JPS62227098A - Gas and liquid permeable carbon electrode for electrolysis of aqueous solution - Google Patents

Gas and liquid permeable carbon electrode for electrolysis of aqueous solution

Info

Publication number
JPS62227098A
JPS62227098A JP61071606A JP7160686A JPS62227098A JP S62227098 A JPS62227098 A JP S62227098A JP 61071606 A JP61071606 A JP 61071606A JP 7160686 A JP7160686 A JP 7160686A JP S62227098 A JPS62227098 A JP S62227098A
Authority
JP
Japan
Prior art keywords
electrode
gas
carbon
electrolysis
carbon electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61071606A
Other languages
Japanese (ja)
Other versions
JPH0238673B2 (en
Inventor
Eiichi Torikai
鳥養 栄一
Hirotaka Takenaka
竹中 啓恭
Morihiko Sugino
守彦 杉野
Kazuo Muramatsu
一生 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kobe Steel Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP61071606A priority Critical patent/JPS62227098A/en
Publication of JPS62227098A publication Critical patent/JPS62227098A/en
Publication of JPH0238673B2 publication Critical patent/JPH0238673B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the gas and liq. permeability and to provide high mechanical strength and cushioning action by specifying the amount of expanded graphite in an electrode forming base material and the diameter of the pores in a molded body. CONSTITUTION:A carbonaceous material other than graphite is added to 20-95% expanded graphite and they are kneaded, molded, dried and hardened. The resulting molded body is baked to form a carbon electrode for the electrolysis of an aqueous soln. The electrode has pores of 0.05-10mum diameter. When the electrode is used after it is brought into press contact with an electrode- membrane joined body, the electrode can be well adhered without damaging the membrane because of the proper cushioning action. Since the electrode has satisfactory gas and liq. permeability, the increase of cell resistance due to defective gas/liq. distribution is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は水溶液電解用セルに用いられる炭素電極に関し
、詳細にはガス及び液透過性が良好で、かつ、機械的強
度が高く、クッション性を保有する炭素電極に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a carbon electrode used in an aqueous electrolysis cell, and in particular has good gas and liquid permeability, high mechanical strength, and cushioning properties. The present invention relates to a carbon electrode having a carbon electrode.

[従来の技術] 固体ポリマー電解セルは古くから公知であり、水を電気
分解して水素及び酸素を製造する為のセル等に用いるこ
とが提案されている。
[Prior Art] Solid polymer electrolytic cells have been known for a long time, and their use in cells for electrolyzing water to produce hydrogen and oxygen, etc., has been proposed.

固体ポリマー電解質として作用するカチオン交換膜に接
合される電極としては、白金族金属のような導電性で且
つ非受動態性の材料がもつとも広く使用され、ポリテト
ラフルオロエチレン(以下PTFEという)などのバイ
ンダーを介してイオン交換膜の表面に結合させるのが一
般的であり、結合に当たっては、触媒粒子およびバイン
ダーを熱プレスするような方法が行なわれる。例えば特
開昭54−93690号には、食塩水を電解する場合に
おいて、アノードを、ルテニウムおよびチタンの混合酸
化物粒子、好ましくは更にイリジウムを含むもので構成
し、一方力ソードをグラファイト粒子に混合又は担持さ
れた白金粒子で構成した例が報告されている。
Electrodes bonded to cation exchange membranes that act as solid polymer electrolytes are widely used with conductive and non-passive materials such as platinum group metals, and with binders such as polytetrafluoroethylene (hereinafter referred to as PTFE). Generally, the catalyst particles are bonded to the surface of the ion exchange membrane via a method such as hot pressing the catalyst particles and the binder. For example, JP-A No. 54-93690 discloses that when electrolyzing saline water, the anode is composed of mixed oxide particles of ruthenium and titanium, preferably one that further contains iridium, and the one-sided force sword is mixed with graphite particles. Alternatively, examples of structures composed of supported platinum particles have been reported.

又上記とは別に電気触媒物質からなる多孔質層を化学的
に沈着させるということも知られている(特公昭56−
36873号、特公昭58−47471号など)。
In addition to the above method, it is also known to chemically deposit a porous layer made of an electrocatalytic material (Japanese Patent Publication No. 1983-1999).
36873, Special Publication No. 58-47471, etc.).

上記の方法で作成された電極と膜の接合体(以下接合体
という)を実際にセルに組み込んで運転するに際しては
、該セルを給電体または集電体で両面から保持して通電
を行なう。
When the electrode-membrane assembly (hereinafter referred to as assembly) prepared by the above method is actually incorporated into a cell and operated, the cell is held from both sides by a power supply or current collector and energized.

この様な給電体または集電体としては、従来エキスバン
ドメタルや、金属もしくはカーボンのメツシュ(網状体
)、ポーラス体、焼結体などの他、PTFE等の樹脂で
モールドしたカーボンあるいはカーボンフィルム等が使
用されてきた。
Such power feeders or current collectors include conventional expanded metals, meshes of metal or carbon, porous bodies, sintered bodies, and carbon or carbon films molded with resins such as PTFE. has been used.

[発明が解決しようとする問題点] しかるに従来から提案されている給電体または集電体電
極はそれぞれ次の問題点を有している。
[Problems to be Solved by the Invention] However, the power feeder or current collector electrodes that have been proposed hitherto have the following problems.

すなわち、上記の材料のうち剛性をもった電極(たとえ
ば金属のエキスバンド板、メツシュ。
That is, electrodes made of the above-mentioned materials with rigidity (for example, metal expanded plates, mesh).

ポーラス成型体、焼結体あるいはカーボンのポーラス焼
結体等)では、接合体に圧接して運転する際にクッショ
ン性がないため、膜を破損することが多い。
Porous molded bodies, sintered bodies, porous sintered bodies of carbon, etc.) do not have cushioning properties when pressed against a bonded body and are therefore often damaged.

またPTFEとの複合材料は柔軟でクッション性を有す
る為この様な欠点はなくなるが、疎水性PTFEがバイ
ンダーとして使用されているために電極部の透水性が低
下し給電体または集電体としての気液の分配機能が劣り
、セルの電解性能が低下する。
Composite materials with PTFE are flexible and have cushioning properties, which eliminates these drawbacks, but since hydrophobic PTFE is used as a binder, the water permeability of the electrode part decreases, making it difficult to use as a power feeder or current collector. The gas-liquid distribution function is poor, and the electrolytic performance of the cell is reduced.

本発明はこうした事情に着目してなされたものであり、
ガス及び液の透過性が良好で且つm械的強度が高く、し
かもクッション性を有し、接合体に圧接しても膜を破損
することがない様な水溶液電解用炭素電極を提供するこ
とを目的とするものである。
The present invention has been made focusing on these circumstances,
It is an object of the present invention to provide a carbon electrode for aqueous solution electrolysis that has good gas and liquid permeability, high mechanical strength, and cushioning properties, and does not damage the membrane even when pressed against a bonded body. This is the purpose.

[問題点を解決するための手段] しかして上記目的を達成した本発明の水溶液電解用気・
液透過性電極とは、20〜95%の膨張化黒鉛を含有し
、細孔径がO,OS〜10μmである点に要旨を有する
ものである。
[Means for Solving the Problems] The aqueous electrolysis solution of the present invention achieves the above object.
The liquid permeable electrode is characterized in that it contains 20 to 95% expanded graphite and has a pore diameter of O,OS to 10 μm.

[作用] 本発明に係る炭素電極は、基本構造を支配する電極形成
材料(基材)として、ハニカム構造を呈し内部に多数の
連続空孔を有する膨張化黒鉛を使用している。膨張化黒
鉛はこの様な構造を有する為成型体とした後にもガス及
び液の透過性が良好であり、又焼成後においても満足し
得るクッション性を示す。しかしながら膨張化黒鉛は強
度面で難があり、所望形状に成形した後焼成する過程で
破損するものが多く製品の歩留りが低くなるという欠点
がある。又焼成後の機械的強度も不十分であり、電解セ
ル組立て段階で破損するという欠点も経験される。即ち
強度不足という欠点さえ解消することができるならば膨
張化黒鉛焼成物は優れた水?8液電解用炭素電極となり
得るものと期待される。そこで本発明者等は強度を向上
させる方策について種々研究を重ねた結果、基材である
膨張化黒鉛に他の炭素系材料等を加えて焼成すれば、膨
張化黒鉛に内包される過大な連続空孔が他の炭素系材料
で埋められることによって連続空孔径が適度の大きさに
調整され、他の要求特性(気・液透過性やクッション性
)に悪影響を与えることなく強度を向上させ得ることを
見出し、本発明を完成するに至った。
[Function] The carbon electrode according to the present invention uses expanded graphite exhibiting a honeycomb structure and having a large number of continuous pores inside as the electrode forming material (substrate) that dominates the basic structure. Since expanded graphite has such a structure, it has good gas and liquid permeability even after being formed into a molded product, and also exhibits satisfactory cushioning properties even after firing. However, expanded graphite has problems in terms of strength, and has the disadvantage that it often breaks during the firing process after being molded into a desired shape, resulting in a low product yield. Furthermore, the mechanical strength after firing is insufficient, and the electrolytic cell is broken during the assembly stage. In other words, if the drawback of insufficient strength can be overcome, is expanded graphite fired material an excellent water? It is expected that it can be used as a carbon electrode for 8-liquid electrolysis. As a result of various studies on ways to improve the strength, the inventors of the present invention found that if other carbon-based materials are added to the base material of expanded graphite and fired, the excessive continuity contained in the expanded graphite By filling the pores with other carbon-based materials, the continuous pore diameter is adjusted to an appropriate size, and strength can be improved without adversely affecting other required properties (air/liquid permeability and cushioning properties). This discovery led to the completion of the present invention.

即ち本発明に係る炭素電極は、構成々分として膨張化黒
鉛を20〜95%含有し、これによって連続空孔径(即
ち細孔径)が0.05〜lOμmに調製されたものであ
る。尚上記膨張化黒鉛の含有率は製品としての炭素電極
中の含有率を意味するものであるから、炭素材料成形物
を焼成した後の値を意味する。又細孔径は気・液透過性
及び機械的強度がいずれも良好である細孔径範囲を意味
する。
That is, the carbon electrode according to the present invention contains expanded graphite in an amount of 20 to 95% as a constituent, and has a continuous pore diameter (i.e., pore diameter) of 0.05 to 10 μm. The content of expanded graphite mentioned above refers to the content in the carbon electrode as a product, and therefore refers to the value after firing the carbon material molded product. Further, the pore size means a pore size range in which both gas/liquid permeability and mechanical strength are good.

膨張化黒鉛の含有率が20%未満の場合には、膨張化黒
鉛に配合される他の炭素系材料の割合が相対的に多くな
り、膨張化黒鉛の連続空孔が必要以上に他の炭素系材料
で埋められ、細孔径が小さくなり過ぎてしまう。即ち0
.05〜10μmの範囲の細孔が少なくなり、0.05
μmより小さい細孔が増加してガス及び液の透過性が悪
化する。この結果該炭素電極を使用した場合電気分解に
より発生した水素及び酸素の気泡がセル内に蓄積し、気
泡径が大きくなって炭素電極の電気抵抗が上昇し、オー
ム損が大きくなる。一方膨張化黒鉛の含有率が95%を
超えると相対的に他の炭素系材料が少なくなる為膨張化
黒鉛の連続空孔が十分に埋まらず、10μmより大きい
細孔が残存することになる。この結果膨張化黒鉛の機械
的強度がイ氏いという欠点が解消されず、製造工程にお
ける歩留りの低下、セル組立て段階における電極破損と
いった問題が解決されない。これらに対し、膨張化黒鉛
の含有量が20〜95%であると、0.05〜10μm
の細孔を得ることができ、十分な気・液透過性を保持し
つつ機械的強度が高くなり、しかもクッション性を有す
る良好な水溶液電解用炭素電極を得ることができる。
When the content of expanded graphite is less than 20%, the proportion of other carbon-based materials blended into expanded graphite becomes relatively large, and the continuous pores of expanded graphite are absorbed by other carbon materials more than necessary. The pores are filled with other materials, and the pore diameter becomes too small. That is 0
.. Fewer pores in the range of 0.05 to 10 μm, 0.05 μm
The number of pores smaller than μm increases and gas and liquid permeability deteriorates. As a result, when the carbon electrode is used, hydrogen and oxygen bubbles generated by electrolysis accumulate in the cell, the bubble diameter increases, the electrical resistance of the carbon electrode increases, and the ohmic loss increases. On the other hand, if the content of expanded graphite exceeds 95%, the amount of other carbon-based materials will be relatively small, so that the continuous pores of expanded graphite will not be sufficiently filled, and pores larger than 10 μm will remain. As a result, the disadvantage that expanded graphite has poor mechanical strength remains unresolved, and problems such as a decrease in yield in the manufacturing process and electrode breakage during the cell assembly stage remain unsolved. On the other hand, when the content of expanded graphite is 20 to 95%, the diameter is 0.05 to 10 μm.
It is possible to obtain a carbon electrode for aqueous solution electrolysis that has high mechanical strength while maintaining sufficient gas/liquid permeability, and also has cushioning properties.

本発明において膨張化黒鉛と混合される他の炭素系材料
としては特に制限がある訳ではないが、例えば粉粒状炭
素、炭素繊維、ガラス状炭素等を挙げることができる。
Other carbon-based materials to be mixed with expanded graphite in the present invention are not particularly limited, but include, for example, granular carbon, carbon fiber, glassy carbon, and the like.

即ち粉粒状炭素としては天然黒鉛、キッシュグラファイ
ト、人造黒鉛等の様に黒鉛構造の発達した粒子及びカー
ボンブラックやコークス粉等の人造炭素粉がこれに相当
し、粒径100μm以下のものが好ましい。ちなみに粉
粒状炭素の粒径がiooμmを超える場合には炭素電極
の機械的強度が低下する。又炭素繊維としては石油や石
炭のピッチ及びポリアクリロニトリルやポリ塩化ビニル
等の有機樹脂を適当な前処理の後溶融紡糸したもの並び
にこれを焼成したものを挙げることができる。該炭素繊
維としては直径3〜301.1m1長さ2〜30μmの
ファイバーチョップあるいはペーパー状若しくはフェル
ト状に成形したものが好ましい。又ガラス状炭素の原料
としては、炭化焼成するとガラス買化する熱硬化性樹脂
やセルロースが例示され、上記熱硬化性樹脂としては例
えばフルクリルアルコール樹脂やフェノールホルムアル
デヒド樹脂等が挙げられる。
That is, examples of the powdery carbon include particles with a developed graphite structure such as natural graphite, quiche graphite, and artificial graphite, and artificial carbon powders such as carbon black and coke powder, and those having a particle size of 100 μm or less are suitable. Incidentally, when the particle size of the granular carbon exceeds ioo μm, the mechanical strength of the carbon electrode decreases. Carbon fibers include those prepared by melt-spinning petroleum or coal pitch and organic resins such as polyacrylonitrile and polyvinyl chloride after appropriate pretreatment, and those obtained by firing the same. The carbon fibers are preferably chopped fibers having a diameter of 3 to 301.1 m and a length of 2 to 30 μm, or those formed into paper or felt shapes. Further, examples of raw materials for glassy carbon include thermosetting resins and cellulose which become glassy when carbonized and fired, and examples of the thermosetting resins include frucrylic alcohol resins and phenol formaldehyde resins.

次に本発明に係る水溶液電解用炭素電極の代表的な製造
方法について説明すると、膨張化黒鉛(20〜95%)
に上述の他の炭素系材料及び必要により増粘剤や発泡剤
を加え、十分に混合した後、これにフェノール樹脂を加
え混練し、所望の形状に成形する。成形後100℃程度
の温度で乾燥・硬化処理を行ない、次いで不活性ガス気
流中あるいは真空中で1000℃程度の温度で焼成する
と、目的とする水溶液電解用気・液透過性炭素電極を得
ることができる。尚上記で使用する増粘剤としては、公
知の有機増粘剤例えばメチルセルロース、カルボキシメ
チルスターチ、ヒドロキシエチルセルロース、ヒドロキ
シプロピルセルロース、リグニンスルホン酸ナトリウム
、リグニンスルホン酸カルシウム、スルホン酸カルシウ
ム、グアガム、アルギン酸塩等を挙げることができ、又
上記で使用する発泡剤としては、例えばポリエチレン、
ポリスチレン、ポリ塩化ビニル、ポリビニルアルコール
等の炭化収率の小さい有機物を挙げることができる。
Next, a typical manufacturing method of the carbon electrode for aqueous electrolysis according to the present invention will be explained. Expanded graphite (20-95%)
The above-mentioned other carbon-based materials and, if necessary, a thickener and a foaming agent are added to the mixture, and after thorough mixing, a phenol resin is added thereto, kneaded, and molded into a desired shape. After molding, drying and curing are performed at a temperature of about 100°C, and then firing at a temperature of about 1000°C in an inert gas stream or in a vacuum to obtain the desired gas/liquid permeable carbon electrode for aqueous solution electrolysis. I can do it. The thickeners used above include known organic thickeners such as methylcellulose, carboxymethyl starch, hydroxyethylcellulose, hydroxypropylcellulose, sodium ligninsulfonate, calcium ligninsulfonate, calcium sulfonate, guar gum, alginate, etc. Examples of the blowing agent used above include polyethylene,
Examples include organic substances with low carbonization yields such as polystyrene, polyvinyl chloride, and polyvinyl alcohol.

[実施例] 実施例1 水電解用の電極−膜種合体を以下の方法(特公昭60−
162780号)に従って作製した。
[Example] Example 1 An electrode-membrane species combination for water electrolysis was prepared by the following method (Japanese Patent Publication No. 1983-
No. 162780).

デュポン社製ナフィオン1II(No、117:厚さ7
 mm、直径約12cm)の中心部の約8cmφの円形
部表面をサンドブラストで粗面化し、ついで4N−HC
ILで煮沸後熱水で洗浄した。前処理を終えた膜をアク
リル樹脂製のメツキセルに挟んでセル内を2つの画室に
分は膜の両側画室にテトラアミン白金(!■)溶液(P
 t : 50mg/100 mll )を入れ3時間
放置して吸着させた。水洗後両側画室にアンモニア性の
N a B H40,05%水溶液を入れ40〜60℃
で2時間還元して膜表面に約0.5mg/cm’の白金
を析出させた。次にめっきセルに下記組成のイリジウム
めっ粗液を循環させ、80℃、PH8,0±0.1に保
持して3時間めっきを行ない、Ir−Pt/M/Pr−
1r  (Mは膜)接合体を得た。
DuPont Nafion 1II (No. 117: Thickness 7
The surface of the circular part of about 8 cm in diameter at the center of the diameter of about 12 cm was roughened by sandblasting, and then 4N-HC was applied.
After boiling with IL, it was washed with hot water. The pretreated membrane was sandwiched between acrylic resin Metxcells, and the inside of the cell was divided into two compartments.Tetraamine platinum (!■) solution (P) was added to both compartments of the membrane.
t: 50 mg/100 ml) and left for 3 hours to be adsorbed. After washing with water, add an ammoniacal NaBH40.05% aqueous solution to both compartments at 40-60°C.
The membrane was reduced for 2 hours to deposit approximately 0.5 mg/cm' of platinum on the membrane surface. Next, a crude iridium plating solution having the following composition was circulated in the plating cell, and plating was carried out for 3 hours at 80°C and pH 8.0±0.1.
A 1r (M is membrane) conjugate was obtained.

イリジウムめっき溶液組成 に、Ir CJZ、(Ir含有量39.7%)   2
50mgNH2OH,HCjZ (5%水溶液)   
  20mILN2’d4.NxO(20%水mt夜)
          8+nQ水          
  全量200m11次に給電材料に用いる炭素電極を
以下の方法で作製した。
In the iridium plating solution composition, Ir CJZ, (Ir content 39.7%) 2
50mgNH2OH,HCjZ (5% aqueous solution)
20mILN2'd4. NxO (20% water mt night)
8+nQ water
Total amount: 200 ml Next, a carbon electrode to be used as a power supply material was produced by the following method.

第1表に示す各配合の炭素系材料を機械的に混合した後
、板状に成型し、まず100℃で4時間乾燥・硬化処理
を行ない、次いで不活性ガス気流中で100℃/hrの
昇温速度で1000℃まで焼成を行ない、第2表に示す
組成の0.5mm厚。
After mechanically mixing the carbon-based materials of each composition shown in Table 1, they were molded into a plate shape, first dried and hardened at 100°C for 4 hours, and then heated at 100°C/hr in an inert gas stream. Firing was performed at a heating rate of 1000°C, and the composition shown in Table 2 was 0.5 mm thick.

80mm$の炭素電極を製造した。An 80 mm $ carbon electrode was manufactured.

第1図(b)に示した配置に従って、接合体9゜第2表
に示す陰極給電体(炭素電極) 8 (0,5mm厚8
0mmφ)及び陽極側には白金めっきしたエキスバンド
チタン(カツラダグレイチング製0.3mm厚Ti、8
0mmφ、0.3−M20F)11を合わせ、さらに端
板電極には陽極側にチタン板(15mm厚)10及び陰
極側に不浸透性黒鉛板(20mm厚)7を添設し締付け
てセルを組立てた。ついでこのセルを第1図(a)のシ
ステムに組入れ、80℃゛、でI!S極側に純水を循環
させながら電解を行ない、電流密度−セル電圧の関係を
調査した。
According to the arrangement shown in FIG. 1(b), the bonded body 9° and the cathode power supply body (carbon electrode) shown in Table 2 8 (0.5 mm thick 8
0 mmφ) and platinum-plated expanded titanium (0.3 mm thick Ti manufactured by Katsurada Grating Co., Ltd., 8
0mmφ, 0.3-M20F) 11, and then attach a titanium plate (15mm thick) 10 on the anode side and an impermeable graphite plate (20mm thick) 7 on the cathode side to the end plate electrode and tighten to complete the cell. Assembled. Next, this cell was installed in the system shown in FIG. 1(a), and I! was heated at 80°C. Electrolysis was performed while circulating pure water to the south pole side, and the relationship between current density and cell voltage was investigated.

尚ここで上記セル及びセルシステムについて若干の説明
を加えておくと、炭素電極8は■電極−膜接合体9へ電
流を流す、■セル内に発生したHz′ELび膜内透過水
を外側へ透過させるという機能を発揮する。一方白金め
っきポーラスチタン11は上記■の機能と■′セル内に
発生した。2を外側へ透過させる、■電気分解する水を
膜へ供給するという機能を果している。又第1図(b)
 (7)3は02−H20気液分離器兼純水貯留槽でポ
ンプ5よってこの中の純水がセル1へ送給される。
Here, some explanations regarding the above-mentioned cell and cell system will be given. The carbon electrode 8 (1) allows current to flow to the electrode-membrane assembly 9, (2) conducts the Hz'EL generated within the cell and the permeated water in the membrane to the outside. It performs the function of transmitting information to On the other hand, the platinum-plated porous titanium 11 had the function of (1) and (2) generated within the cell. 2 permeates to the outside, and 2) supplies electrolyzed water to the membrane. Also, Figure 1(b)
(7) 3 is a 02-H20 gas-liquid separator and pure water storage tank, and the pump 5 supplies pure water therein to the cell 1.

6はヒーターを示し水温を通常80℃程度に保持し、又
2はH2−H20気液分Ilt器を示している。そして
電気分解によりセル1内に発生したH2又は02は夫々
ラインj!!又は12を通ってH2−H20気液分離器
2又は02−H,O気液分離器3へ導入され、回収され
る。
Reference numeral 6 indicates a heater which normally maintains the water temperature at about 80°C, and 2 indicates an H2-H20 gas-liquid separation unit. Then, H2 or 02 generated in the cell 1 by electrolysis are respectively line j! ! or 12 to the H2-H20 gas-liquid separator 2 or the 02-H,O gas-liquid separator 3, where it is recovered.

第2図に、本発明に係る陰極給電体(ロ)を使用したと
きの、電流密度−セル電圧の関係を示す。図中には比較
のために従来から用いられているポーラスカーボン電極
について調査したデータも記載しているが、図から明ら
かなように本発明の給電体は200A/dm2条件では
約100mv低いセル電圧を示す。
FIG. 2 shows the relationship between current density and cell voltage when using the cathode power supply (b) according to the present invention. The figure also includes data investigated for conventionally used porous carbon electrodes for comparison, but as is clear from the figure, the power supply of the present invention has a cell voltage that is approximately 100mv lower under the 200A/dm2 condition. shows.

第2表実施例(ハ)の給電体も実施例(ロ)と同様の傾
向を示した。なお、第2表の(イ)と(ニ)は比較例で
あり、(イ)は膨張黒鉛含有率が95%超であり、10
μmより大きい細孔を生じ機械的強度が低下した。一方
(ニ)については膨張化黒鉛含有率が20%未満である
ため0.05μmより小さい細孔が発生し、この結果気
液分配の不良によりセル抵抗の増大を生じ従来品と同程
度のセル電圧を示した。
The power feeder of Example (c) in Table 2 also showed the same tendency as Example (b). Note that (a) and (d) in Table 2 are comparative examples, and (a) has an expanded graphite content of more than 95% and 10
Pores larger than μm were formed and the mechanical strength decreased. On the other hand, regarding (d), since the expanded graphite content is less than 20%, pores smaller than 0.05 μm are generated, resulting in an increase in cell resistance due to poor gas-liquid distribution, resulting in a cell comparable to that of conventional products. Indicated voltage.

実施例2 実施例1と同様にしてIr−Pt/M/Pt−Ir接合
体を作製した。カチオン交換膜はナフィオン膜No。
Example 2 An Ir-Pt/M/Pt-Ir conjugate was produced in the same manner as in Example 1. The cation exchange membrane is Nafion membrane No.

117を用いた。117 was used.

第1図に示したセル構成において、陰極側は実施例1の
(ハ)の炭素電極給電体を用い、陽極側の給電体にはイ
リジウムメッキチタンエキスバンドメタル((1,3m
m厚M−20F)を用いた。第1図と同様のシステムに
組み込み、陽極液に20%塩酸を循環して塩素を発生さ
せた。各温度における電流密度−セル電圧の関係を第3
図に示した。
In the cell configuration shown in Fig. 1, the carbon electrode power supply body (c) of Example 1 is used for the cathode side, and the iridium-plated titanium extracted metal ((1.3m) is used for the anode side power supply body.
m thickness M-20F) was used. It was installed in a system similar to that shown in Figure 1, and chlorine was generated by circulating 20% hydrochloric acid in the anolyte. The relationship between current density and cell voltage at each temperature is
Shown in the figure.

比較のために陰極給電体ポーラスカーボン(県別化学ラ
ミネートペーパー、2mm厚)を用いたところ、同一程
度条件において100 A /dm2の電流密度で約1
00mv高いセル電圧を示した。
For comparison, when porous carbon cathode power feeder (prefectural chemical laminated paper, 2 mm thickness) was used, under the same conditions, the current density of 100 A/dm2 was approximately 1
00 mv higher cell voltage.

[発明の効果] 本発明は以上の様に構成されており、下記の如き顕著な
効果を得ることができる。
[Effects of the Invention] The present invention is configured as described above, and the following remarkable effects can be obtained.

(1)本発明炭素電極を電極−膜種合体に圧接して使用
するとき適正なりッション性を有する為に膜を損傷する
ことなく十分に密着させることができ、接触抵抗を下げ
ることができる。又接触状態が均一で且つ確実である為
高電流密度で電解を行なっても局部的に発熱することが
なく膜を劣化させることがない。
(1) When the carbon electrode of the present invention is used in pressure contact with an electrode-membrane combination, it has appropriate cushioning properties, so it can be brought into close contact with the membrane without damaging it, and the contact resistance can be lowered. Furthermore, since the contact condition is uniform and reliable, even if electrolysis is performed at a high current density, local heat generation does not occur and the membrane does not deteriorate.

(2)圧縮強度が大きい為に炭素電極の厚みを薄くする
ことができ、大型電極への適用も可能となる。
(2) Since the compressive strength is high, the thickness of the carbon electrode can be made thinner, making it possible to apply it to large electrodes.

(3)気・液の透過性は良好であり、気液分配不良によ
るセル抵抗の増大がない。
(3) Good gas/liquid permeability, and no increase in cell resistance due to poor gas/liquid distribution.

(4)電極板厚を薄くすることができ、且つ一枚で構成
することができるので、従来のセルに比べるとセルの構
造が簡略化され、製作工程も単純化するのでセルコスト
を低減することができる。
(4) Since the electrode plate thickness can be made thinner and can be constructed from a single piece, the cell structure is simplified compared to conventional cells, and the manufacturing process is also simplified, reducing cell costs. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)はセルシステムを示す模式図、第1図(b
)はセルの構成を示す展開説明図、第2.3図は本発明
の効果を示すグラフである。 1・・・セル      2・・・陰極8・・・炭素電
極    9・・・電極−膜種合体lO・・・陽極 11・・・白金めっきポーラスチタン 第1図(a) 第1 図(b) \± 第2図 電流密度(A/dm2) 第3図 電流密度+A/dm2)
Figure 1(a) is a schematic diagram showing the cell system, Figure 1(b)
) is a developed explanatory diagram showing the structure of a cell, and FIG. 2.3 is a graph showing the effects of the present invention. 1...Cell 2...Cathode 8...Carbon electrode 9...Electrode-membrane species combination 1O...Anode 11...Platinum-plated porous titanium Fig. 1(a) Fig. 1(b) \± Fig. 2 Current density (A/dm2) Fig. 3 Current density + A/dm2)

Claims (1)

【特許請求の範囲】[Claims] 炭素系材料を成形後焼成して製造される水溶液電解用炭
素電極であって、20〜95%の膨張化黒鉛を含有し、
細孔径が0.05〜10μmであることを特徴とする水
溶液電解用気・液透過性炭素電極。
A carbon electrode for aqueous electrolysis produced by molding and firing a carbon-based material, containing 20 to 95% expanded graphite,
A gas/liquid permeable carbon electrode for aqueous electrolysis, characterized in that the pore diameter is 0.05 to 10 μm.
JP61071606A 1986-03-28 1986-03-28 Gas and liquid permeable carbon electrode for electrolysis of aqueous solution Granted JPS62227098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61071606A JPS62227098A (en) 1986-03-28 1986-03-28 Gas and liquid permeable carbon electrode for electrolysis of aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61071606A JPS62227098A (en) 1986-03-28 1986-03-28 Gas and liquid permeable carbon electrode for electrolysis of aqueous solution

Publications (2)

Publication Number Publication Date
JPS62227098A true JPS62227098A (en) 1987-10-06
JPH0238673B2 JPH0238673B2 (en) 1990-08-31

Family

ID=13465477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61071606A Granted JPS62227098A (en) 1986-03-28 1986-03-28 Gas and liquid permeable carbon electrode for electrolysis of aqueous solution

Country Status (1)

Country Link
JP (1) JPS62227098A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047837A (en) * 2008-08-21 2010-03-04 Boo-Sung Hwang Hydrogen-oxygen generating electrode plate using carbon nanotube and method for manufacturing the same
JP2010513018A (en) * 2006-12-19 2010-04-30 ゼネラル・エレクトリック・カンパニイ Supercapacitor desalination apparatus and manufacturing method
JP2011202206A (en) * 2010-03-24 2011-10-13 Daiso Co Ltd Insoluble electrode and method of producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51145339U (en) * 1975-05-15 1976-11-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51145339U (en) * 1975-05-15 1976-11-22

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513018A (en) * 2006-12-19 2010-04-30 ゼネラル・エレクトリック・カンパニイ Supercapacitor desalination apparatus and manufacturing method
JP2010047837A (en) * 2008-08-21 2010-03-04 Boo-Sung Hwang Hydrogen-oxygen generating electrode plate using carbon nanotube and method for manufacturing the same
JP2011202206A (en) * 2010-03-24 2011-10-13 Daiso Co Ltd Insoluble electrode and method of producing the same

Also Published As

Publication number Publication date
JPH0238673B2 (en) 1990-08-31

Similar Documents

Publication Publication Date Title
CA1179630A (en) Halide electrolysis in cell with catalytic electrode bonded to hydraulically permeable membrane
US7914652B2 (en) Oxygen gas diffusion cathode for sodium chloride electrolysis
TWI419398B (en) Gas-diffusion electrode for electrolyte-percolating cells
US4826554A (en) Method for making an improved solid polymer electrolyte electrode using a binder
CN1831196A (en) Gas diffusion electrode
KR101399172B1 (en) Oxygen gas diffusion cathode, electrolytic cell employing same, method of producing chlorine gas and method of producing sodium hydroxide
US4315805A (en) Solid polymer electrolyte chlor-alkali process
NO802634L (en) IMPROVED CARBON TISSUE-BASED ELECTROCATALYTIC GAS DIFFUSION ELECTRODE, AGGREGATE AND ELECTROCHEMICAL CELLS CONTAINING THESE
NO152393B (en) THIN ELECTROCATALYTIC GAS DIFFUSION ELECTRODE AND PROCEDURE FOR PREPARING THEREOF
JP2003523599A (en) Method of maintaining compression of working area in electrochemical cell
KR102475005B1 (en) Diaphragm-electrode assembly for use in alkaline water electrolyzers
EP0002511A1 (en) Electrode for electrolytic processes, electrolysis cell and method for electrolysis
US4364815A (en) Solid polymer electrolyte chlor-alkali process and electrolytic cell
WO1980002162A1 (en) Process for producing hydrogen
US4554063A (en) Cathodic, gas- and liquid-permeable current collector
JPS6123780A (en) Oxygen cathode for electrolyzing alkali chloride and its manufacture
JPS62227098A (en) Gas and liquid permeable carbon electrode for electrolysis of aqueous solution
JPH08283979A (en) Gas diffusing electrode and electrolytic method using the electrode
US4824508A (en) Method for making an improved solid polymer electrolyte electrode using a liquid or solvent
JP4115686B2 (en) Electrode structure and electrolysis method using the structure
JPH10140383A (en) Electrode feeder, its production and electrolytic cell for producing hydrogen peroxide
JP3538271B2 (en) Hydrochloric acid electrolyzer
US6165333A (en) Cathode assembly and method of reactivation
JP3289337B2 (en) Method for producing alkali metal hydroxide using gas diffusion electrode
JPS58171588A (en) Structure of joined body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term