JPS62228139A - Sedimentation type particle size distribution measuring device - Google Patents

Sedimentation type particle size distribution measuring device

Info

Publication number
JPS62228139A
JPS62228139A JP61071952A JP7195286A JPS62228139A JP S62228139 A JPS62228139 A JP S62228139A JP 61071952 A JP61071952 A JP 61071952A JP 7195286 A JP7195286 A JP 7195286A JP S62228139 A JPS62228139 A JP S62228139A
Authority
JP
Japan
Prior art keywords
sample
flow cell
medium liquid
particle size
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61071952A
Other languages
Japanese (ja)
Inventor
Masami Matsui
松居 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61071952A priority Critical patent/JPS62228139A/en
Publication of JPS62228139A publication Critical patent/JPS62228139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure the particle size distribution of a specimen with high accuracy, by applying ultrasonic vibration to the specimen by providing an ultrasonic irradiation means to the inflow side of a flow cell. CONSTITUTION:A specimen to be measured and a medium liquid are received in a sample preparation tank 1 and a stirring member 3 is operated to disperse particles throughout the medium liquid. When a pump 6 is driven in a sufficiently dispersed state, the medium liquid having particles suspended therein passed through an ultrasonic irradiation tank 7 to flow in a flow cell 4 and again return to the preparation tank 1. The sample flowing in the ultrasonic irradiation tank 7 receives the energy from ultrasonic vibrators 11, 11 in this process through an ultrasonic propagation medium 8 and a sample flow passage 9 to generate elastic vibration and the particles suspended in the medium liquid are vigorously shaken by said vibration to flow in the flow cell 4. Next, when the pump 6 is stopped to stop the reflux of the sample, the sample of such a state that particles brought to an individually independent state are suspended in the medium liquid is received in the flow cell 4 and each particle falls in the medium liquid at a speed proportional to the particle size thereof and detected as the change in absorbancy by a light receiving element 13.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は、沈降式粒度分布測定装置、より詳しくは試料
粒子を媒液に分散させる技術に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a sedimentation type particle size distribution measuring device, and more particularly to a technique for dispersing sample particles in a medium.

口、従来技術 粒径が比較的大きな試料の粒度分布は、サンプル調製槽
においてプロペラ式攪拌装置により粉粒体を媒液に均一
に拡散させつつフローセルに循環させ、測定開始時点で
循環を止め、フローセルにおける光透過度の時間的変化
を検出することにより行なわれている。
Conventional technology The particle size distribution of a sample with a relatively large particle size is determined by using a propeller-type stirring device in a sample preparation tank to uniformly disperse powder and granules in a medium and circulating it through a flow cell, stopping the circulation at the start of measurement, and This is done by detecting temporal changes in light transmittance in the flow cell.

しかしながら、プロペラ式攪拌装置等の機械的な攪拌力
が個々の粒子に作用するエネルギーは高々しれたもので
、高い凝集性を持つ試料に対しては必ずしも十分な分散
状態を得ることができず、第4図に示したようfこ測定
結果に大きなバラつきを生じるという問題があった。
However, the energy exerted by the mechanical stirring force of a propeller-type stirring device or the like on individual particles is high, and it is not always possible to obtain a sufficient dispersion state for samples with high cohesiveness. As shown in FIG. 4, there was a problem in that the measurement results varied greatly.

ハ、目的 本発明はこのような問題に鑑みてなされたものであって
、その目的とするところは再現性の高い測定結果を得る
ことができる沈降式粒度分布測定装置を提供することに
ある。
C. Objective The present invention has been made in view of these problems, and its objective is to provide a sedimentation type particle size distribution measuring device that can obtain highly reproducible measurement results.

二0発明の概要 V′なわち、本発明が特徴とするところはフローセルの
流入口近傍で超音波エネルギーを付与するようにした点
にある。
20 Summary of the Invention V' That is, the present invention is characterized in that ultrasonic energy is applied near the inlet of the flow cell.

ホ、実施例 そこで、以下に本発明の詳細を図示した実施例に基づい
て説明する。
E. Embodiments The details of the present invention will be explained below based on illustrated embodiments.

第1図は、本発明の一実施例を示すものであって、図中
符号1は、サンプル調製槽で、ここには駆動源2からの
動力を受けて試料と媒液を攪拌するプロペラ等の攪拌部
材3が設けられている。4は、ガラス等の光学的透明材
料からなるフローセルで、上端はバイブ5によりサンプ
ル調製槽1に、また下端は後述する超音波照射槽7を経
由して吸入口がサンプル調製槽1に連通するポンプ6の
吐出口に接続されでいる。
FIG. 1 shows an embodiment of the present invention, and reference numeral 1 in the figure is a sample preparation tank, which includes a propeller and other components that stir the sample and medium by receiving power from a drive source 2. A stirring member 3 is provided. 4 is a flow cell made of an optically transparent material such as glass; the upper end communicates with the sample preparation tank 1 via a vibrator 5, and the lower end communicates with the sample preparation tank 1 through an ultrasonic irradiation tank 7, and an inlet port thereof. It is connected to the discharge port of the pump 6.

7は、前述の超音波照射槽で、水等の超音波伝播媒体8
を収容した槽内に、この媒体8と音響インピーダンスが
ほぼ一致する高分子材料製のパイプをコイル状に形成し
てサンプル流路9を配設するとともに、高周波電源1o
からの駆動電力を受ける超音波振動子11.11をサン
プル流路9に対向配設させて構成され、サンプル流路9
の一端はポンプ6の吐出口に、他端はフローセル4の流
入口に接続されている。
7 is the ultrasonic irradiation tank mentioned above, in which an ultrasonic propagation medium 8 such as water
A sample flow path 9 is arranged in a tank containing the medium 8 by forming a coiled pipe made of a polymer material whose acoustic impedance almost matches that of the medium 8, and a high frequency power source 1o
The ultrasonic transducer 11.11 that receives driving power from the sample channel 9 is arranged opposite to the sample channel 9.
One end is connected to the discharge port of the pump 6, and the other end is connected to the inflow port of the flow cell 4.

なお、図中符号12.13は、フローセルに対向配設し
た発光素子と受光素子で、フローセル4内に収容された
サンプルの吸光度を検出し、これを測定回路14に出力
するものである。
Reference numerals 12 and 13 in the figure indicate a light emitting element and a light receiving element arranged opposite to each other in the flow cell to detect the absorbance of the sample contained in the flow cell 4 and output it to the measuring circuit 14.

この実施例(こおいで、測定すべき試料と媒液をサンプ
ル調製槽1に収容して攪拌部材3を作動させると、試料
を構成している各粒子は機械エネルギーを受1すで媒液
中に分散する。このようにして十分に分散が行なわれた
段階でポンプ6を駆動すると、粒子を懸垂させた媒液は
、ポンプ6により超音波照射槽7を通ってフローセル4
に流れ込み、再びサンプル調製槽1に戻るという経路で
循環する。この過程で、超音波照射槽7に流れ込んだサ
ンプルは、超音波伝播媒体8及びサンプル流路9を介し
て入射して来る超音波振動子11.11からの振動エネ
ルギーを受けて弾性振動を生じる。これにより、媒液1
こ懸垂している粒子は、媒液中で激しく振とうされ、凝
集状態にある粒子群は独立した粒子に分化され、また表
面に空気等の気体を吸着した粒子は気体を脱離した状態
でフローセル4に流れ込む。
In this example, when the sample to be measured and the medium are placed in the sample preparation tank 1 and the stirring member 3 is operated, each particle constituting the sample receives mechanical energy and is already in the medium. When the pump 6 is driven when the particles are sufficiently dispersed in this way, the medium in which the particles are suspended passes through the ultrasonic irradiation tank 7 and enters the flow cell 4.
, and returns to the sample preparation tank 1 again. In this process, the sample that has flowed into the ultrasound irradiation tank 7 receives vibrational energy from the ultrasound transducer 11. . As a result, the medium 1
These suspended particles are vigorously shaken in the medium, and the aggregated particles are separated into independent particles, and the particles that have adsorbed air or other gases on their surfaces are desorbed. Flows into flow cell 4.

このようにしで、十分な分散が行なわれた時点で、ポン
プ68停止させてサンプルの環流を止める。これにより
、フローセル4内には個々独立状態となった粒子を媒液
に懸垂した状態のサンプルか収容され、各粒子はその粒
径に比例した速度で媒液中を落下し、受光素子13によ
り吸光度の変化として検出される。云うまでもなく、こ
の吸光度の変化度合は試料の粒度分布を表わすパラメー
タとなる。
In this manner, when sufficient dispersion is achieved, the pump 68 is stopped to stop the sample from circulating. As a result, the flow cell 4 accommodates a sample in which individual particles are suspended in the medium, and each particle falls through the medium at a speed proportional to its particle size, and is detected by the light receiving element 13. Detected as a change in absorbance. Needless to say, the degree of change in absorbance becomes a parameter representing the particle size distribution of the sample.

[実施例] アルミナ加工品から採取した試料を、水とグリセリンの
混合溶液に分散させた後、超音波を作用させて同一試料
を3回測定したところ、3回の測定結果は、第3図に示
したようほぼ同一曲線上に乗り、極めて高い再現性を示
すことが確認できた。
[Example] A sample taken from a processed alumina product was dispersed in a mixed solution of water and glycerin, and the same sample was measured three times by applying ultrasonic waves. The three measurement results are shown in Figure 3. As shown in Figure 2, the results were confirmed to lie on almost the same curve, demonstrating extremely high reproducibility.

一方、超音波を作用させることなく同一試料を3回測定
したものにあっては、第4図に示したように測定ごとに
バラツキが生じた。
On the other hand, when the same sample was measured three times without applying ultrasonic waves, variations occurred from measurement to measurement as shown in FIG.

第2図は、本発明の第2実施例を示すものであって、フ
ローセル4のサンプル流入端部4aの管壁に超音波振動
子15を取付けたものであって、この実施例によれば高
い効率でサンプルに超音波エネルギーを与えることがで
きるのみならず、ここからフローセル4内にまで伝播さ
せることが可能となって、環流停止後サンプルが完全に
静止するまでの期間も超音波をセル内のサンプルに作用
させて無用な沈降を阻止することができる。
FIG. 2 shows a second embodiment of the present invention, in which an ultrasonic transducer 15 is attached to the tube wall of the sample inlet end 4a of the flow cell 4. Not only can ultrasonic energy be applied to the sample with high efficiency, but it can also be propagated from here into the flow cell 4, allowing the ultrasonic wave to remain in the cell even during the period until the sample is completely still after the perfusion has stopped. It is possible to prevent unnecessary sedimentation by acting on the sample inside the container.

へ、効果 以上、説明したように本発明によればフローセルの流入
側で超音波振動を与えるようにしたので、サンプル調製
槽で十分に分散させきれなかった凝集粒子や、移送工程
で再凝集した粒子を超音波エネルギーにより振盪させて
独立した粒子に分離させてからフローセルに流入させる
ことができて、攪拌条件や移送条件のいかんにかかわり
なく試料本来の粒度分布を高い精度と再現性で測定する
ことができる。
As explained above, according to the present invention, ultrasonic vibrations are applied on the inflow side of the flow cell, which eliminates agglomerated particles that were not sufficiently dispersed in the sample preparation tank and reaggregated particles during the transfer process. Particles can be agitated using ultrasonic energy to separate them into individual particles before entering the flow cell, allowing the measurement of the sample's native particle size distribution with high accuracy and reproducibility regardless of stirring or transfer conditions. be able to.

また、超音波エネルギーにより粒子を媒液中で振盪させ
るため、粒子表面に吸着されている空気等の気体を脱離
させて粒子本来の沈降速度【こ基づ〈測定かできで測定
精度の向上を図ることかできる。
In addition, since particles are shaken in a medium using ultrasonic energy, gases such as air adsorbed on the particle surface are desorbed and the particle's original sedimentation velocity is improved. It is possible to aim for

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す装置の構成図、第2
図は本発明の他の実施例を示す構成図、第3図は同上製
雪による測定結果の一例を示す粒度分布図、及び第4図
は従来装置により測定された粒度分布図である。
FIG. 1 is a configuration diagram of an apparatus showing one embodiment of the present invention, and FIG.
FIG. 3 is a block diagram showing another embodiment of the present invention, FIG. 3 is a particle size distribution diagram showing an example of the measurement results obtained by snowmaking, and FIG. 4 is a particle size distribution diagram measured by a conventional apparatus.

Claims (1)

【特許請求の範囲】[Claims] 吸光度の時間変化により粒度分布を検出する検出手段が
設けられたフローセルとサンプル調整槽との間を送液手
段によりサンプルを循環させるとともに、前記フローセ
ルのサンプル流入側に超音波照射手段を設けてなる沈降
式粒度分布測定装置。
A sample is circulated by a liquid feeding means between a flow cell provided with a detection means for detecting particle size distribution based on a time change in absorbance and a sample conditioning tank, and an ultrasonic irradiation means is provided on the sample inlet side of the flow cell. Sedimentation type particle size distribution measuring device.
JP61071952A 1986-03-28 1986-03-28 Sedimentation type particle size distribution measuring device Pending JPS62228139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61071952A JPS62228139A (en) 1986-03-28 1986-03-28 Sedimentation type particle size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61071952A JPS62228139A (en) 1986-03-28 1986-03-28 Sedimentation type particle size distribution measuring device

Publications (1)

Publication Number Publication Date
JPS62228139A true JPS62228139A (en) 1987-10-07

Family

ID=13475329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61071952A Pending JPS62228139A (en) 1986-03-28 1986-03-28 Sedimentation type particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JPS62228139A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1319938A1 (en) * 2001-12-13 2003-06-18 Xerox Corporation System and processes for particulate analysis
CN103454186A (en) * 2013-09-04 2013-12-18 华北电力大学 Experiment system for measuring migration and sedimentation of granular corrosion products in pipeline
WO2018198470A1 (en) * 2017-04-28 2018-11-01 ソニー株式会社 Imaging-target analyzing device, flow-path structure, imaging member, imaging method, and imaging-target analyzing system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1319938A1 (en) * 2001-12-13 2003-06-18 Xerox Corporation System and processes for particulate analysis
US6931950B2 (en) 2001-12-13 2005-08-23 Xerox Corporation System and processes for particulate analysis
CN103454186A (en) * 2013-09-04 2013-12-18 华北电力大学 Experiment system for measuring migration and sedimentation of granular corrosion products in pipeline
WO2018198470A1 (en) * 2017-04-28 2018-11-01 ソニー株式会社 Imaging-target analyzing device, flow-path structure, imaging member, imaging method, and imaging-target analyzing system
JPWO2018198470A1 (en) * 2017-04-28 2020-03-05 ソニー株式会社 Imaging target analysis apparatus, flow path structure, imaging member, imaging method, and imaging target analysis system
US11092535B2 (en) 2017-04-28 2021-08-17 Sony Corporation Imaging target analysis device, flow channel structure, imaging member, imaging method, and imaging target analysis system

Similar Documents

Publication Publication Date Title
Riebel et al. The fundamentals of particle size analysis by means of ultrasonic spectrometry
Hawkes et al. A continuous flow ultrasonic cell-filtering method
US7989177B2 (en) Method and device for ultrasound assisted particle agglutination assay
US7140239B2 (en) System and technique for ultrasonic characterization of settling suspensions
WO2005107939A1 (en) Equipment using piezoelectric device
WO2020213338A1 (en) Photoanalysis method and photoanalysis system
JPH1085509A (en) Apparatus and method for reducing bubbles in sample
EP1055111A1 (en) Photometer and method and cuvette for mixing
JPH06241977A (en) Fine particle measuring instrument
JP6705739B2 (en) Optical analysis system and optical analysis method
JPS62228139A (en) Sedimentation type particle size distribution measuring device
US5236473A (en) Sipper tube with ultrasonic debubbling
JPH02504310A (en) Method and apparatus for monitoring solid phase parameters of suspensions
Neppiras Measurements in liquids at medium and high ultrasonic intensities
DE69840569D1 (en) DEVICE FOR DETECTING INHOMOGENITIES IN A LIQUID CURRENT
WO1981000911A1 (en) Continuous flow automatic chemical analysis systems and components for use therein
Scott et al. Ultrasonic measurement of sub‐micron particles
Hertz et al. Viscosity measurement of an enclosed liquid using ultrasound
CN205003071U (en) Detection apparatus for solid -state likepowder material time of dissolving in solution
EP3561483B1 (en) A flow cell, assembly and method
Rooney 6. Nonlinear phenomena
US6814482B2 (en) Method for dispersing red and white blood cells
US3487697A (en) Fluid-suspended particle analyzer
Gruber et al. Ultrasonic attenuation in water containing brine shrimp in suspension
CN105136677A (en) Device for detecting dissolution time of solid powdery substance in solution