sources include fructose and inulin, supplemented by inorganic nitrogen sources, phosphates, magnesium salts, and small amounts. A medium containing metal salts of Pen is used, but Pen
Organic nitrogen is required for the expression of strong inulinase activity in the genus I.i. 6).

一般的にペニシリウム属のイヌリナーゼ活性はイヌリン
やその部分加水分解物、フラクトースなどによって誘導
される事が知られているがエンド型活性主体の誘導には
、これら以外にマルトースも効果的である。
It is generally known that the inulinase activity of Penicillium genus is induced by inulin, its partial hydrolyzate, fructose, etc., but in addition to these, maltose is also effective in inducing endo-type activity.

培養温度は25℃〜35℃、初発pHは5.0〜7.0
とするが培養中のpl(は2.5〜7.0の範囲で行う
。イヌリン及びその加水分解物を炭素源とした場合は培
養3日目程でpHの急激な低下をみるがpf1gll整
はしない方がエンド型イヌリナーゼ活性が主体となって
現れる。
Culture temperature is 25°C to 35°C, initial pH is 5.0 to 7.0
However, the pH value during culture should be kept within the range of 2.5 to 7.0.If inulin and its hydrolyzate were used as the carbon source, a rapid drop in pH would be seen on the third day of culture; When it does not, endo-type inulinase activity appears mainly.

一方マルトースを炭素源とした場合のpH低下はより緩
慢である。
On the other hand, when maltose is used as a carbon source, the pH decreases more slowly.

培養時間は培養条件によって異なるが、最高力価に達す
る時期をもって培養を止める。通常4〜8日間の培養で
最大力価となる。
The culture time varies depending on the culture conditions, but the culture should be stopped when the maximum titer is reached. The maximum titer is usually reached after 4 to 8 days of culture.

エンド型イヌリナーゼは菌体外に生産される酵素である
ので、培養終了後濾過、又は遠心分離して除菌し、上澄
液或いは固体培地からの抽出液を回収する。必要に応じ
て限外濾過膜等により濃縮し、硫安などによる塩析やア
セトン、エタノールなどの有機溶媒を加えて酵素を沈澱
物として回収する。
Since endo-type inulinase is an enzyme produced outside the bacterial cells, after the cultivation is completed, bacteria are removed by filtration or centrifugation, and the supernatant liquid or extract from the solid medium is recovered. If necessary, it is concentrated using an ultrafiltration membrane or the like, and the enzyme is recovered as a precipitate by salting out with ammonium sulfate or by adding an organic solvent such as acetone or ethanol.

イヌリンの分解操作については通常イヌリンの濃度を出
来るだけ上げ、また分解中の微生物汚染を避けるために
操作温度は低くても55℃である事が望ましい。
In the decomposition operation of inulin, it is usually desirable to increase the concentration of inulin as much as possible and to keep the operation temperature at 55° C. at the lowest in order to avoid microbial contamination during decomposition.

本発明を実施するに当たってはイヌリン濃度20%前後
で反応温度55〜65℃、好ましくは60℃でpHは3
.5〜7.0、好ましくは4.0〜5.5で行う。
In carrying out the present invention, the inulin concentration is around 20%, the reaction temperature is 55 to 65°C, preferably 60°C, and the pH is 3.
.. 5 to 7.0, preferably 4.0 to 5.5.

ペニシリウム属のイヌリナーゼについての報告(文献6
)によると、イヌリンに対する最適分解温度はいずれの
タイプのイヌリナーゼでも45℃付近となっているが、
本発明におけるペニシリウム属のイヌリナーゼはいずれ
も55℃〜58℃に最適温度を有し、従来のイヌリナー
ゼとは異なっている。
Report on inulinase of the genus Penicillium (Reference 6
), the optimal decomposition temperature for inulin is around 45°C for any type of inulinase.
All inulinases of the genus Penicillium in the present invention have an optimum temperature between 55°C and 58°C, which is different from conventional inulinases.

また熱安定性が良<60℃、10分間の熱安定性試験で
もほとんど失活しない点でも従来のものと異なっている
ことがわかる。
It can also be seen that it is different from conventional products in that it has good thermal stability and hardly loses its activity even in a thermal stability test at <60° C. for 10 minutes.

イヌリンの濃度は溶液調製時の温度及びそのイヌリン分
子量分布に関係し、広い範囲に及びうるが、イヌリンを
90℃以上の高温で溶解し、60℃に保つと25χ程度
の濃度でも過飽和の状態を維持することが出来る。
The concentration of inulin is related to the temperature during solution preparation and the molecular weight distribution of inulin, and can vary over a wide range, but if inulin is dissolved at a high temperature of 90°C or higher and kept at 60°C, a state of supersaturation will occur even at a concentration of about 25χ. can be maintained.

以下に実施例を挙げ、本発明の詳細な説明する。EXAMPLES The present invention will be described in detail with reference to Examples below.

実施例I Penicillium purprogenum  
var rubri−sclerotuim (HOK
−1,FERM P−8705)によるイヌロオリゴ糖
の調製 イヌリン(チコリ−根より分離精製したもの)0.5χ
、マルトース0.5χ、NH411zPO40,27χ
、K、HPO40,1χ、MgSO4,7HzOO,0
5χ、Tween 800.02χを水道水で調調整し
pH7とした後、500m l容坂ロフラスコに100
m1とり、滅凹後供試菌株を1日金耳接種し28℃で9
6時間振盪培養する。
Example I Penicillium purprogenum
var rubri-sclerotuim (HOK
-1, FERM P-8705) Preparation of inulooligosaccharide Inulin (separated and purified from chicory root) 0.5χ
, maltose 0.5χ, NH411zPO40,27χ
, K, HPO40,1χ, MgSO4,7HzOO,0
After adjusting 5χ, Tween 800.02χ with tap water to pH 7, add 100% to a 500ml Sakaro flask.
After sterilizing and inoculating the test strain with a gold loop for 1 day, it was incubated at 28℃ for 9 hours.
Incubate with shaking for 6 hours.

培養液を濾過して国体を分離した後、イヌリン分解活性
を還元力法で測定した結果、2.5u/培養液1mlの
力価であった。ただし力価測定法は次のとうりである。
After filtering the culture solution to separate Kokutai, the inulin degrading activity was measured by the reducing power method, and the titer was 2.5 u/ml of the culture solution. However, the titer measurement method is as follows.

1.5χイヌリン溶液0.5mlに1/ION酢酸緩衡
液(pH5,0)で希釈した酵素液0.5mlを加え、
50”C30分間酵素反応を行い生成した還元糖を3.
5−ジニトロサリチル酸法により500nmの吸光度を
測って比色定量した。酵素単位は50℃において培養液
1mlあたり1分間に1μmoleの還元糖を生成する
酵素量で表わした。
Add 0.5 ml of enzyme solution diluted with 1/ION acetic acid buffer (pH 5,0) to 0.5 ml of 1.5χ inulin solution,
3. The reducing sugar produced by enzymatic reaction at 50"C for 30 minutes.
Colorimetric determination was performed by measuring the absorbance at 500 nm using the 5-dinitrosalicylic acid method. The enzyme unit was expressed as the amount of enzyme that produced 1 μmole of reducing sugar per minute per ml of culture solution at 50°C.

濾過した培養液(10100O、イヌリナーゼ活性2.
5u/ml)に硫安を添加し40〜80%飽和沈澱区分
を遠心分離し、−夜蒸留水に対し透析した。得られた粗
酵素液は17.7u/mlのもの100m1であった。
Filtered culture solution (10100O, inulinase activity 2.
Ammonium sulfate was added to 5 u/ml) and the 40-80% saturated precipitated fraction was centrifuged and dialyzed against distilled water. The obtained crude enzyme solution was 100 ml of 17.7 u/ml.

この粗酵素液を20%イヌリン溶液にイヌリン1g当た
り3unit添加しpH4,5、温度60℃で48hr
反応を行った。
This crude enzyme solution was added to a 20% inulin solution at a rate of 3 units per 1 g of inulin and kept at pH 4.5 and temperature 60°C for 48 hours.
The reaction was carried out.

反応生成物をゲルクロマトグラフィーで分析すると、反
応開始約3時間で重合度(DP)3〜9までのイヌロオ
リゴ糖と極少量のDP2及びDPIの糖が生成しく第1
図)、さらに24時間(第2図)、48時間(第3図)
”il’ハDP1 カ1.5X、DP2 M3.3%、
 DP3が31.4X 、 DP4が26.6X 、 
DP5−IJ<20.C4、DP6、’1(13,3χ
、それ以上のもの3.5χのイヌロオリゴ糖組成物が得
られた。
When the reaction product was analyzed by gel chromatography, it was found that inulooligosaccharide with a degree of polymerization (DP) of 3 to 9 and very small amounts of DP2 and DPI sugars were produced approximately 3 hours after the start of the reaction.
), then 24 hours (Figure 2), and 48 hours (Figure 3)
``il'ha DP1 force 1.5X, DP2 M3.3%,
DP3 is 31.4X, DP4 is 26.6X,
DP5-IJ<20. C4, DP6, '1 (13,3χ
, an inulooligosaccharide composition of 3.5χ or more was obtained.

これらの経時的分解パターンは典型的なエンド型酵素の
分解パターンであり、本粗酵素液による最終的な分解限
度は生成還元糖を果糖として計算して約50Xであった
These decomposition patterns over time are typical decomposition patterns of endo-type enzymes, and the final decomposition limit of this crude enzyme solution was approximately 50X, calculated assuming that the reducing sugar produced was fructose.

このように従来知られているペニシリウム属イヌリナー
ゼのフラクトース生成型とは全く異なるエンド型イヌリ
ナーゼを用いてイヌリンからイヌロオリゴ塘を調製する
事が可能となった。
In this way, it has become possible to prepare inuloid inulinase from inulin using endo-type inulinase, which is completely different from the fructose-producing type of the Penicillium inulinase known so far.

イヌリン分解物はイオン交換樹脂や活性炭を用いて常法
により精製後、濃縮乾燥し白色のイヌロオリゴ糖を製造
する事ができた。
The inulin decomposition product was purified by conventional methods using ion exchange resin and activated carbon, and then concentrated and dried to produce white inulooligosaccharide.

実施例2 P、Lrzebinskii (HOK−2,FERM
 P−8706)のエンド型イヌリナーゼを用いたイヌ
ロオリゴ糖の調製。
Example 2 P, Lrzebinskii (HOK-2, FERM
Preparation of inulooligosaccharide using endo-type inulinase of P-8706).

チコリ−より得たイヌリン1.0%、(NH4)2HP
O40,15%、KH2PO40,1%、Tween 
80 0.02%、MgSO4,7Hz00.05%、
を含む水道水で調製したpH7の培地を1!容3角フラ
スコに300m1とり、滅菌後、P、 trjebin
skiiを一白金耳接種し、28℃で振幅7 C111
でストローク数100で回転培養する。
Inulin 1.0% obtained from chicory, (NH4)2HP
O40.15%, KH2PO40.1%, Tween
80 0.02%, MgSO4,7Hz00.05%,
A pH 7 culture medium prepared with tap water containing 1! Pour 300ml into an Erlenmeyer flask, sterilize it, and add P, trjebin.
Inoculate one platinum loop of P. skii with an amplitude of 7 C111 at 28°C.
Rotate and culture at 100 strokes.

培養4白目以降にpHが低下しはじめ6日目ではpH3
,5となり、始めはフラクトース生成型であったイヌリ
ナーゼ活性はオリゴ糖生成型となった。
After the 4th white of the culture, the pH starts to decrease and reaches pH 3 on the 6th day.
, 5, and the inulinase activity, which was initially fructose-producing, became oligosaccharide-producing.

7日目で培養液1ml当たりのエンド型活性が0.8u
nitと最大となった時点で培養をとめ、培養液と菌体
を濾別した。
On the 7th day, the endotype activity was 0.8u per ml of culture solution.
The culture was stopped when the number of microorganisms reached a maximum of nit, and the culture solution and the bacterial cells were separated by filtration.

実施例1と同様に培養液を塩析し硫安による4゜〜80
X飽和沈澱区分を得、N/100酢酸バツフアー(pH
5,0)に溶解後バイオゲルP−60G(バイオランド
社製)を用いて脱塩し粗酵素液を得た。
The culture solution was salted out in the same manner as in Example 1, and the temperature was 4° to 80° with ammonium sulfate.
Obtain the
5,0) and then desalted using Biogel P-60G (manufactured by Bioland) to obtain a crude enzyme solution.

この粗酵素液を20%イヌリン溶液にイヌリン1g当た
り3ユニツトの割合で添加しpo4.s 、温度60℃
で48時間反応を行った。
This crude enzyme solution was added to a 20% inulin solution at a rate of 3 units per 1 g of inulin, and po4. s, temperature 60℃
The reaction was carried out for 48 hours.

反応生成物をゲルクロマトグラフィーで分析した結果を
第4図に示すがDPIが1.3z、叶2が0.9z、D
P3が26.5χ、DP4が27.6χ、DP5が18
.5χ、DP6が14.2X 、それ以上のもの11.
0χのイヌロオリゴ糖組成物が得られた。
The results of gel chromatography analysis of the reaction products are shown in Figure 4. DPI is 1.3z, Kano 2 is 0.9z, D
P3 is 26.5χ, DP4 is 27.6χ, DP5 is 18
.. 5χ, DP6 is 14.2X, or higher 11.
A canine oligosaccharide composition of 0x was obtained.

本菌株の粗酵素液を用いてイヌリンを分析した場合の経
時的な分解パターンは実施例1と同様にエンド型酵素に
よる分止パターンを示した。
When inulin was analyzed using the crude enzyme solution of this strain, the decomposition pattern over time showed a decomposition pattern due to endo-type enzymes, similar to Example 1.

(文献1 )  Vandamme、 E、 J、;D
erycke、D、G、Adv。
(Reference 1) Vandamme, E, J, ;D
erycke, D.G., Adv.

Appl、Microbiol、1983.29.13
9〜L76(文献2 )  Nakamura、 T、
; Nakatsu、S、 NipponNogeik
agaku Kaishi、1977.51.681〜
689(文献3 )  Nakamura、 T、et
 al、 N1ppon Nogei−kagaku 
Kaishi、 1978,52.159〜166(文
献4 )  Nakamura、 T、et al、 
N1ppon Nogei−kagaku Kaish
i、  1978,52.581〜587(文献5 )
L、Zittan、5tarch、19B1,33,3
73〜377゜(文献6 )  Nakamura、 
T、et al、 N1ppon Nogei−Kag
aku kaishi、  1969,43,599〜
605
Appl, Microbiol, 1983.29.13
9-L76 (Reference 2) Nakamura, T.
;Nakatsu, S, NipponNogeik
agaku Kaishi, 1977.51.681~
689 (Reference 3) Nakamura, T. et.
al, N1ppon Nogei-kagaku
Kaishi, 1978, 52.159-166 (Reference 4) Nakamura, T, et al.
N1ppon Nogei-kagaku Kaish
i, 1978, 52.581-587 (Reference 5)
L, Zittan, 5tarch, 19B1,33,3
73-377° (Reference 6) Nakamura,
T, et al, N1ppon Nogei-Kag
aku kaishi, 1969, 43, 599~
605

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第4図までの図面は、いずれも本発明におけ
るイヌリンの酵素分解パターンを示すゲルクロマトグラ
フである。 特許出願人  三井東圧化学株式会社 才1図 →   7も!;+ 321゜ Dρ
The drawings from FIG. 1 to FIG. 4 are all gel chromatographs showing the enzymatic decomposition pattern of inulin in the present invention. Patent applicant: Mitsui Toatsu Chemical Co., Ltd. Figure 1 → 7 too! ;+321゜Dρ

Claims (1)

【特許請求の範囲】[Claims] ペニシリウム属カビのエンド型イヌリナーゼをイヌリン
に作用させることを特徴とするイヌロオリゴ糖の製造法
A method for producing inulooligosaccharides, which comprises causing endo-type inulinase of a Penicillium fungus to act on inulin.
JP61068773A 1986-03-28 1986-03-28 Production of inulooligosaccharide Granted JPS62228293A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61068773A JPS62228293A (en) 1986-03-28 1986-03-28 Production of inulooligosaccharide
JP5021074A JPH06102033B2 (en) 1986-03-28 1993-02-09 Method for producing inulooligosaccharide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61068773A JPS62228293A (en) 1986-03-28 1986-03-28 Production of inulooligosaccharide
JP5021074A JPH06102033B2 (en) 1986-03-28 1993-02-09 Method for producing inulooligosaccharide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5021074A Division JPH06102033B2 (en) 1986-03-28 1993-02-09 Method for producing inulooligosaccharide

Publications (2)

Publication Number Publication Date
JPS62228293A true JPS62228293A (en) 1987-10-07
JPH0561910B2 JPH0561910B2 (en) 1993-09-07

Family

ID=26358090

Family Applications (2)

Application Number Title Priority Date Filing Date
JP61068773A Granted JPS62228293A (en) 1986-03-28 1986-03-28 Production of inulooligosaccharide
JP5021074A Expired - Lifetime JPH06102033B2 (en) 1986-03-28 1993-02-09 Method for producing inulooligosaccharide

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP5021074A Expired - Lifetime JPH06102033B2 (en) 1986-03-28 1993-02-09 Method for producing inulooligosaccharide

Country Status (1)

Country Link
JP (2) JPS62228293A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005793A1 (en) * 1996-08-01 1998-02-12 Raffinerie Tirlemontoise Method for preparing a polydispersed saccharide composition and resulting polydispersed saccharide composition
WO1998049277A2 (en) * 1997-04-26 1998-11-05 Tshisuaka Barbara I Method for obtaining an endoinulinase-producing microorganism and method for detecting an endoinulinase-activity
CN112725307A (en) * 2021-01-13 2021-04-30 云南师范大学 Low-temperature inulase exonuclease mutant MutG169 delta 4 with reduced heat resistance and application thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725306B (en) * 2021-01-13 2022-06-24 云南师范大学 Inulase mutant MutY119T with changed thermal salinity and application thereof
CN112980813B (en) * 2021-01-13 2022-08-30 云南师范大学 Low-temperature modified exoinulase mutant MutS117G
CN112813053B (en) * 2021-01-13 2022-06-24 云南师范大学 Inulase mutant MutY119H and preparation method thereof
CN112813050B (en) * 2021-01-13 2022-08-30 云南师范大学 Exo-inulinase mutant MutP126Q with reduced thermostability
CN112813052B (en) * 2021-01-13 2022-08-26 云南师范大学 Exo-inulase mutant MutDP121ET6 with improved low-temperature activity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005793A1 (en) * 1996-08-01 1998-02-12 Raffinerie Tirlemontoise Method for preparing a polydispersed saccharide composition and resulting polydispersed saccharide composition
BE1010449A3 (en) * 1996-08-01 1998-08-04 Raffinerie Tirlemontoise Sa PROCESS FOR PREPARING A COMPOSITION SACCHARIDES POLYDIPERSEE, COMPOSITION polydispersed saccharide, PRODUCTS, PHARMACEUTICAL AND / OR COSMETIC COMPOSITION COMPRISING polydisperse.
US7084131B2 (en) 1996-08-01 2006-08-01 Raffinerie Tirlemontoise S.A. Method for preparing a polydispersed saccharide composition and resulting polydispersed saccharide composition
WO1998049277A2 (en) * 1997-04-26 1998-11-05 Tshisuaka Barbara I Method for obtaining an endoinulinase-producing microorganism and method for detecting an endoinulinase-activity
WO1998049277A3 (en) * 1997-04-26 1999-03-04 Barbara I Tshisuaka Method for obtaining an endoinulinase-producing microorganism and method for detecting an endoinulinase-activity
CN112725307A (en) * 2021-01-13 2021-04-30 云南师范大学 Low-temperature inulase exonuclease mutant MutG169 delta 4 with reduced heat resistance and application thereof

Also Published As

Publication number Publication date
JPH06102033B2 (en) 1994-12-14
JPH0614792A (en) 1994-01-25
JPH0561910B2 (en) 1993-09-07

Similar Documents

Publication Publication Date Title
JP2009050281A (en) Method for preparation of inulin
JPS62228293A (en) Production of inulooligosaccharide
BE1007064A3 (en) LEVANE saccharase ENZYME, METHOD OF PREPARATION, MICROORGANISMS THAT PRODUCE AND COMPOSITION CONTAINING SAME.
US4990451A (en) Process for the preparation of inulase
JPH0372084B2 (en)
JPH03160995A (en) Production of trehalose
JP2003093090A (en) Method for producing inulin
JPS61236790A (en) Production of galactooligosaccharide
KR860000373B1 (en) Method for manufacturing sweet seasoning material from sorbitol and mannitol
JPS63226220A (en) Improvement in quality of fruit
JP3594650B2 (en) Dextran production method
KR100664582B1 (en) Chitinase-producing trichoderma viride ????-?41 strain, chitinases purified therefrom and a method for producing ?-acetylglucosamine using the chitinases
KR860000913B1 (en) Method for producing sweeter
JPS61271999A (en) Production of galactooligosaccharide
JPH06133791A (en) Low-molecular dextran
US5604128A (en) Isolated cultures of Pestalotiopsis funerea IFO 5427 and Pestalotiopsis negleta FERM BP-3501
CA2075852A1 (en) Amylase capable of digesting raw starch
JPS5816682A (en) Preparation of cellulase
JPH02255085A (en) Novel inulinase and production thereof
JPH01252280A (en) Novel endoxylanase i, production thereof and microorganism producing said enzyme and production of xylooligo sugar by said enzyme
JPS62275A (en) Production of polysaccharide hydrolase
JPH1099072A (en) Variant of aspergillus awamori and degradation of plant tissue
CH648346A5 (en) METHOD FOR PRODUCING GLUCOSE ISOMERASE AND THE USE THEREOF FOR ISOMERIZING GLUCOSE TO FRUCTOSE.
BE853722A (en) HOT AND ACID STABLE ALPHA-AMYLASES ENZYMES THEIR PROCESS OF OBTAINING AND THEIR APPLICATION
JPH03198774A (en) Production of inulinase