JPS62227432A - Agitator - Google Patents

Agitator

Info

Publication number
JPS62227432A
JPS62227432A JP61068772A JP6877286A JPS62227432A JP S62227432 A JPS62227432 A JP S62227432A JP 61068772 A JP61068772 A JP 61068772A JP 6877286 A JP6877286 A JP 6877286A JP S62227432 A JPS62227432 A JP S62227432A
Authority
JP
Japan
Prior art keywords
paddle
adjacent
container
powder
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61068772A
Other languages
Japanese (ja)
Other versions
JPH0331094B2 (en
Inventor
Atsuyoshi Shimizu
清水 厚良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP61068772A priority Critical patent/JPS62227432A/en
Publication of JPS62227432A publication Critical patent/JPS62227432A/en
Publication of JPH0331094B2 publication Critical patent/JPH0331094B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/625Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis the receptacle being divided into compartments, e.g. with porous divisions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

PURPOSE:To uniformalize residence time of fine particles by fixing a fixed weir vertically to a revolving shaft and to provide paddle units adjoining with said fixed weir between to satisfy specific conditions in a lateral single shaft agitator equipped with a plurality of paddle units on the revolving shaft. CONSTITUTION:A plurality of paddle units, consisting of more than one paddle respectively, are provided on a horizontal revolving shaft in a lateral cylindrical container to form up an agitator means. More than two of fixed weirs are fixed in the positions to divide the length of container roughly in an equal length and to the vertical direction of the shaft, remaining semicircle openings upward inside the inner wall of container. By said arrangement, the inside of the container is divided into a plurality of agitating zones, the number of which is one more than that of said fixed weirs. Respective two paddle units adjoining with the fixed weir between should be arranged to satisfy the formulas i-v, and also formula vi should be satisfied between adjoining two paddle units.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は撹拌装置に関するものである。更に詳しくは、
横型円筒状容器に多数のパドルが回転軸に取り付けられ
た撹拌手段が内蔵されていると共に、この回転軸と垂直
に2以上の固定堰が容器周壁に固定されており、各固定
堰を挟んで隣接するパドルの取付けが特殊に構成されて
いて重合器。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a stirring device. For more details,
A horizontal cylindrical container has a built-in stirring means in which a number of paddles are attached to a rotating shaft, and two or more fixed weirs are fixed to the peripheral wall of the container perpendicularly to this rotating shaft. The attachment of adjacent paddles is specially configured and polymerization vessel.

後処理器、乾燥器1等として好適に使用される横型一軸
式の撹拌装置に関するものである。
This invention relates to a horizontal uniaxial stirring device suitably used as a post-processor, a dryer 1, etc.

〔従来の技術〕[Conventional technology]

横型円筒状容器に横型一軸式の撹拌手段が内蔵された撹
拌装置は以前からポリオレフィン等のポリマー粒子の撹
拌装置として知られている。これらの撹拌装置の−っと
して、ポリマー粒子や触媒粒子等(以下、粉粒体と総称
することがある)の完全な混合、あるいは除熱効率の向
上、更には粉粒体の容器内での滞留時間分布(以下、R
TDと略記することがある)の幅を狭くすることすなお
ち滞留時間の均一化(以下、RTDの向上と言うことが
ある)等を図るため、矩形状の平らなパドルが水平な回
転軸上に多数取り付けられた横型一軸式の撹拌手段に加
えて、1以上の固定堰が回転軸に対して垂直方向に容器
内壁に固定された連続処理のできうる撹拌装置が知られ
ている(特公昭59−21321参照)、。
A stirring device in which a horizontal uniaxial stirring means is built into a horizontal cylindrical container has long been known as a stirring device for polymer particles such as polyolefin. The purpose of these stirring devices is to completely mix polymer particles, catalyst particles, etc. (hereinafter sometimes referred to as powder and granules), improve heat removal efficiency, and further improve the retention of powder and granules in a container. Time distribution (hereinafter referred to as R
In order to narrow the width of the TD (sometimes abbreviated as TD) or equalize the residence time (hereinafter sometimes referred to as improving RTD), a rectangular flat paddle is placed on a horizontal rotation axis. In addition to a large number of horizontal uniaxial stirring means attached to a container, a stirring device capable of continuous processing is known in which one or more fixed weirs are fixed to the inner wall of the container in a direction perpendicular to the rotation axis (Tokuko Sho et al. 59-21321).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この種の固定堰を単に従来の撹拌手段に
加えて内設して固定堰で区切られた各撹拌ゾーン(以下
、単にゾーンと言うことがある)を構成しただけの撹拌
装置では、混合あるいは除熱効率の向上があったとして
も、RTDの充分な向上は得られなかった。今、固定堰
を2つ内設して3つのゾーンが構成されている撹拌装置
について、その1つのゾーン内で、粉粒体がそのゾーン
内の平均滞留時間だけ撹拌された後に次の隣接ゾーンへ
ピストンフローで全量移送される場合すなわち各ゾーン
でバッチ運転して順次移送される場合を仮定すると、ゾ
ーン数が多い程撹拌効果は増大する。このような効果を
槽数効果と称し、この効果に及ぼすゾーン1つ分の槽数
効果を1とし、全体の槽数効果をその和で表現するなら
ば、上記の如くゾーン3つの場合は全体で槽数効果は3
である。しかしながら単に従来の撹拌手段に加えて固定
堰を内設しただけの前記従来の撹拌装置を連続運転した
場合は、各ゾーンにショート・パス粒子や長期滞留粒子
が存在して槽数効果はゾーン1つ分で1以下になり、全
体で3に達しない。更には、完全な混合を得ようとして
回転数を増加させた場合は、固定堰を2つ内設したにも
かかわらず、粉粒体は流動状態となって固定堰をその両
側から超えるものが多く、槽数効果は全体で1に近づい
て堰を設けた効果が殆んど表われないこともあった。
However, in a stirring device in which this type of fixed weir is simply installed in addition to conventional stirring means to constitute each stirring zone (hereinafter sometimes simply referred to as zone) separated by the fixed weir, it is difficult to mix. Alternatively, even if there was an improvement in heat removal efficiency, a sufficient improvement in RTD could not be obtained. Now, regarding an agitation device that has two fixed weirs and three zones, in one zone, after the powder is stirred for the average residence time in that zone, it is transferred to the next adjacent zone. Assuming that the entire amount is transferred by piston flow, that is, that each zone is sequentially transferred in batch operation, the greater the number of zones, the greater the stirring effect. This effect is called the tank number effect, and if the effect of the number of tanks for one zone on this effect is 1, and the total number of tanks effect is expressed as the sum, then in the case of three zones as above, the total The tank number effect is 3.
It is. However, when the above-mentioned conventional stirring device, which is simply equipped with a fixed weir in addition to the conventional stirring means, is operated continuously, short-pass particles and long-term residence particles exist in each zone, and the effect of the number of tanks is limited to the zone 1. The number is less than 1 in half, and the total number is less than 3. Furthermore, when the rotation speed is increased in an attempt to achieve complete mixing, the powder and granules become in a fluid state, and even though two fixed weirs are installed, the particles exceed the fixed weir from both sides. In many cases, the overall effect of the number of tanks approached 1, and the effect of installing a weir was hardly noticeable.

この様に、固定堰を単に従来の撹拌手段に加えて内設し
ただけの従来の撹拌装置では、粉粒体のRTDを向上さ
せることは非常に困難である問題点があった。そして例
えばオレフィン重合用やポリオレフィンの乾燥用の撹拌
装置内でショート・パス粒子等が存在することは、得ら
れたポリオレフィンに品質不均一、物性低下、外観不良
1等を招いたので、上記従来技術の問題点の早期解決が
望まれていた。
As described above, the conventional stirring device in which a fixed weir is simply installed in addition to the conventional stirring means has a problem in that it is very difficult to improve the RTD of powder and granular material. For example, the presence of short-pass particles in stirring equipment for olefin polymerization or polyolefin drying causes non-uniform quality, deterioration of physical properties, poor appearance, etc. in the obtained polyolefin, so the above-mentioned conventional technology It was hoped that the problems would be resolved as soon as possible.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記の如き従来技術の問題点を解決し、粉粒
体の滞留時間を均一化した状態で行なう連続撹拌を工業
的規模において、長期間安定して実施することのできる
横型一軸式の撹拌装置を提供することを目的に鋭意研究
した結果成されたものである。
The present invention solves the problems of the prior art as described above, and provides a horizontal uniaxial type that can stably perform continuous stirring for a long period of time on an industrial scale while maintaining a uniform residence time of powder and granules. This was achieved as a result of intensive research with the aim of providing a stirring device.

すなわち本発明は、一端に撹拌対象物の供給口と他端に
粉粒体の抜出し口とを有する横型円筒状容器内に、水平
な回転軸とその上の複数の各位置にそれぞれ1枚以上の
矩形状の平らなパドルが取り付けられて成るパドル組の
複数組とから成る撹拌手段が内蔵されている横型一軸式
の撹拌装置であって、上記回転軸と垂直方向に容器内壁
に固定された2以上の固定堰によって容器内が3以上の
撹拌ゾーンに分割されており、各固定堰を挟んで隣接す
る2つのパドル組から成る隣接パドル組群が各隣接パド
ル組群毎に以下の条件(i)〜(V)を満足し且つ隣接
パドル組群間で条件(vi )を満足することを特徴と
する撹拌装置; (i)2つのパドル組のパドルの幅W及び枚数は互に等
しい。
That is, the present invention provides a horizontal cylindrical container having a supply port for the material to be stirred at one end and an outlet for the powder or granular material at the other end, and one or more sheets at each of a plurality of positions on the horizontal rotation shaft. A horizontal uniaxial stirring device having a built-in stirring means consisting of a plurality of paddle sets each having rectangular flat paddles attached thereto; The inside of the container is divided into three or more stirring zones by two or more fixed weirs, and adjacent paddle group groups consisting of two adjacent paddle groups with each fixed weir in between meet the following conditions ( A stirring device characterized by satisfying i) to (V) and satisfying condition (vi) between adjacent paddle sets; (i) The width W and number of paddles of the two paddle sets are equal to each other.

(ji) β=0°、 (ni) D/100≦Q1≦D/20、(iv) Q
、/Q□≧1 (v)1≦527S1≦20 (vi )すべての隣接パドル組群間でQ1同士、α。
(ji) β=0°, (ni) D/100≦Q1≦D/20, (iv) Q
, /Q□≧1 (v)1≦527S1≦20 (vi) Q1 between all adjacent paddle groups, α.

同士、S1同士、S2同士、W同士はそれぞれ互に等し
い。
S1 and S2, S2 and W are each equal to each other.

に関するものである。It is related to.

[構成の説明〕 本発明に係る撹拌装置を図面によって詳細に説明する。[Configuration description] The stirring device according to the present invention will be explained in detail with reference to the drawings.

第1図は本発明装置の1実施例を模式的且つ透視的に示
す側面説明図、第2図は第1図中固定堰を挟んで隣接す
る2組のパドル組(隣接パドル組)の各パドルの位置を
示すA−A線から矢印方向に見た説明図、第3図はパド
ルの位相角差が90°のときの隣接パドル組を第2図と
同じ位置で見た説明図、第4図は第3図の状態から隣接
パドル組を90°回転させた状態を示す説明図、第5図
はパドル組が粉粒体を撹拌するときの回転に従って変化
する粉粒体堆積表面の高低を示す説明図、第6図及び第
7図はそれぞれ粉粒体を撹拌するときの固定堰付近にお
ける粉粒体堆積表面の高低変化を第3図及び第4図に対
応する2つの両極端の場合についてパドル組の位置と共
に示す側面説明図、第8図、第9図及び第1O図は本発
明装置における固定堰とこれを挟んで隣接するパドル組
との配置状態の種々な態様と粉粒体堆積表面の形成状態
とを示す側面説明図である。
FIG. 1 is a side explanatory view schematically and transparently showing one embodiment of the device of the present invention, and FIG. 2 is a diagram showing each of two adjacent paddle groups (adjacent paddle groups) in FIG. 1 with a fixed weir in between. Fig. 3 is an explanatory diagram viewed in the direction of the arrow from line A-A indicating the position of the paddles. Figure 4 is an explanatory diagram showing the state in which the adjacent paddle set is rotated by 90 degrees from the state shown in Figure 3, and Figure 5 shows the height of the powder and granule accumulation surface that changes as the paddle set rotates when stirring the powder and granule. Figures 6 and 7 are explanatory diagrams showing the changes in height of the powder accumulation surface near the fixed weir when stirring the powder, respectively, in two extreme cases corresponding to Figures 3 and 4. 8, 9, and 10 are side explanatory views showing the positions of the paddle sets, and various aspects of the arrangement of the fixed weir and the adjacent paddle sets in the device of the present invention, and the powder and granular materials. FIG. 3 is an explanatory side view showing the formation state of a deposition surface.

図面中、1は横型円筒状容器(直径り、長さし。In the drawing, 1 is a horizontal cylindrical container (diameter and length).

L / D =3.0)であって、第1図に示す如く、
一端に撹拌対象物の供給口2と他端に粉粒体の抜出し口
3とを有している。この横型円筒状容器(以下単に容器
と略称することがある)1内の筒軸位置に水平な回転軸
(直径d)4が設けられており、この回転軸4上の複数
の各位置に第1図及び第2図に示す如くそれぞれ1枚以
上(図例は揃って2枚)の矩形状の平らなパドル(幅W
)が取り付けられて成るパドル組5が回転軸4のほぼ全
長に亘って複数組設けられていて回転軸4とで撹拌手段
を構成している。そしてこの撹拌手段とこれを内蔵する
容器1とで横型一軸式の撹拌装置が構成されている。各
パドル組5のパドル数は図例では揃って2枚であるが、
必ずしもその必要はなく、例えば1枚、2枚、又は3枚
等異なる枚数のパドルから成るパドル組5が混在してい
ても良い。但し、後記する如く各固定堰を挟んで隣接す
る2つのパドル粗間ではパドル数は等しいことが必要で
ある。
L/D=3.0), as shown in FIG.
It has a supply port 2 for the material to be stirred at one end and a discharge port 3 for the powder and granular material at the other end. A horizontal rotating shaft (diameter d) 4 is provided at the cylindrical axis position in this horizontal cylindrical container (hereinafter sometimes simply referred to as a container) 1, and a horizontal rotating shaft (diameter d) 4 is provided at each of a plurality of positions on this rotating shaft 4. As shown in Figures 1 and 2, one or more rectangular flat paddles (width W
) A plurality of paddle sets 5 are provided along almost the entire length of the rotating shaft 4, and together with the rotating shaft 4 constitute a stirring means. This stirring means and the container 1 containing it constitute a horizontal uniaxial stirring device. The number of paddles in each paddle group 5 is two in the illustrated example, but
This is not necessarily necessary, and paddle sets 5 made up of different numbers of paddles, such as one, two, or three, may coexist. However, as will be described later, it is necessary that the number of paddles be equal between two adjacent paddles across each fixed weir.

7は固定堰であって、第1図及び第2図に示す如く、そ
の2つ以上(図例では3つ)が回転軸4と垂直方向に容
器1の長さしを例えばほぼ同じ長さに分割する位置に、
上方に容器内壁との間に半月形(円弧と弦とより成り、
必ずしも半円を意味しない)の開口部8を残して容器内
壁に固定されており、この固定堰7によって容器1内が
固定堰7の数より1つ多い撹拌ゾーンに分割されている
(以下、上記撹拌ゾーンを供給口2側から抜出し口3側
に向かって順次第1ゾーン、第2ゾーン、第3ゾーン等
と言うことがあり、また1つの固定堰7に関し供給口2
側及び抜出し口3側の各撹拌ゾーンをそれぞれ上流側ゾ
ーン及び下流側ゾーンと言うことがある)。
7 is a fixed weir, and as shown in FIG. 1 and FIG. At the position where it is divided into
A half-moon shape (consisting of an arc and a chord,
The fixed weir 7 divides the inside of the container 1 into one more stirring zone than the number of fixed weirs 7 (hereinafter referred to as The above-mentioned stirring zones may be referred to as a first zone, a second zone, a third zone, etc. in order from the supply port 2 side to the extraction port 3 side.
(The stirring zones on the side and the outlet 3 side may be referred to as the upstream zone and the downstream zone, respectively).

ところで本発明装置においては、この固定堰7を挟んで
隣接する2つのパドル組(それぞれを隣接パドル組と称
することがあり、また1つの固定堰7を挟む両隣接パド
ル組をまとめて隣接パドル組群9と言う)、すなわち供
給口2側(上流側)に位置する隣接パドル組5aと抜出
し口3側(下流側)に位置する隣接パドル組5bとが、
隣接パドル組群9毎に前記で示した条件(i)〜(v)
を満足し且つ隣接パドル組群間で条件(vi)を満足す
るものであることが本発明の特徴である。
By the way, in the device of the present invention, two paddle groups that are adjacent to each other with the fixed weir 7 in between (each may be referred to as an adjacent paddle group, and both adjacent paddle groups that sandwich one fixed weir 7 are collectively referred to as an adjacent paddle group). (referred to as group 9), that is, the adjacent paddle group 5a located on the supply port 2 side (upstream side) and the adjacent paddle group 5b located on the extraction port 3 side (downstream side),
Conditions (i) to (v) shown above for each adjacent paddle set group 9
It is a feature of the present invention that the condition (vi) is satisfied between adjacent paddle sets.

なお、本発明装置に使用される横型円筒状容器1として
はその直径りに対する長さLの比L/Dが1.0以上の
ものが好ましい。又、固定堰7の開口部8の面積は容器
断面積+πD゛の30%よりも大きくないことが好まし
い。又、開口部8の形状としては基本的に第2図に示す
半月形が好ましいが、開口部8の周縁の一部として容器
周壁の円弧が含有されていること以外に特別の制限はな
い。
The horizontal cylindrical container 1 used in the apparatus of the present invention preferably has a ratio L/D of length L to diameter of 1.0 or more. Further, it is preferable that the area of the opening 8 of the fixed weir 7 is not larger than 30% of the cross-sectional area of the container +πD. The shape of the opening 8 is basically preferably a half-moon shape as shown in FIG. 2, but there is no particular restriction other than that the arc of the container peripheral wall is included as part of the periphery of the opening 8.

〔作用〕[Effect]

以下、本発明装置の作用を本発明装置開発の経緯と共に
説明する。
The operation of the device of the present invention will be explained below along with the history of development of the device of the present invention.

2以上の固定堰7が設けられている横型一軸式の撹拌装
置であっても、各隣接パドル組群9毎に隣接パドル組5
a、5bについての上記条件(i)〜(v)を満足して
いない場合、例えば、両隣接パドル組5a、5bのパド
ル数が異なる場合、又は同じであっても両隣接パドル組
5a、5bの少なくとも一部のパドルの位相角差βがO
oでない場合(前者の場合はパドルの位相角差について
は当然に後者の場合と同じになる)は、粉粒体が固定堰
7上方の開口部8を通過する軸方向へのフローパターン
は一方方向ではなく、下流側のパドル組5bによってか
き上げられた粉粒体が固定堰7を越して逆移動するもの
もある。固定堰7上方の開口部8において、粉粒体が上
流側ゾーンから下流側ゾーンへの移動のみであれば、槽
数効果がある程度表われるが、上記条件(i)〜(v)
を満足していない場合、下流側ゾーンから上流側ゾーン
へ逆移動もあり、この逆移動量だけ上流側ゾーンから下
流側ゾーンへの粉粒体移動量が増して、ショート・パス
分が増すこととなり、滞留時間を不均一にする。又、単
位時間当りの逆移動量は回転数の増加とともに増加し、
はなはだしい場合は、2以上の固定堰7を内設したにも
かかわらず、その効果は殆んど表われない。
Even in the case of a horizontal uniaxial stirring device in which two or more fixed weirs 7 are provided, each adjacent paddle group 9 has an adjacent paddle group 5.
If the above conditions (i) to (v) for a and 5b are not satisfied, for example, if the numbers of paddles in both adjacent paddle sets 5a and 5b are different, or even if they are the same, both adjacent paddle sets 5a and 5b The phase angle difference β of at least some of the paddles is O
o (in the former case, the phase angle difference of the paddles is naturally the same as in the latter case), the flow pattern in the axial direction in which the powder and granules pass through the opening 8 above the fixed weir 7 is one-sided. In some cases, the powder scraped up by the paddle set 5b on the downstream side moves in the opposite direction, beyond the fixed weir 7. At the opening 8 above the fixed weir 7, if the granular material only moves from the upstream zone to the downstream zone, the effect of the number of tanks will appear to some extent, but under the above conditions (i) to (v)
If this is not satisfied, there is also a reverse movement from the downstream zone to the upstream zone, and the amount of powder and granular material moving from the upstream zone to the downstream zone increases by the amount of this reverse movement, increasing the short path. This makes the residence time uneven. Also, the amount of reverse movement per unit time increases as the rotation speed increases,
In extreme cases, even if two or more fixed weirs 7 are installed internally, the effect will hardly be seen.

これらの現象について、種々検討した結果を第3図〜第
7図により詳しく説明する。以下の説明は1つの隣接パ
ドル組群9についてのものであるが、2以上の隣接パド
ル組群9のいずれについても適用されるものである。第
3図に示す固定堰7を挟んだ両隣接パドル組5a、5b
は、それぞれのパドル数は同じ2枚であって各隣接パド
ル組5a、5bそれぞれにおいて隣接パドル組5aのパ
ドル6aと6a。
The results of various studies regarding these phenomena will be explained in detail with reference to FIGS. 3 to 7. Although the following explanation is about one adjacent paddle set group 9, it is applicable to any of two or more adjacent paddle set groups 9. Both adjacent paddle sets 5a and 5b sandwiching the fixed weir 7 shown in FIG.
, the number of paddles is the same, two, and the paddles 6a and 6a of the adjacent paddle group 5a in each of the adjacent paddle groups 5a and 5b.

及び隣接パドル組5bのパドル6bと6bとの成す開き
角α°は共に180°にとっである6両隣接パドル組5
a、5b間には各パドル6aと6b1枚づつの組2組に
ついて位相角差βが存在するが、上例では位相角差βは
Ooでない場合の例として2組共90@にとっである。
The opening angle α° between the paddles 6b and 6b of the adjacent paddle set 5b is both 180°.
There is a phase angle difference β between two sets of paddles 6a and 6b between a and 5b, but in the above example, the phase angle difference β is not Oo, and both sets are 90@. .

これらのパドル組5a、5bは第3図の位置から90°
回転すると第4図の位置になる。一般に、撹拌装置に粉
粒体を適当量(装置の約60容量%の場合が多い)保有
させておいてパドル組5を回転させてゆくと、粉粒体堆
積表面の傾斜は変化し、その頂部−帯の高さは上下に変
化する。その変化状態は粉粒体の性状2回転数、保有量
等によって異なるが、パドル組5がほぼ第5図に示す回
転位置近辺で安息角に達し、このとき粉粒体堆積表面の
頂部−帯は最も高いレベル(HLで表わす)になる。更
にパドル組5が第5図に示す回転位置より開き角αの+
(図例では90°)回転した時(パドル組5の回転位置
は図示せず)に、粉粒体堆積表面の頂部−帯は最も低い
レベル(LLで表わす)になる、また、パドル組5が上
記2つの回転位置の中間では粉粒体堆積表面の頂部−帯
はHLとLLとの平均的なレベル(ALで表わす)にな
る。従って、粉粒体堆積の頂部−帯のレベルはパドル組
5の回転中にHL→AL−+LL+AL→HLのように
変化する。ここで第3図、第4図に示す如く隣接パドル
粗間の位相角差βが90°であって且つその他の互に隣
接するパドル紐間の位相角差も90°の場合について上
記結果により検討すると、第6図及び第7図に示す如く
、固定堰7の両側で隣接パドル組5a、5bのいずれか
一方の域の粉粒体堆積表面の頂部−帯がレベルHLにあ
る時点で他方の隣接パドル組5a又は5bの域の粉粒体
堆積表面の頂部−帯のレベルは必ずLLである。
These paddle sets 5a, 5b are rotated 90° from the position shown in FIG.
When rotated, it will be in the position shown in Figure 4. Generally, when the paddle set 5 is rotated while the stirring device holds an appropriate amount of powder or granules (often about 60% by volume of the device), the slope of the surface on which the granules are deposited changes. The height of the top-band varies up and down. The state of change differs depending on the nature of the powder, the number of revolutions, the amount held, etc., but the paddle set 5 reaches the angle of repose approximately in the vicinity of the rotational position shown in FIG. is at the highest level (denoted by HL). Furthermore, the paddle set 5 has an opening angle α of + from the rotational position shown in FIG.
When rotated (90° in the illustrated example) (the rotational position of the paddle set 5 is not shown), the top band of the powder deposition surface becomes the lowest level (represented by LL), and the paddle set 5 However, in the middle of the above two rotational positions, the top band of the powder deposition surface is at the average level (denoted by AL) between HL and LL. Therefore, the level of the top band of the powder material accumulation changes as follows during rotation of the paddle set 5: HL→AL−+LL+AL→HL. Here, as shown in FIGS. 3 and 4, the above results are based on the case where the phase angle difference β between adjacent paddle strings is 90° and the phase angle difference between other mutually adjacent paddle strings is also 90°. When examined, as shown in FIGS. 6 and 7, when the top band of the powder accumulation surface of one of the adjacent paddle sets 5a, 5b on both sides of the fixed weir 7 is at the level HL, the other The level of the top band of the powder/grain material deposition surface in the area of the adjacent paddle set 5a or 5b is always LL.

従って回転軸4を連続回転させて粉粒体を撹拌する場合
、隣接パドル組5a、5bが第3図に示す位置(隣接パ
ドル組5aは第5図のパドル組5と同じ位置)に来た時
は、第6図に示すように、隣接パドル組5a域の粉粒体
堆積表面の頂部−帯はレベルHLにあり、隣接パドル組
5b域の粉粒体堆積表面の頂部−帯はレベルLLにある
。粉粒体の軸方向への移動は高いレベルHLから低いレ
ベルLL方向に流動するから、第6図の場合、粉粒体は
自然に固定堰7を越して上流側ゾーンから下流側ゾーン
に移動する。
Therefore, when the rotating shaft 4 is continuously rotated to stir the powder or granular material, the adjacent paddle sets 5a and 5b come to the position shown in FIG. 3 (the adjacent paddle set 5a is in the same position as the paddle set 5 in FIG. 5). At this time, as shown in FIG. 6, the top band of the powder/granular material accumulation surface in the adjacent paddle group 5a area is at level HL, and the top band of the powder/granular material accumulation surface in the adjacent paddle group 5b area is at level LL. It is in. Since the granular material moves in the axial direction from the high level HL to the low level LL direction, in the case of Fig. 6, the granular material naturally moves over the fixed weir 7 from the upstream zone to the downstream zone. do.

更に回転軸4が回転して隣接パドル組5a及び5bが第
4図に示す位置に来た時は、第7図に示すように、隣接
パドル組5a、 5b各域の粉粒体堆積表面の頂部−帯
のレベルは第7図に示す如<HLとLLとは逆転し、粉
粒体は固定堰7を越して下流側ゾーンから上流側ゾーン
に逆移動することになる。
When the rotating shaft 4 further rotates and the adjacent paddle sets 5a and 5b come to the position shown in FIG. 4, as shown in FIG. The level of the top band is reversed as shown in FIG. 7. HL and LL are reversed, and the powder material moves backward from the downstream zone to the upstream zone over the fixed weir 7.

このレベルHL、LLの逆転現像は位相角差βとパドル
の開き角αとの関係から上例では時間的等間隔で起るが
、不等間隔で起こる場合についても粉粒体の移動状態に
ついては基本的に同じである。
In the above example, the reverse development of levels HL and LL occurs at equal time intervals due to the relationship between the phase angle difference β and the paddle opening angle α, but even when it occurs at unequal intervals, the movement state of the powder and granules may be affected. are basically the same.

このように固定堰7を挟んで隣接するパドル組5a、5
b各域の粉粒体堆積表面間で頂部−帯のレベルの高低が
交互に逆転する場合は、必ず粉粒体の逆移動現象が起こ
り、−面で長期滞留粒子従って反面ではショート・パス
粒子を多く発生させて滞留時間を不均一にさせていたこ
とが判った。この逆移動現象を少なくするために更に検
討を進めた結果、回転中の隣接パドル組5a、5bのパ
ドル6aと6b、により掻き上げられる粉粒体堆積表面
の頂部−帯のそれぞれのレベルが同時刻において同じで
あって差を生じさせないパドル6a、6bの配置が重要
なのであるとの認識に達した。そしてそのための条件を
、隣接パドル組5a、5bのパドル6aと6bとが同一
幅Wを有する矩形状であり、第8図に示す如く、容器1
の内壁とのクリアランスQ1及びQ2(第8図中のQ、
、Q2は、パドル6a、6bの先端と容器内壁とのクリ
アランスをや\斜めに見たものであるから、その位置の
みを示すものである。第9図及び第10図においても同
じ。)が等しく、且つ固定堰7とのクリアランスSよ及
びS2も等しい場合について検討したところ、下記に示
す条件が滞留時間均一化の基本条件であると認められた
In this way, adjacent paddle sets 5a, 5 with the fixed weir 7 in between
b When the height of the top-band level is alternately reversed between the powder accumulation surfaces in each region, a reverse movement phenomenon of the powder necessarily occurs, and long-term residence particles on the - side and short-pass particles on the other side. It was found that a large amount of water was generated, making the residence time uneven. As a result of further studies to reduce this reverse movement phenomenon, it was found that the level of the top band of the surface of the granular material piled up by the paddles 6a and 6b of the rotating adjacent paddle sets 5a and 5b is the same. It has been realized that it is important to arrange the paddles 6a and 6b so that they are the same at the same time and do not cause any difference. The conditions for this are that the paddles 6a and 6b of the adjacent paddle sets 5a and 5b are rectangular with the same width W, and as shown in FIG.
Clearances Q1 and Q2 (Q in Fig. 8,
, Q2 are the clearances between the tips of the paddles 6a, 6b and the inner wall of the container, viewed slightly diagonally, so only their positions are shown. The same applies to FIGS. 9 and 10. ) are equal, and the clearances S and S2 with respect to the fixed weir 7 are also equal, and it was found that the conditions shown below are the basic conditions for equalizing the residence time.

(i)両隣接パドル組5a、Sb間でパドル6a、 6
bの数が等しい。
(i) Paddles 6a, 6 between both adjacent paddle sets 5a, Sb
The numbers of b are equal.

(ii)両隣接パドル組5a、Sb間で各パドル6a、
6bの位相角差βが0°。
(ii) Each paddle 6a between both adjacent paddle sets 5a and Sb,
The phase angle difference β of 6b is 0°.

条件(3i)は、換言すれば1両隣接パドル組5a。Condition (3i) is, in other words, one adjacent paddle set 5a.

5bのパドル6a、6bの各1枚から成る1i2枚の各
パドル6a、6bは回転軸4の方向に見れば第2図の如
く一致することを意味するが、必ずしも各開き角αが等
しいことを要しない。この場合、両隣接バドル[5a、
5b各域の粉粒体堆積表面の頂部−帯のレベルがHLか
らLLまでのどの状態にあっても、例えばHLの場合に
ついて第8図に示す如く。
This means that the two paddles 6a and 6b, which are composed of one each of paddles 6a and 6b of 5b, coincide as shown in Fig. 2 when viewed in the direction of the rotation axis 4, but the opening angles α are not necessarily equal. does not require In this case, both adjacent paddles [5a,
No matter where the level of the top band of the surface of the powder/grain material accumulation in each region 5b is in any state from HL to LL, for example, as shown in FIG. 8 in the case of HL.

粉粒体が供給口2から供給されて上流側ゾーンに流入し
ない限り、固定堰7上方の開口部8における粉粒体堆積
表面の傾斜は固定堰7の両側に同じであって松江はバラ
ンスしており1両側傾斜面の交差する谷部P′は固定堰
7の真上に形成されて固定堰7の上方延長面P上にあり
、この固定堰7を越す粉粒体の移動は起らない、このよ
うな固定堰7及び隣接パドル組5a、5bの配置におい
ては、粉粒体が供給口2から供給されて上流側ゾーンに
流入する場合、上流側ゾーンでの増加分だけがわずかな
レベル差となり、粉粒体は第1ゾーンから第2ゾーンへ
の移動のみのフローパターンを示すのである。
Unless the powder is supplied from the supply port 2 and flows into the upstream zone, the slope of the powder accumulation surface at the opening 8 above the fixed weir 7 is the same on both sides of the fixed weir 7, and Matsue is balanced. The trough P' where the slopes on both sides intersect is formed directly above the fixed weir 7 and is on the upward extension surface P of the fixed weir 7, so that movement of powder and granules over the fixed weir 7 does not occur. However, in such an arrangement of the fixed weir 7 and the adjacent paddle sets 5a and 5b, when the powder is supplied from the supply port 2 and flows into the upstream zone, only the increase in the upstream zone is small. This results in a level difference, and the granular material exhibits a flow pattern that only moves from the first zone to the second zone.

次に両隣接パドル組5a、 5b間でパドル6a、 6
bの枚数が等しく且つ位相角差βがOoであっても、固
定堰7の開口部8の面積が大きい場合9回転数が高い場
合、或は粉粒体の保有量が多い場合などには粉粒体の軸
方向への飛散程度が増加し、飛散によるショート・パス
及び逆移動の防止は必ずしも充分でない。この様な飛散
あるいは逆移動の防止について種々検討した結果、種々
な場合を総合して、両隣接パドル組5a、5bのパドル
6a、 6bの幅Wが同じで(以下の説明においてこの
条件は変わらないものとし、逐−示すことは省略する)
Next, paddles 6a and 6 are inserted between both adjacent paddle sets 5a and 5b.
Even if the number of plates b is equal and the phase angle difference β is Oo, if the area of the opening 8 of the fixed weir 7 is large, the number of rotations is high, or the amount of powder and granules held is large, etc. The degree of scattering of the powder particles in the axial direction increases, and prevention of short paths and reverse movement due to scattering is not necessarily sufficient. As a result of various studies on preventing such scattering or reverse movement, we found that the widths W of the paddles 6a and 6b of both adjacent paddle sets 5a and 5b are the same (this condition will not be changed in the following explanation). )
.

Q2/Ω、≧1で且つS t / S 1≧1の場合に
防止効果が充分にあることが認められた。Q2/Q1=
1゜S、/51=1の場合は先に第8図で見た通りであ
る。Q2/n、>’J−、S、/5i=1の場合は第9
図に、又Ω2/Ω、=l、S2/S、>1の場合は第1
0図にそれぞれ粉粒体堆積表面の頂部−帯の形成状態を
示す。第9図及び第1O図においてはいずれの場合も両
隣接パドル組5a、5bそれぞれの域の粉粒体堆積表面
が接して形成する谷部P′が固定堰7の上方延長面Pよ
り下流側ゾーン側に在り、谷部P′と面Pとの軸方向の
距離Hsの存在が認められる。この距離Hsが下流側ゾ
ーン側に存在することは面Pにおける松江が上流側ゾー
ンから下流側ゾーンに向くことを意味し、そしてHsが
大きいほど粉粒体の逆移動は生じ難いことになる。
It was found that the prevention effect was sufficient when Q2/Ω≧1 and S t /S 1≧1. Q2/Q1=
The case of 1°S, /51=1 is as seen earlier in FIG. If Q2/n,>'J-,S,/5i=1, the ninth
In the figure, if Ω2/Ω, = l, S2/S, > 1, the first
Figure 0 shows the state of formation of the top-band on the surface of the powder and granular material, respectively. In both FIGS. 9 and 1O, the trough P' formed by the contact between the powder and granule accumulation surfaces of both adjacent paddle sets 5a and 5b is on the downstream side of the upper extension surface P of the fixed weir 7. It is located on the zone side, and the existence of an axial distance Hs between the trough P' and the plane P is recognized. The presence of this distance Hs on the downstream zone side means that the matsue in plane P is directed from the upstream zone to the downstream zone, and the larger Hs is, the harder it is for the powder and granules to move back.

次にQlが容器1の内径りに対して実際的にどの範囲に
定めるのが良いかを数多くの実験により経験的に求めた
ところ、Ω、の適切な範囲は、(iii) D/100
≦Q1≦D/20、であることが判った。
Next, we empirically determined through a number of experiments the range in which Ql should be practically set relative to the inner diameter of the container 1, and found that the appropriate range for Ω was (iii) D/100
It was found that ≦Q1≦D/20.

又、S2/S工は大きければ大きいほど逆移動防止には
有効であるが1反面大き過ぎるとそのクリアランスS2
における粉粒体の撹拌状態が悪化し、はなはだしい場合
はデッド・スペースとなる。この点についても経験的に (V)1≦S2/S□≦20 が適切な範囲として得られた。
Also, the larger the S2/S work is, the more effective it is in preventing reverse movement, but on the other hand, if it is too large, the clearance S2
The state of agitation of the powder and granular material in the agitator deteriorates, and if the agitation is severe, dead space results. Regarding this point as well, it has been empirically determined that (V)1≦S2/S□≦20 is an appropriate range.

上記条件(i)〜(v)が隣接パドル組群9毎に満足さ
れていても、隣接パドル組群9間で、Qi同士、Q22
両、S1同士、S2同士、W同士が互に異なるときは、
撹拌ゾーン間で粉粒体の移動速度にアンバランスが生じ
て粉粒体が偏在するようになって支障を来たして粉粒体
の逆移動防止効果が不充分となるので、このような効果
を確実にするための条件(vi)とじてこ九らは互に等
しいことが設定された。
Even if the above conditions (i) to (v) are satisfied for each adjacent paddle set group 9, between the adjacent paddle set groups 9, Qi and Q22
When both, S1 and S2, and W are different from each other,
An unbalance occurs in the moving speed of the powder and granules between stirring zones, causing the particles to become unevenly distributed, causing problems and making the effect of preventing the reverse movement of the powder insufficient. Condition (vi) to ensure that the levers are equal is set.

以上の如くにして本発明に係る撹拌装置が構成されたの
である。
The stirring device according to the present invention was constructed as described above.

次にnz/nz及びS 2 / S工について更に数多
くの実験により検討を進めた結果、 (iv)1≦Q 2 / Q 1≦3 (v)1≦S、/S、≦12 の場合は比較的粒度分布の狭い粉粒体の撹拌に、また、 (iv)Q2/Q1=1 (v)1≦82/S1≦3 の場合は上記の粉粒体の他に球形に近い形状の粉粒体の
撹拌にも、それぞれ特に好適であることが認められた。
Next, as a result of conducting further studies on nz/nz and S 2 / S, we found that (iv) 1≦Q 2 / Q 1≦3 (v) 1≦S, /S, ≦12 For stirring powder and granules with a relatively narrow particle size distribution, and (iv) Q2/Q1=1 (v) 1≦82/S1≦3, in addition to the above powder and granules, powder with a shape close to spherical can be used. Each of these was found to be particularly suitable for stirring granules.

〔使用方法〕〔how to use〕

本発明装置の用途は特に限定されないが、炭素数2〜6
のα−オレフィンを遷移金属化合物を含む触媒と共に気
相重合させるときの気相重合装置。
The use of the device of the present invention is not particularly limited, but may have 2 to 6 carbon atoms.
A gas phase polymerization apparatus for gas phase polymerization of α-olefin together with a catalyst containing a transition metal compound.

気相重合後の後処理装置としての気相反応装置。A gas phase reactor as a post-treatment device after gas phase polymerization.

ポリマーの乾燥装置2等として好ましく使用される。It is preferably used as a polymer drying device 2 or the like.

このようにして本発明装置を使用して例えばオレフィン
の気相重合等を実施する場合、下記に示すフルード数(
Fr)が0.05〜3.0の範囲、好ましくは0.2〜
2.0の範囲となるように回転させるのが良い。
In this way, when carrying out gas phase polymerization of olefins using the apparatus of the present invention, for example, the Froude number (
Fr) ranges from 0.05 to 3.0, preferably from 0.2 to
It is best to rotate it so that it is within the range of 2.0.

Fr=Rω2/g  ここに R:回転軸センターから
パドル先端までの長さ、 ω:角速度(=2πN、 Nは回転 数rps) g:重力加速度 また、容器内保有量は10〜80容量%で、連続処理す
るのが好ましい。この場合、ゾーン毎の保有レベルを等
しくするか、あるいは下流側ゾーンの保有レベルが上流
側ゾーンのそれより若干低いことが逆移動防止を一層確
実にするのに好ましい。
Fr=Rω2/g where R: Length from the center of the rotation axis to the tip of the paddle, ω: Angular velocity (=2πN, N is the rotational speed rps) g: Gravitational acceleration Also, the amount held in the container is 10 to 80% by volume. , it is preferable to carry out continuous treatment. In this case, it is preferable that the retention levels in each zone be equal, or that the retention level in the downstream zone be slightly lower than that in the upstream zone, in order to further ensure prevention of reverse migration.

撹拌対象がポリマーであるとき、その種類を例示すると
、エチレンポリマー、プロピレンポリマー、ブテンポリ
マー、エチレン−プロピレンコポリマー、エチレン−ブ
テン−1コポリマー、プロピレン−ブテン1コポリマー
、プロピレン−ブテン1−エチレンコポリマー、等があ
げられる。
When the object to be stirred is a polymer, examples of the types include ethylene polymer, propylene polymer, butene polymer, ethylene-propylene copolymer, ethylene-butene-1 copolymer, propylene-butene-1 copolymer, propylene-butene-1-ethylene copolymer, etc. can be given.

〔効果〕〔effect〕

本発明に係る撹拌装置を使用すれば、2以上の固定堰を
設けて撹拌ゾーンを多くした上、各隣接パドル組群を特
殊に構成したことにより、ポリマー粒子等のショート・
パス量は極端に減少させて粉粒体の滞留時間を均一化す
ることができ、連続重合あるいは連続処理にも拘わらず
、粉粒体のRTDはバッチ重合あるいはバッチ処理のR
TDに近似させることができ、従って撹拌対象の品質。
If the stirring device according to the present invention is used, two or more fixed weirs are provided to increase the number of stirring zones, and each adjacent paddle set group is specially configured to prevent short-circuiting of polymer particles, etc.
The pass amount can be extremely reduced to make the residence time of powder and granules uniform, and despite continuous polymerization or continuous processing, the RTD of powder or granules is the same as that of batch polymerization or batch processing.
TD can be approximated and therefore the quality of the stirred object.

物性等を向上させることができる。Physical properties etc. can be improved.

〔実施例、比較例〕[Example, comparative example]

以下、実施例、比較例により、本発明を具体的に説明す
る。
Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples.

実施例1.比較例1〜3 内径りが430Ωm、長さLが1320mm (L/D
 =3)の横型円筒状容器内に、径dが110mの回転
軸に幅Wが40m++のパドルが取り付けられた種々な
態様の本発明装置と、固定堰の有無又はパドルの取付は
態様において本発明の範囲外の横型一軸式撹拌装置とを
使用し、メジアン径が5oop、かさ密度が0.5g/
ciの比較的粒度分布が狭いポリプロピレンの不活性粉
体を15kg/hrで連続供給しながら回転数6Orp
m (Fr=0.826)で連続撹拌し、定常運転時の
粉体保有量を装置容量の60容量%に保った。この場合
、装置の実容積は179Ωであるから、平均滞留時間φ
は3.58時間(215分)である。
Example 1. Comparative Examples 1 to 3 Inner diameter is 430Ωm, length L is 1320mm (L/D
= 3) The apparatus of the present invention has various embodiments in which a paddle with a width W of 40 m++ is attached to a rotating shaft with a diameter d of 110 m in a horizontal cylindrical container, and the presence or absence of a fixed weir or the attachment of the paddle differs depending on the embodiment. Using a horizontal uniaxial stirring device outside the scope of the invention, the median diameter was 5 oop and the bulk density was 0.5 g/
Continuously feeding polypropylene inert powder with a relatively narrow particle size distribution of ci at 15 kg/hr while rotating at 6 Orp.
Continuous stirring was carried out at m (Fr=0.826), and the amount of powder held during steady operation was maintained at 60% by volume of the apparatus capacity. In this case, since the actual volume of the device is 179Ω, the average residence time φ
is 3.58 hours (215 minutes).

この定常運転中にトレーサーとして同じポリプロピレン
の着色粉体270g(保有量の0.5重量%相当量)を
粉粒体の供給口にインパルス的に投入し。
During this steady operation, 270 g of colored powder of the same polypropylene as a tracer (equivalent to 0.5% by weight of the amount held) was injected into the powder supply port in an impulse manner.

粉粒体の抜出し口において抜出しポリマー中のトレーサ
ーの濃度を経時的に測定してその変化(以下、インパル
ス応答と称することがある。)を調べた。
The concentration of the tracer in the extracted polymer was measured over time at the extraction port of the powder and granular material, and its change (hereinafter sometimes referred to as impulse response) was investigated.

このインパルス応答により各実施例、比較例における粉
体の滞留時間の均一性について検討した。
Using this impulse response, the uniformity of the residence time of the powder in each Example and Comparative Example was investigated.

実施例1 容器の長さLをほぼ4等分する各位置にそれぞれ面積1
40aJの半月形開口部を上方に残して同じ形状の固定
堰が3枚内設されており、すべてのパドル組はパドル数
が2枚でその開き角αが180’であり、各固定堰によ
って分割された各ゾーンにおいて互に隣接するパドル紐
間のパドルの位相角差が90’で、容器内壁と各パドル
先端とのクリヤランスQがすべて5.0mmであり、各
固定堰を挟んで隣接する両隣接パドル組から成る3つの
隣接パドル組群のそれぞれにおいて、 Q□= 122=5.0mm   (従ッテ、u2/Q
1=1.D/100(=4.3) −J2□<D/20
 (=21.5) )Sl:S2:8.ho   (従
ってS、/S、= 1)β=0゜ である本発明装置の場合。
Example 1 An area of 1 is provided at each position that divides the length L of the container into approximately 4 equal parts.
Three fixed weirs of the same shape are installed inside, leaving a half-moon-shaped opening of 40aJ above, and all paddle sets have two paddles and the opening angle α is 180'. In each divided zone, the phase angle difference of the paddles between adjacent paddle strings is 90', the clearance Q between the inner wall of the container and the tip of each paddle is all 5.0 mm, and the paddle strings are adjacent to each other with each fixed weir in between. In each of the three adjacent paddle group groups consisting of both adjacent paddle groups, Q = 122 = 5.0 mm (U2/Q
1=1. D/100 (=4.3) −J2□<D/20
(=21.5)) Sl:S2:8. ho (Therefore, S, /S, = 1) For the device of the present invention where β = 0°.

比較例1 固定堰を有せず、すべての互に隣接するパドル組閣にお
いてパドルの位相角差が90°である以外は実施例1と
同様の撹拌装置の場合。
Comparative Example 1 A stirring device similar to Example 1 except that it does not have a fixed weir and the phase angle difference between the paddles in all mutually adjacent paddle arrangements is 90°.

比較例2 いずれの隣接パドル組群の両隣接パドル粗間においても
β=90°である以外は実施例1と同様の撹拌装置の場
合。
Comparative Example 2 A case of the same stirring device as in Example 1, except that β = 90° in both adjacent paddle spacings of any adjacent paddle group.

比較例3 上流側から数えて第2番目と第3番目との各隣接パドル
組群において、下流側の隣接パドル組のパドル数が3枚
で各開き角αが120°であり、上流側の隣接パドル組
との間で1枚のパドルについてβ=0″であるが他のパ
ドルについてはβ=01となるパドルがない(従って当
該各隣接パドル組群毎に回転軸方向に見て一致するパド
ルが1組しかなく、また、第3ゾーン及び第4ゾーンに
おいては固定堰の下流側の隣接パドル組とその下流側に
隣接するパドル組との間でパドルの位相角差が必ずしも
90°となっていない)以外は実施例1と同様の撹拌装
置の場合。
Comparative Example 3 In each of the second and third adjacent paddle set groups counting from the upstream side, the number of paddles in the downstream adjacent paddle set is 3 and each opening angle α is 120°, and the upstream side There is no paddle for which β = 0'' for one paddle with the adjacent paddle group, but β = 0'' for the other paddles (therefore, each adjacent paddle group matches when viewed in the rotational axis direction) There is only one set of paddles, and in the third and fourth zones, the paddle phase angle difference between the adjacent paddle set on the downstream side of the fixed weir and the adjacent paddle set on the downstream side is not necessarily 90°. In the case of a stirring device similar to that of Example 1 except for the following.

インパルス応答はサンプリング時間関数t/φに対する
トレーサー濃度関数e / eaの変化で示す。
The impulse response is shown as the change in the tracer concentration function e/ea with respect to the sampling time function t/φ.

ここで、tはトレーサー投入から粉粒体抜出し口でサン
プリングするまでの経過時間(サンプリング時間)すな
わちトレーサーの容器内実滞留時間。
Here, t is the elapsed time (sampling time) from the injection of the tracer until sampling at the powder outlet, that is, the actual residence time of the tracer in the container.

φは平均滞留時間、eは粉粒体抜出し口における七時の
トレーサー濃度(重量%)、e、は投入トレーサー量の
容器内ポリマー保有量に対するトレーサー濃度である。
φ is the average residence time, e is the tracer concentration (wt%) at 7 o'clock at the powder outlet, and e is the tracer concentration relative to the amount of tracer input to the amount of polymer held in the container.

一般に、t/φが約0.2以下においてe / eaが
大きいほどショート・パス分が多く、e / eaのピ
ーク値がt/φの比較的大きい領域にあるほど、相対的
にショート・パス分は少なくなる傾向である。
In general, when t/φ is about 0.2 or less, the larger e/ea is, the more short paths there are, and the more the peak value of e/ea is in a region where t/φ is relatively large, the more short paths there are. The number tends to decrease.

第1表より、固定堰を有しない比較例1は勿論であるが
、単に2以上の固定堰が内設されているだけの比較例2
に比べても、各隣接パドル組群のへ それぞれにおいて隣接パドル粗間でのパドルの位相角差
βがすべて0″の実施例1ではショート・パス分は圧倒
的に少なく、粉体の滞留時間が均一化していることが判
る。又、比較例3から、両隣接パドル粗間でのパドルの
一部がβ=Oaであるだけの隣接パドル組群が1以上存
在する場合は効果のないことが判る。
From Table 1, of course there is Comparative Example 1 which does not have a fixed weir, but Comparative Example 2 which simply has two or more fixed weirs installed inside.
Compared to this, in Example 1, where the paddle phase angle difference β between coarse adjacent paddles in each adjacent paddle set group is all 0'', the short path portion is overwhelmingly small, and the residence time of the powder is It can be seen that the is uniform.Also, from Comparative Example 3, there is no effect when there is one or more adjacent paddle group groups in which only a part of the paddles between both adjacent paddles has β=Oa. I understand.

実施例2〜4 実施例2 各隣接パドル組群の下流側の隣接パドル組においてQ、
2=15.0IIIl(従ってa z / a工=3)
である以外は実施例1と同様の本発明装置の場合。
Examples 2 to 4 Example 2 In the adjacent paddle group on the downstream side of each adjacent paddle group, Q,
2=15.0IIIl (therefore az/atechnique=3)
In the case of the device of the present invention which is the same as in Example 1 except that.

実施例3 各隣接パドル組群の下流側の隣接パドル組においてS 
、 = 24.0画(従ってS、/S工=3)である以
外は実施例1と同様の本発明装置の場合。
Example 3 S in the adjacent paddle group on the downstream side of each adjacent paddle group
, = 24.0 strokes (therefore, S, /S stroke = 3).

実施例4 各隣接パドル組群の下流側の隣接パドル組においてQ、
=15.Ons、 S、=24.Om+ (従ってQz
/Q1〉1且つS、/S1>1)である以外は、実施例
1と同様の本発明装置の場合。
Example 4 In the adjacent paddle group on the downstream side of each adjacent paddle group, Q,
=15. Ons, S, =24. Om+ (therefore Qz
/Q1>1 and S, /S1>1) In the case of the device of the present invention, which is the same as in Example 1.

インパルス応答を第2表に示す。The impulse response is shown in Table 2.

第2表及び第1表実施例1の欄よりQ、>Q。From the column of Table 2 and Example 1 of Table 1, Q, >Q.

(実施例2)あるいはS、>81(実施例3)であれば
粉粒の滞留時間の均一化には一層効果があり、又、12
.)Q8且つsz>st(実施例4)であれば更に相乗
効果のあることが判る。
(Example 2) or S is >81 (Example 3), it is more effective in making the residence time of powder grains uniform;
.. ) Q8 and sz>st (Example 4), it can be seen that there is a further synergistic effect.

実施例5〜7.比較例4 実施例5 各隣接パドル組群において各隣接パドル組のバドル数が
3枚で開き角αがすべて120°である以外は、実施例
1と同様(従って上記以外のパドル組のパドル数が2枚
で開き角αが1go’ )の本発明装置の場合。
Examples 5-7. Comparative Example 4 Example 5 Same as Example 1 except that in each adjacent paddle group, the number of paddles in each adjacent paddle group is 3 and the opening angle α is all 120° (therefore, the number of paddles in the paddle groups other than the above In the case of the device of the present invention with two sheets and an opening angle α of 1 go'.

実施例6 各撹拌ゾーンにおいて、隣接パドル組以外のパドル組の
パドル数も3枚で開き角αが120”であって、互に隣
接するパドル紐間(両隣接パドル粗間を除く)でパドル
の位相角差が60°である以外は、実施例5と同様の本
発明装置の場合。
Example 6 In each stirring zone, the number of paddles in the paddle groups other than the adjacent paddle groups is 3, the opening angle α is 120'', and the paddles are connected between adjacent paddle strings (excluding the spacing between both adjacent paddles). In the case of the device of the present invention, which is the same as in Example 5, except that the phase angle difference between is 60°.

実施例7 各隣接パドル層群において各隣接パドル組のパドル数が
3枚で各開き角αが120°である以外は、実施例4と
同様(従って上記以外のパドル組はすべてパドル数が2
枚で開き角αが180’であり、Q 2= 15.Om
m 、 S 2 = 24.0no)の本発明装置の場
合。
Example 7 The same as Example 4 except that in each adjacent paddle layer group, each adjacent paddle group has three paddles and each opening angle α is 120° (therefore, all paddle groups other than the above have two paddles).
The opening angle α is 180′, and Q 2 = 15. Om
m, S2 = 24.0no) in the case of the device of the present invention.

比較例4 上流側から数えて第2番目と第3番目との各隣接パドル
層群において、両隣接パドル組のパドルの数及び位相角
差βは比較例3と同様(従って上記各隣接パドル層群の
各隣接パドル組のパドル1枚についてはβ=0であるが
、他のパドルにはβ=0となるものがない)であり、そ
の他は実施例7と同様の撹拌装置の場合。
Comparative Example 4 In each of the second and third adjacent paddle layer groups counted from the upstream side, the number of paddles and the phase angle difference β of both adjacent paddle groups are the same as in Comparative Example 3 (therefore, the number of paddles and the phase angle difference β of each of the adjacent paddle layers For one paddle in each adjacent paddle set of the group, β=0, but there are no other paddles for which β=0), and the other paddles are the same as in Example 7.

インパルス応答を第3表に示す。The impulse response is shown in Table 3.

第3表より、各撹拌ゾーンにおいて、隣接パドル組を含
めて各パドル組のパドル数が3枚の場合(実施例6)も
2枚の場合と同様に粉粒滞留時間の均一化の効果があり
、又、隣接パドル組のパドル数や開き角αがその他のパ
ドル組のそれと異なっていても、前者が本発明の条件を
満足するものである限り(実施例5)1本発明の上記効
果のあることが判る。
From Table 3, in each stirring zone, when the number of paddles in each paddle group including adjacent paddle groups is 3 (Example 6), the effect of making the particle residence time uniform is the same as in the case of 2 paddles. Also, even if the number of paddles or the opening angle α of the adjacent paddle set is different from those of other paddle sets, as long as the former satisfies the conditions of the present invention (Example 5) 1. The above effects of the present invention. It turns out that there is.

更に、実施例7と比較例4との比較から、QlとQ2と
の関係及びSlと82との関係を実施例4と同様に好ま
しい態様としても、すべての隣接パドル組群毎に両隣接
パドル粗間でパドルの位相角差βが本発明の条件を満足
しないときは、効果のないことが判る。
Furthermore, from the comparison between Example 7 and Comparative Example 4, even if the relationship between Ql and Q2 and the relationship between Sl and 82 are set in the same preferable manner as in Example 4, both adjacent paddles are It can be seen that there is no effect when the phase angle difference β of the paddles in the coarse interval does not satisfy the conditions of the present invention.

実施例8 実施例1と同じ撹拌装置を気相重合器として使用し、こ
れにエチレンとプロピレンとの混合モノマーを触媒と共
に導入しながら1重合圧力20kg/d2重合温度60
℃の条件下で回転数4Orpm (Fr=0.367)
の撹拌を続ける連続重合、を長期間実施して、エチレン
−プロピレンコポリマー(エチレン含量12重量%)を
製造した。これから得られた成形品の物性は良好で、と
くに低温衝撃性は良好であった。
Example 8 The same stirring device as in Example 1 was used as a gas phase polymerization vessel, and a monomer mixture of ethylene and propylene was introduced together with a catalyst at a polymerization pressure of 20 kg/d2 and a polymerization temperature of 60
Rotation speed 4Orpm under ℃ condition (Fr=0.367)
Continuous polymerization with continued stirring was carried out for a long period of time to produce an ethylene-propylene copolymer (ethylene content 12% by weight). The physical properties of the molded product obtained from this were good, especially the low-temperature impact resistance.

実施例9 実施例4と同じ撹拌装置を気相重合器として使用し、実
施例8と同じ混合モノマーを同じ条件下で長期間連続重
合してエチレン−プロピレンコポリマーを製造した。か
くして得られた成形品の物性、とくに低温衝撃性は著し
く向上し、バッチ重合で得られたエチレン−プロピレン
コポリマーの低温衝撃性と同等であった。
Example 9 Using the same stirring device as in Example 4 as a gas phase polymerization vessel, the same mixed monomers as in Example 8 were continuously polymerized for a long period of time under the same conditions to produce an ethylene-propylene copolymer. The physical properties of the thus obtained molded article, especially the low-temperature impact properties, were significantly improved and were comparable to the low-temperature impact properties of the ethylene-propylene copolymer obtained by batch polymerization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の1例を模式的且つ透視的に示す側
面説明図、第2図は第1図中固定堰を挟んで隣接する2
組のパドル組(隣接パドル組)の各パドルの位置を示す
A−A、I!から矢印方向に見た説明図、第3図はパド
ルの位相角差が90°のときの隣接パドル組を第2図と
同じ位置で見た説明図、第4図は第3図の状態から隣接
パドル組を90°回転させた状態を示す説明図、第5図
はパドル組が粉粒体を撹拌するときの回転に従って変化
する粉粒体堆積表面の高低を示す説明図、第6図及び第
7図はそれぞれ粉粒体を撹拌するときの固定堰付近にお
ける粉粒体堆積表面の高低変化を第3図及び5第4図に
対応する2つの両極端の場合にういてパドル組の位置と
共に示す側面説明図、第8図、第9図及び第10図は本
発明装置の固定堰とこれを挟んで隣接するパドル組との
配置状態の種々な態様と粉粒体堆積表面の形成状態とを
示す側面説明図である。 1・・・・・・横型円筒状容器(容器)2・・・・・・
供給口 3・・・・・・抜出し口 4・・・・・・回転軸 5・・・・・・パドル組 5a・・・・・・固定堰を挟んで隣接するパドル組(隣
接パドル組)中の供給口(上流)側のパドル組 5b・・・・・・隣接パドル粗生の抜出し口(下流)側
のパドル組 6・・・・・・パドル 6a・・・・・・隣接パドル粗生の供給口(上流)側の
パドル組のパドル 6b・・・・・・隣接パドル粗生の抜出し口(下流)側
のパドル組のパドル 7・・・・・・固定堰 8・・・・・・開口部 9・・・・・・隣接パドル層群 D・・・・・・容器の直径 d・・・・・・回転軸の直径 Hs・・・・・・粉粒体堆積表面の谷部と固定堰の上方
延長面との軸方向の距離 L・・・・・・容器の長さ Q・・・・・・容器内壁とパドル先端とのクリアランス Q、・・・・・・容器内壁とi給口(上流)側の隣接パ
ドル組のパドル先端とのクリアラン ス Q2・・・・・・容器内壁と抜出し口(下流)側の隣接
パドル組のパドル先端とのクリアラ ンス AL・・・・・・粉粒体堆積表面の頂部−帯の平均的な
レベル HL・・・・・・粉粒体堆積表面の頂部−帯の最も高い
レベル LL・・・・・・粉粒体堆積表面の頂部−帯の最も低い
レベル P・・・・・・固定堰の上方延長面 P′・・・・・・谷部 Sl・・・・・・固定堰と供給口(上流)側の隣接ノ(
ドル組のパドルとのクリアランス S2・・・・・・固定堰と抜出し口(下流)側の隣接ノ
くドル組のパドルとのクリアランス W・・・・・・パドルの幅 α・・・・・・開き角 β・・・・・・隣接パドル粗間でのパドルの位相角差第
 2 図 第3図     第4図 第 55!I 第6図    第751 第 81!i 手続補正書 昭和61年4月18日
FIG. 1 is a side view schematically and transparently showing one example of the device of the present invention, and FIG.
A-A, I! indicates the position of each paddle in the paddle group (adjacent paddle group)! Figure 3 is an explanatory diagram of the adjacent paddle set viewed from the same position as Figure 2 when the phase angle difference of the paddles is 90°, Figure 4 is from the state of Figure 3. An explanatory diagram showing a state in which adjacent paddle sets are rotated by 90 degrees, FIG. 5 is an explanatory diagram showing the elevation of the powder/granular material accumulation surface that changes as the paddle sets rotate as they stir the powder/granular material, and FIG. Figure 7 shows the changes in height of the powder and granule accumulation surface near the fixed weir when stirring the powder and the positions of the paddle sets in two extreme cases corresponding to Figures 3 and 5 and 4, respectively. The side explanatory views, FIGS. 8, 9, and 10, show various aspects of the arrangement of the fixed weir of the device of the present invention and the adjacent paddle sets on both sides thereof, and the formation of the powder and granular material deposition surface. FIG. 1... Horizontal cylindrical container (container) 2...
Supply port 3... Outlet port 4... Rotating shaft 5... Paddle group 5a... Adjacent paddle group across the fixed weir (adjacent paddle group) Paddle set 5b on the supply port (upstream) side of the middle...Adjoining paddle group 6 on the extraction port (downstream) side of the coarse raw material...Paddle 6a...Adjacent paddle coarse material Paddle 6b of the paddle group on the raw raw material supply port (upstream) side...Adjacent paddle Paddle 7 of the paddle group on the coarse raw material outlet (downstream) side...Fixed weir 8... ... Opening 9 ... Adjacent paddle layer group D ... Container diameter d ... Rotating shaft diameter Hs ... Valley of powder deposition surface Axial distance L between the upper extension surface of the fixed weir and the upper extension surface of the fixed weir Length Q of the container Q Clearance between the inner wall of the container and the tip of the paddle Q Inner wall of the container Clearance Q2 between the tip of the paddle of the adjacent paddle group on the inlet (upstream) side and i Clearance AL between the inner wall of the container and the tip of the paddle of the adjacent paddle group on the outlet (downstream) side...・Top of powder/granular material accumulation surface - Average level HL of the band...Top of powder/granular material accumulation surface - Highest level of the band LL......Top of powder/granular material accumulation surface- Lowest level P of the band... Upper extension surface P' of the fixed weir... Valley Sl... Adjacent to the fixed weir and the supply port (upstream) side (
Clearance S2 between the paddles of the paddle group... Clearance W between the fixed weir and the paddle of the adjacent paddle group on the outlet (downstream) side... Paddle width α...・Opening angle β... Difference in phase angle between adjacent paddles Figure 2 Figure 3 Figure 4 Figure 55! I Fig. 6 No. 751 No. 81! i Procedural amendment April 18, 1986

Claims (1)

【特許請求の範囲】 1 一端に撹拌対象物の供給口と他端に粉粒体の抜出し
口とを有する横型円筒状容器内に、水平な回転軸とその
上の複数の各位置にそれぞれ1枚以上の矩形状の平らな
パドルが取り付けられて成るパドル組の複数組とから成
る撹拌手段が内蔵されている横型一軸式の撹拌装置であ
つて、上記回転軸と垂直方向に容器内壁に固定された2
以上の固定堰によつて容器内が3以上の撹拌ゾーンに分
割されており、各固定堰を挟んで隣接する2つのパドル
組から成る隣接パドル組群が各隣接パドル組群毎に以下
の条件(i)〜(v)を満足し且つ隣接パドル組群間で
条件(vi)を満足することを特徴とする撹拌装置; (i)2つのパドル組のパドルの幅W及び枚数は互に等
しい。 (ii)β=0°、 (iii)D/100≦l_1≦D/20、(iv)l
_2/l_1≧1 (v)1≦S_2/S_1≦20 (vi)すべての隣接パドル組群間でl_1同士、l_
2同士、S_1同士、S_2同士、W同士はそれぞれ互
に等しい。 [ここに β:固定堰を挟んで隣接するパドル組間の各パドルが回
転軸に対して垂直な投影面上で成す位相角差、 D:横型円筒状の容器の内径(mm)、 l_1:容器内壁と供給口側のパドル組のパドル先端と
のクリアランス(mm)、 l_2:容器内壁と抜出し口側のパドル組のパドル先端
とのクリアランス(mm)、 S_1:供給口側のパドル組のパドルと固定堰とのクリ
アランス(mm)、 S_2:抜出し口側のパドル組のパドルと固定堰とのク
リアランス(mm)。] 2 l_1とl_2とが (iv)1≦l_2/l_1≦3 の関係にあり、 S_1とS_2とが (v)1≦S_2/S_1≦12 の関係にある特許請求の範囲第1項に記載の撹拌装置。 3 l_1とl_2とが (iv)l_2/l_1=1 の関係にあり、 S_1とS_2とが (v)1≦S_2/S_1≦3 の関係にある特許請求の範囲第1項に記載の撹拌装置。 4 l_1とl_2とが (iv)l_2/l_1>1 の関係にあり、 S_1とS_2とが (v)1<S_2/S_1≦20 の関係にある特許請求の範囲第1項に記載の撹拌装置。 5 横型円筒状容器の供給口が、該容器の内部で連続的
に気相重合されて最初の固定堰に至るまでに粉粒体とな
る重合性単量体と重合触媒との混合物を供給するための
供給口である特許請求の範囲第1項から第4項までのい
ずれか1項に記載の撹拌装置。
[Scope of Claims] 1. In a horizontal cylindrical container having a supply port for the material to be stirred at one end and a discharge port for the powder or granular material at the other end, a horizontal rotating shaft and a plurality of containers each located at each of a plurality of positions on the horizontal rotating shaft are provided. A horizontal uniaxial stirring device with a built-in stirring means consisting of a plurality of paddle sets each having one or more rectangular flat paddles attached thereto, the device being fixed to the inner wall of the container in a direction perpendicular to the rotation axis. was done 2
The interior of the container is divided into three or more stirring zones by the above fixed weirs, and adjacent paddle group groups consisting of two adjacent paddle groups across each fixed weir meet the following conditions for each adjacent paddle group group. A stirring device characterized by satisfying (i) to (v) and satisfying condition (vi) between adjacent paddle sets; (i) The width W and number of paddles of the two paddle sets are equal to each other. . (ii) β=0°, (iii) D/100≦l_1≦D/20, (iv) l
_2/l_1≧1 (v) 1≦S_2/S_1≦20 (vi) Between all adjacent paddle groups, l_1 and l_
2 are equal to each other, S_1 to each other, S_2 to each other, and W to each other. [Here, β: Phase angle difference between adjacent paddle sets across the fixed weir on a projection plane perpendicular to the rotation axis, D: Inner diameter of horizontal cylindrical container (mm), l_1: Clearance between the inner wall of the container and the tip of the paddle of the paddle set on the supply port side (mm), l_2: Clearance between the inner wall of the container and the tip of the paddle of the paddle set on the extraction port side (mm), S_1: Paddle of the paddle set on the supply port side Clearance between the paddle and the fixed weir (mm), S_2: Clearance between the paddle of the paddle set on the outlet side and the fixed weir (mm). ] 2 l_1 and l_2 have a relationship of (iv) 1≦l_2/l_1≦3, and S_1 and S_2 have a relationship of (v) 1≦S_2/S_1≦12 as described in claim 1. stirring device. 3. The stirring device according to claim 1, wherein l_1 and l_2 have a relationship of (iv) l_2/l_1=1, and S_1 and S_2 have a relationship of (v) 1≦S_2/S_1≦3. . 4. The stirring device according to claim 1, wherein l_1 and l_2 have a relationship of (iv) l_2/l_1>1, and S_1 and S_2 have a relationship of (v) 1<S_2/S_1≦20. . 5 The supply port of the horizontal cylindrical container supplies a mixture of a polymerizable monomer and a polymerization catalyst that is continuously polymerized in the gas phase inside the container and becomes powder by the time it reaches the first fixed weir. The stirring device according to any one of claims 1 to 4, which is a supply port for.
JP61068772A 1986-03-28 1986-03-28 Agitator Granted JPS62227432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61068772A JPS62227432A (en) 1986-03-28 1986-03-28 Agitator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61068772A JPS62227432A (en) 1986-03-28 1986-03-28 Agitator

Publications (2)

Publication Number Publication Date
JPS62227432A true JPS62227432A (en) 1987-10-06
JPH0331094B2 JPH0331094B2 (en) 1991-05-02

Family

ID=13383356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61068772A Granted JPS62227432A (en) 1986-03-28 1986-03-28 Agitator

Country Status (1)

Country Link
JP (1) JPS62227432A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05505551A (en) * 1989-10-24 1993-08-19 ゲブリューダー レーディゲ マシネンバウ ゲー・エム・ベー・ハー Device for moving solid particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05505551A (en) * 1989-10-24 1993-08-19 ゲブリューダー レーディゲ マシネンバウ ゲー・エム・ベー・ハー Device for moving solid particles

Also Published As

Publication number Publication date
JPH0331094B2 (en) 1991-05-02

Similar Documents

Publication Publication Date Title
KR101248672B1 (en) Apparatus and method for solid-liquid contact
US4101289A (en) Horizontal reactor for the vapor phase polymerization of monomers
US3640509A (en) Apparatus for continuous reaction of high-viscous materials
US4207009A (en) Gravity flow continuous mixer
US3469948A (en) Paddle-type polymerization reactor
US4589215A (en) Apparatus for after-treating polyolefin powder
KR101769311B1 (en) Process for ethylene polymerization with improved ethylene feed system
US20060104874A1 (en) Segmented agitator reactor
DK145285B (en) APPARATUS FOR DISTRIBUTION OF ADDITIVE MATERIAL IN A BASIC MATERIAL
JPS62227432A (en) Agitator
JPS62227431A (en) Agitator
JPS6323721A (en) Stirring device
JPH0227011B2 (en)
JPH0333374B2 (en)
WO2009033031A1 (en) Gravity flow processor for particulate materials
US3281124A (en) Residence time reactor
JPS61234917A (en) Horizontal-type reactor having surface renewability
RU2392042C1 (en) Method for mixing of loose materials and device for its realisation
JPS5638312A (en) Preparation of polyacetal
JPH0871395A (en) Use of high viscosity liquid continuous treatment apparatus equipped with two horizontal shafts
JP2668661B2 (en) Rotary cylindrical container type continuous mixer
JP6081150B2 (en) Kneading equipment
EP0040270B1 (en) Apparatus for mixing fluent materials
JP6227736B2 (en) Kneading equipment
US4727132A (en) Method of continuous manufacturing of polymers or copolymers of trioxane

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term