JPS62227094A - Production of composite titanium material coated with calcium phosphate compound - Google Patents

Production of composite titanium material coated with calcium phosphate compound

Info

Publication number
JPS62227094A
JPS62227094A JP7050486A JP7050486A JPS62227094A JP S62227094 A JPS62227094 A JP S62227094A JP 7050486 A JP7050486 A JP 7050486A JP 7050486 A JP7050486 A JP 7050486A JP S62227094 A JPS62227094 A JP S62227094A
Authority
JP
Japan
Prior art keywords
calcium phosphate
phosphate compound
titanium
coating layer
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7050486A
Other languages
Japanese (ja)
Other versions
JPH0420988B2 (en
Inventor
Takayuki Shimamune
孝之 島宗
Masashi Hosonuma
正志 細沼
Yukie Matsumoto
幸英 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP7050486A priority Critical patent/JPS62227094A/en
Priority to GB8706463A priority patent/GB2189815B/en
Priority to CA000532486A priority patent/CA1283028C/en
Priority to SE8701194A priority patent/SE462564B/en
Priority to DE3709457A priority patent/DE3709457C2/en
Priority to FR8704092A priority patent/FR2603608B1/en
Priority to IT47766/87A priority patent/IT1205766B/en
Priority to US07/029,519 priority patent/US4882196A/en
Priority to CH1128/87A priority patent/CH671965A5/fr
Publication of JPS62227094A publication Critical patent/JPS62227094A/en
Priority to US07/338,791 priority patent/US4960646A/en
Priority to US07/504,457 priority patent/US5141576A/en
Publication of JPH0420988B2 publication Critical patent/JPH0420988B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/32Phosphorus-containing materials, e.g. apatite
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30968Sintering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00796Coating or prosthesis-covering structure made of a phosphorus-containing compound, e.g. hydroxy(l)apatite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To enhance the affinity for bone tissure and to improve the workability by successively forming an underlayer and a coating layer each contg. a calcium phosphate compound as the principal component on the surface of a Ti material and by modifying the coating layer by hydrothermal treatment. CONSTITUTION:The surface of a Ti (alloy) material is activated and a soln. prepd. by dissolving a calcium phosphate compound such as tricalcium phosphate in an aqueous soln. of hydrochloric acid or nitric acid is applied to the activated surface and baked by heating to form a rigid underlayer. A suspension prepd. by dispersing the calcium phosphate compound in an aqueous soln. of hydrochloric acid or the like is applied to the underlayer and sintered by heating to form a coating layer. This coating layer is modified by hydrothermal treatment to increase the degree of crystallinity. The resulting composite Ti material coated with the calcium phosphate compound is light in weight and has satisfactory mechanical strength, so it is suitable for use as an implant material such as an artifical bone or an artifical dental root.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、人工骨、歯、歯根等のインブラント材並びに
それらの接合材等に有用な、表面を骨や歯の組織との親
和性に特に優れたリン酸カルシウム化合物で被覆したチ
タン又はチタン合金複合材の製造方法に関するものであ
る。
Detailed Description of the Invention (Industrial Field of Application) The present invention is useful for implant materials such as artificial bones, teeth, tooth roots, etc., as well as their bonding materials. The present invention relates to a method for producing a titanium or titanium alloy composite material coated with a calcium phosphate compound that has particularly excellent properties.

(従来技術とその問題点) 人工骨、人工歯根等の生体インブラント材は、事故等に
より骨が欠損した場合や歯が抜けた場合等に、残ってい
る骨に接合したり顎骨に植え込んだりして生来のものに
近い形で使用でき、快適な生活を維持することを可能に
するため最近注目を集めている。しかしながら、これら
インブラント材は人体内に埋め込むものであるため、人
体に無害であることが必須であり、更に強度が十分であ
る、加工性がある、溶出しない、適度の比重がある、生
体への親和性がある等の種々の条件をも具備しているも
のでなければならない。
(Prior art and its problems) Biomedical implant materials such as artificial bones and artificial tooth roots can be attached to the remaining bone or implanted into the jawbone in the event of bone loss or tooth loss due to an accident, etc. It has recently been attracting attention because it can be used in a form similar to that of natural substances and allows us to maintain a comfortable life. However, since these implant materials are to be implanted into the human body, they must be harmless to the human body, and they must also be strong enough, processable, non-eluting, have an appropriate specific gravity, and be suitable for living organisms. It must also meet various conditions, such as having compatibility with

従来から貴金属等の金属、ステンレススチール等の合金
及びα−アルミナ等のセラミックがインブラント材とし
て使用されているが、これらの材料は毒性がある、強度
が不十分である、加工性がない、溶出する、比重が大き
すぎるという欠点のうちの少なくとも1つを有し、更に
共通の欠点として生体に対する親和性に欠けている。
Traditionally, metals such as precious metals, alloys such as stainless steel, and ceramics such as α-alumina have been used as implant materials, but these materials are toxic, have insufficient strength, lack workability, etc. They have at least one of the disadvantages of elution and too high specific gravity, and a common disadvantage is that they lack affinity for living organisms.

最近この親和性を解決したアパタイトセラミックスが提
案されている。骨や歯の無機成分は、リン酸カルシウム
化合物(水酸アパタイトを主成分とする)であり、アパ
タイトセラミックスの主成分もリン酸カルシウム化合物
であるため、両者の親和性は極めて良好で、生体埋込後
の同化は非常に優れている。
Recently, apatite ceramics that solve this affinity have been proposed. The inorganic component of bones and teeth is a calcium phosphate compound (mainly composed of hydroxyapatite), and the main component of apatite ceramics is also a calcium phosphate compound, so the affinity between the two is extremely good, and it is easy to assimilate after implantation in a living body. is very good.

しかしこのアパタイトセラミックスも上記した従来材料
と同様に強度が弱い、加工性が悪い等の欠点を有してお
り、その用途は限定されている。
However, like the conventional materials mentioned above, this apatite ceramic also has drawbacks such as low strength and poor workability, and its uses are limited.

これらの欠点を解消するため金属やセラミックの表面に
アパタイトコーティングを行い複合材として生体親和性
を有する金属やセラミック材の開発が望まれている。こ
のためには金属−セラミック、セラミックーセラミック
接合技術が必要であるが、現在のところはプラズマ溶射
法のみが知られている。
In order to eliminate these drawbacks, it is desired to develop a biocompatible metal or ceramic material as a composite material by coating the surface of metal or ceramic with apatite. For this purpose, metal-ceramic and ceramic-ceramic bonding techniques are required, but at present only plasma spraying is known.

プラズマ溶射法はこのような接合には有用であるが、複
雑な形状を有する材料に対して表面全体に被覆すること
が困難であること、又その特性上多孔材の表面全部を被
覆することが不可能であり、又高価な装置を要すること
、高価なアパタイト粒子の歩留まりが悪いこと、コーテ
ィングと基材の接合が必ずしも十分でない等の欠点を有
する。
Plasma spraying is useful for such joining, but it is difficult to coat the entire surface of materials with complex shapes, and due to its characteristics, it is difficult to coat the entire surface of porous materials. This method has drawbacks such as the need for expensive equipment, poor yield of expensive apatite particles, and insufficient bonding between the coating and the base material.

なお、本出願人は昭和61年3月24日付でチタン複合
材の発明に関する2件の特許出願を行った。
The present applicant filed two patent applications on March 24, 1986 regarding the invention of titanium composite materials.

本発明は前記発明の改良に関するものである。The present invention relates to an improvement of the above invention.

(発明の目的) 本発明の目的は、軽量で工作性が良好でしかも機械強度
が十分にあり、生体内での溶出等がなくしかも骨組織等
生体内でのm相性を高めた、人工骨、人工歯根等のイン
ブラント材に適したチタン複合材の製造方法を提供する
ことにある。
(Objective of the Invention) The object of the present invention is to create an artificial bone that is lightweight, has good workability, has sufficient mechanical strength, does not elute in the living body, and has high m-compatibility in the living body such as bone tissue. The object of the present invention is to provide a method for manufacturing a titanium composite material suitable for implant materials such as artificial tooth roots.

(問題点を解決するための手段) 本発明は、チタン又はチタン合金基材の表面を活性化処
理し、該基材上に主としてリン酸カルシウム化合物を溶
解させた塩酸又は硝酸水溶液を塗布し加熱焼成して該基
材上にリン酸カルシウム化合物を含む下地層を形成し、
次いでその上にリン酸カルシウム化合物の懸濁液を塗布
し加熱焼結してリン酸カルシウム化合物の被覆層を形成
することによりチタン複合材を形成し、更に該複合材を
水熱処理して前記被覆層を改質することを特徴とするチ
タン複合材の製造方法であり、その最大の特徴とする点
は、リン酸カルシウム化合物を主成分とする下地層と被
覆層の複合被覆を水熱処理して、被覆層の結晶度を向上
させる等の被、頂層の改質を行う点にある。
(Means for Solving the Problems) The present invention involves activating the surface of a titanium or titanium alloy base material, coating the base material with an aqueous solution of hydrochloric acid or nitric acid in which a calcium phosphate compound is mainly dissolved, and then heating and baking it. forming a base layer containing a calcium phosphate compound on the base material,
Next, a suspension of a calcium phosphate compound is applied thereon and heated and sintered to form a coating layer of the calcium phosphate compound to form a titanium composite, and the composite is further hydrothermally treated to modify the coating layer. This is a method for producing titanium composite materials characterized by The purpose is to modify the top layer and the top layer, such as improving the

以下本発明をより詳細に説明する。The present invention will be explained in more detail below.

本発明は、チタン又はチタン合金基村上にリン酸カルシ
ウム化合物の被覆を形成し、更にこれを水熱処理した人
工骨や人工歯根等のインブラント材に好適なチタン複合
材の製造方法である。
The present invention is a method for producing a titanium composite material suitable for implant materials such as artificial bones and artificial tooth roots, in which a coating of a calcium phosphate compound is formed on a titanium or titanium alloy base, and the coating is further hydrothermally treated.

本発明においてリン酸カルシウム化合物とは、リン酸三
カルシウム、リン酸水素カルシウム、リン酸二水素カル
シウムのほか水酸アパタイト(ヒドロキシリン酸カルシ
ウム)をはじめとするフッ素、塩素、水酸基を含むカル
シウムのリン酸塩であるリン灰石(アパタイト)系化合
物を総称するものであり、本発明では下地層及び被覆層
としてこれらの化合物のほか生体に無害な若干の他の化
合物や不純物を含むものを適宜用いることができる。本
発明ではチタン又はチタン合金の表面にリン酸カルシウ
ム化合物の被覆を設けることにより、生体内において十
分大きな親和性で骨等との接合を行うことができる。
In the present invention, calcium phosphate compounds are calcium phosphates containing fluorine, chlorine, and hydroxyl groups, including tricalcium phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate, and hydroxyapatite (calcium hydroxyphosphate). It is a general term for apatite-based compounds, and in the present invention, as the base layer and coating layer, in addition to these compounds, compounds containing some other compounds and impurities that are harmless to living organisms can be used as appropriate. In the present invention, by providing a coating of a calcium phosphate compound on the surface of titanium or a titanium alloy, it can be bonded to bones etc. with sufficiently high affinity in vivo.

本発明のチタン又はチタン合金基材におけるチタン又は
チタン合金とは、金属チタン及び例えばTa、 Nb、
白金族金属、AI、 V等を添加したチタン合金から選
択されるものであり、前記基材は形状が板状、棒状等で
ある平滑なものであっても、スポンジ状の多孔表面を有
するものであってもよい。
The titanium or titanium alloy in the titanium or titanium alloy base material of the present invention refers to metallic titanium and, for example, Ta, Nb,
It is selected from titanium alloys to which platinum group metals, AI, V, etc. are added, and the base material may be flat in the shape of a plate, rod, etc., or have a porous surface in the form of a sponge. It may be.

基材としてチタン又はチタン合金を使用するのは、これ
らが生体内で無毒かつ安定であって、かつ溶出するステ
ンレススチール等の合金と比較してその比重が約60%
と軽量であり、しかも金属であるため機械強度が十分に
大きく工作が容易だからである。該基材は予めその表面
を水洗、酸洗、超音波洗浄、蒸気洗浄等により洗浄化処
理して不純物を除去して後述するリン酸カルシウム化合
物等との親和性を向上させてもよく、更に必要に応じて
該表面をブラスト及び/又はエツチング処理により粗面
化して後述するリン酸カルシウム化合物等との親和性を
向上させるとともに活性化を行うようにすることもでき
る。なお、エツチングは化学的な方法ばかりでなく、ス
バタリング等の物理的方法で行ってもよい。
Titanium or titanium alloy is used as a base material because it is non-toxic and stable in the body, and its specific gravity is approximately 60% compared to alloys such as stainless steel that are eluted.
This is because it is lightweight, and since it is made of metal, it has sufficient mechanical strength and is easy to work with. The surface of the base material may be cleaned in advance by water washing, pickling, ultrasonic cleaning, steam cleaning, etc. to remove impurities and improve the affinity with the calcium phosphate compound etc. described below. Accordingly, the surface may be roughened by blasting and/or etching treatment to improve affinity with calcium phosphate compounds, etc., which will be described later, and also to perform activation. Note that etching may be performed not only by a chemical method but also by a physical method such as sputtering.

前記基材表面に前記リン酸カルシウム化合物の塩酸又は
硝酸水溶液を塗布し、加熱焼成により基材のチタン又は
チタン合金と強固な結合を有するリン酸カルシウム化合
物の下地層を形成する。この場合には、リン酸カルシウ
ム化合物としてリン酸水素カルシウムやリン酸二水素カ
ルシウム等の溶解度の大きい化合物を使用して均一な水
溶液とすることが望ましい。なお本発明では、該リン酸
カルシウム化合物とともにチタン及び/又はスズ及び/
又はそれらの化合物を前記塩酸又は硝酸水溶液に含ませ
るようにしてもよい。このチタンあるいはスズ又はそれ
らの化合物とは、塩酸又は硝酸に溶解し加熱焼成するこ
とにより酸化チタン又は酸化スズを生ずるものであれば
金属単体でも化・ 合物でもよく、化合物としては例え
ば塩化第1チタン、塩化第2チタン、塩化第1スズ及び
塩化第2スズ等のハロゲン化合物をはじめとする無機塩
、シュウ酸スズ等の有機塩及びn−ブチルチタネートや
アルコキシスズ等の有機金属化合物等を挙げることがで
き、酸化チタン及び酸化スズ自体も含まれる。
An aqueous solution of the calcium phosphate compound in hydrochloric acid or nitric acid is applied to the surface of the base material, and heated and fired to form a base layer of the calcium phosphate compound that has a strong bond with the titanium or titanium alloy of the base material. In this case, it is desirable to use a highly soluble compound such as calcium hydrogen phosphate or calcium dihydrogen phosphate as the calcium phosphate compound to form a uniform aqueous solution. In addition, in the present invention, titanium and/or tin and/or
Alternatively, these compounds may be included in the hydrochloric acid or nitric acid aqueous solution. This titanium, tin, or a compound thereof may be an elemental metal or a chemical compound, as long as titanium oxide or tin oxide is produced by dissolving it in hydrochloric acid or nitric acid and heating and baking it. Examples include inorganic salts including halogen compounds such as titanium, titanium chloride, stannous chloride, and stannic chloride, organic salts such as tin oxalate, and organometallic compounds such as n-butyl titanate and alkoxytin. Titanium oxide and tin oxide themselves are also included.

本発明ではリン酸カルシウム化合物等を溶解させた溶液
を基材上に塗布しその後膣化合物を溶液から加熱析出さ
せるので、基材がどのような形状、例えば表面を多孔質
とした材料であっても表面全体に均一な被覆を形成する
ことができる。前記リン酸カルシウム化合物を溶解する
ために塩酸又は硝酸水溶液を使用するのは、リン酸カル
シウム化合物等の溶解が容易なだけでなく、これによっ
て基材のチタン又はチタン合金の一部が加熱焼成時に溶
解し、リン酸カルシウム化合物等と化学的結合を形成し
、耐着性の強固なリン酸カルシウム被覆を形成させるこ
とができるからである。
In the present invention, a solution in which a calcium phosphate compound or the like is dissolved is applied onto the base material, and then the vaginal compound is heated and precipitated from the solution. Therefore, no matter what shape the base material is, for example, a porous material, the surface A uniform coating can be formed over the entire surface. The reason for using an aqueous solution of hydrochloric acid or nitric acid to dissolve the calcium phosphate compound is that it not only facilitates the dissolution of the calcium phosphate compound, but also allows part of the titanium or titanium alloy of the base material to be dissolved during heating and baking, resulting in the dissolution of the calcium phosphate compound. This is because it can form chemical bonds with compounds and the like to form a calcium phosphate coating with strong adhesion resistance.

加熱焼成を行うと前記リン酸カルシウム化合物が主とし
て水酸アパタイトやリン酸三カルシウムとなって基材上
に析出する。このときの加熱焼成温度は200〜800
℃であり、200℃より低いと加熱焼成が十分に行われ
ず、又基材との耐着も十分に行われない。800℃より
高いとチタン又はチタン合金の基材の表面酸化が優勢に
なり、リン酸カルシウム化合物の下地層の基材への耐着
性が悪化する。なお、前記塩酸又は硝酸水溶液にチタン
あるいはスズ又はそれらの化合物を溶解させておくと、
リン酸カルシウム化合物とともに酸化チタン及び/又は
酸化スズが下地層として析出するが、下地層に酸化チタ
ンや酸化スズを含ませておくと、これらが基材であるチ
タン又はチタン合金と極めて強固な結合を形成し基材と
下地層の結合をより強固なものとする。又酸化チタン及
び酸化スズは化学的に極めて安定で生体内で化学変化を
受けることがないため、毒性のある物質が溶出したり下
地層の被覆が脆弱化したりすることがない。下地層に含
ませる酸化チタン及び/又は酸化スズの量は適宜選定で
きるが、重量で80%以下が好ましい。
When heated and fired, the calcium phosphate compound mainly becomes hydroxyapatite or tricalcium phosphate and precipitates on the base material. The heating and firing temperature at this time is 200 to 800
C. If the temperature is lower than 200.degree. C., heating and baking will not be performed sufficiently, and adhesion resistance to the base material will not be sufficiently achieved. When the temperature is higher than 800°C, surface oxidation of the titanium or titanium alloy base material becomes dominant, and the adhesion resistance of the calcium phosphate compound underlayer to the base material deteriorates. In addition, if titanium or tin or their compounds are dissolved in the hydrochloric acid or nitric acid aqueous solution,
Titanium oxide and/or tin oxide are precipitated as a base layer along with calcium phosphate compounds, but if titanium oxide or tin oxide is included in the base layer, these will form an extremely strong bond with the base material titanium or titanium alloy. This strengthens the bond between the base material and the underlayer. Furthermore, since titanium oxide and tin oxide are chemically extremely stable and do not undergo chemical changes in living organisms, toxic substances will not be eluted and the underlying layer will not become brittle. The amount of titanium oxide and/or tin oxide to be included in the underlayer can be selected as appropriate, but is preferably 80% or less by weight.

更にこの表面にリン酸カルシウム化合物の被覆層を必要
な厚さに積層するが、この被覆層のリン酸カルシウム化
合物は下地層のリン酸カルシウム化合物と同一であって
も異なっていてもよい。この被覆層は下地に基材と強く
結合したリン酸カルシウム化合物被覆があるので、通常
の加熱焼結法によって容易に行うことができる。
Furthermore, a coating layer of a calcium phosphate compound is laminated on this surface to a required thickness, and the calcium phosphate compound of this coating layer may be the same as or different from the calcium phosphate compound of the base layer. Since this coating layer has a calcium phosphate compound coating on the base material that is strongly bonded to the base material, it can be easily formed by a normal heat sintering method.

即ちリン酸カルシウム化合物等の薄層の下地層を被覆し
た基材に所望のリン酸カルシウム化合物の懸濁液を塗布
する。懸濁液濃度は、必要とする被覆層の厚さによって
自由に選択することができる。乾燥後に加熱焼結を行う
が、その温度は300℃から900℃がよい。
That is, a suspension of the desired calcium phosphate compound is applied to a substrate coated with a thin underlayer of calcium phosphate compound or the like. The suspension concentration can be freely selected depending on the required thickness of the coating layer. After drying, heating and sintering is performed, and the temperature is preferably 300°C to 900°C.

300℃以下では焼結が進行せず、900℃以上ではチ
タンのα−β転移点を越える恐れがあり基材へ悪影響を
及ぼす可能性があるので望ましくない。なお、焼結温度
及び時間はリン酸カルシウム化合物の状態、厚さによっ
て決定される。温度が高いとリン酸三カルシウムが、比
較的低いと水酸アパタイトが優勢になる。
If the temperature is below 300°C, sintering will not proceed, and if it is above 900°C, the α-β transition point of titanium may be exceeded, which may have an adverse effect on the base material, which is not desirable. Note that the sintering temperature and time are determined depending on the state and thickness of the calcium phosphate compound. When the temperature is high, tricalcium phosphate becomes dominant, and when the temperature is relatively low, hydroxyapatite becomes dominant.

被覆層形成に懸濁液を使用する理由の1つは、形成され
る被覆層表面に凹凸をつけて離脱に対する抵抗を大きく
し親和性を増大させることである。
One of the reasons for using a suspension to form a coating layer is to provide unevenness to the surface of the coating layer to increase resistance to detachment and increase affinity.

必要に応じて下地層及び被覆層とも上記操作を繰り返し
て所望の厚さにすることができる。
If necessary, the above operation can be repeated for both the base layer and the coating layer to obtain a desired thickness.

本発明でチタン又はチタン合金基材上にリン酸カルシウ
ム化合物の下地層とリン酸カルシウム化合物の被覆層と
を積層する理由は、加熱焼成法により比較的機械強度は
小さいが基材のチタン又はチタン合金表面全体に対して
均一で親和力の太きいリン酸カルシウム化合物の下地層
を形成し、該下地層上にこの下地層と同−又は類似した
物性を有するリン酸カルシウム化合物を焼結法で被覆し
て下地層と該被覆層との間に強固な結合を付与するとと
もに強度の大きいリン酸カルシウム化合物を形成させ、
基材との親和力が大きくかつ強度も十分に大きいチタン
複合材を提供するためであり、基材上に加熱焼結による
単一の被覆層を形成するのみであると該被覆層の強度は
大きいが基材との親和性が小さくかつ剥離しやすくなり
、本発明のようなインブラント材等として有用な複合材
を得ることはできない。
In the present invention, the base layer of calcium phosphate compound and the coating layer of calcium phosphate compound are laminated on the titanium or titanium alloy base material. A base layer of a calcium phosphate compound having a uniform and strong affinity is formed on the base layer, and a calcium phosphate compound having the same or similar physical properties as the base layer is coated on the base layer by a sintering method, thereby forming a base layer and a coating layer. It forms a strong calcium phosphate compound with a strong bond between the
This is to provide a titanium composite material that has a high affinity with the base material and has sufficiently high strength, and the strength of the coating layer is high when only a single coating layer is formed on the base material by heating and sintering. has low affinity with the base material and is easily peeled off, making it impossible to obtain a composite material useful as an implant material as in the present invention.

以上の工程により、生体と親和性を存するリン酸カルシ
ウム化合物被覆を有するチタン基材を製造できるが、加
熱焼結により形成した被覆層のリン酸カルシウム化合物
は結晶性が低いか、非晶質に近いものである。本発明で
は結晶性を良好なものとして強度を増強させるとともに
、生体との親和性をより向上させるために水熱処理を行
う。
Through the above steps, it is possible to produce a titanium base material coated with a calcium phosphate compound that is compatible with living organisms, but the calcium phosphate compound in the coating layer formed by heating and sintering has low crystallinity or is nearly amorphous. . In the present invention, hydrothermal treatment is performed to improve crystallinity and increase strength, as well as to further improve compatibility with living organisms.

水熱処理とは高温の水、特に高温高圧の水の存在下に行
われる結晶育成法をいう。
Hydrothermal treatment refers to a crystal growth method performed in the presence of high-temperature water, particularly high-temperature and high-pressure water.

水熱処理の条件は特に限定されないが、オートクレーブ
中水蒸気の存在下、100℃から200℃(圧力は約1
〜16 kg/cm”)で行うことが望ましく、これに
より被覆層の結晶性が良好になる。
The conditions for the hydrothermal treatment are not particularly limited, but in the presence of steam in an autoclave, from 100°C to 200°C (pressure is approximately 1°C).
~16 kg/cm''), which improves the crystallinity of the coating layer.

この水熱処理でリン酸三カルシウムの一部は水酸アパタ
イトに転化される。
During this hydrothermal treatment, a portion of tricalcium phosphate is converted into hydroxyapatite.

なお、一般に水酸アパタイトの結晶を製造するには40
0℃から500℃で行うが、本発明では被覆層の結晶性
を良好にして安定性を向上させることを目的とするので
、上記した比較的穏やかな条件で行うことができ、より
高温で処理する必要はない。勿論経済性を考慮せず20
0℃を越える温度で処理してもよく、この場合にも製品
の品質が悪化することはない。
In addition, in general, to produce hydroxyapatite crystals, 40
The process is carried out at a temperature of 0°C to 500°C, but since the purpose of the present invention is to improve the stability by improving the crystallinity of the coating layer, the process can be carried out under the relatively mild conditions mentioned above, and the process can be carried out at a higher temperature. do not have to. Of course, without considering economic efficiency20
Processing may be carried out at temperatures exceeding 0° C., and the quality of the product will not deteriorate in this case either.

(実施例) 以下本発明の実施例を記載するが、これらの実施例は本
発明を限定するものではない。
(Examples) Examples of the present invention will be described below, but these Examples do not limit the present invention.

去施開1 リン酸水素カルシウム(CallPO4)を20%硝酸
水溶液に溶解し、10%のリン酸水素カルシウムを含む
リン酸カルシウム化合物の塗布液を作製した。
Application Example 1 Calcium hydrogen phosphate (CallPO4) was dissolved in a 20% nitric acid aqueous solution to prepare a coating solution of a calcium phosphate compound containing 10% calcium hydrogen phosphate.

縦10cII+×横10c+ax厚さ31箇のJ[S1
級チタン材の表面を#80のスチールグリッドを使用し
てブラスト処理し表面を荒らした後、95℃の15%シ
ュウ酸水溶液中で6時間エツチング処理を行った。
Length 10c II + x Width 10c + ax Thickness 31 pieces J [S1
The surface of the grade titanium material was blasted using a #80 steel grid to roughen the surface, and then etched in a 15% oxalic acid aqueous solution at 95° C. for 6 hours.

このエツチングにより活性化したチタンに上記塗布液を
塗り、80℃で20分間乾燥し、引続いて500℃で3
0分間加熱焼成した。
The above coating solution was applied to the titanium activated by this etching, dried at 80°C for 20 minutes, and then heated at 500°C for 30 minutes.
It was heated and baked for 0 minutes.

塗布から焼成の操作を2回繰り返したところ、厚さが約
2μmのリン酸三カルシウムからなる強固な下地層がチ
タン表面上に形成された。なおX線マイクロアナライザ
ーで分析したところこの下地層にはリン酸三カルシウム
の他に約10%程度と思われるチタンの存在が認められ
た。
When the coating and firing operations were repeated twice, a strong base layer made of tricalcium phosphate with a thickness of approximately 2 μm was formed on the titanium surface. Analysis using an X-ray microanalyzer revealed that in addition to tricalcium phosphate, the underlayer contained approximately 10% titanium.

このリン酸三カルシウム下地層を有するチタン仮に更に
リン酸カルシウム化合物の懸濁液を塗布した。該懸濁液
は、リン酸三カルシウム試薬(特級)粉末を、メノー乳
鉢にて10時間粉砕、5%塩酸水溶液に分散して作製し
た。
A suspension of a calcium phosphate compound was further coated on the titanium oxide having this tricalcium phosphate underlayer. The suspension was prepared by grinding tricalcium phosphate reagent (special grade) powder in an agate mortar for 10 hours and dispersing it in a 5% aqueous hydrochloric acid solution.

懸濁液を塗布したチタン板は、80℃にて1時間乾燥し
、更に700℃で3時間焼結した。この操作を2回繰り
返して厚さ約100μmの強固で一様な主としてリン酸
三カルシウムから成る焼結被覆層を有するチタン板を得
た。この被覆層の結晶相をX線を用いて回折したところ
、該結晶相は結晶性の低い、つまり非晶質に近いリン酸
三カルシウムであった。
The titanium plate coated with the suspension was dried at 80°C for 1 hour and further sintered at 700°C for 3 hours. This operation was repeated twice to obtain a titanium plate having a strong and uniform sintered coating layer consisting mainly of tricalcium phosphate and having a thickness of approximately 100 μm. When the crystalline phase of this coating layer was diffracted using X-rays, it was found that the crystalline phase was tricalcium phosphate with low crystallinity, that is, almost amorphous.

この複合層を形成したチタン基材をステンレススチール
製オートクレーブに純水とともに入れ、第1表に示す各
温度下で一定時間水熱処理を行った。その結果を第1表
に示す。
The titanium base material on which this composite layer was formed was placed in a stainless steel autoclave with pure water, and hydrothermal treatment was performed at each temperature shown in Table 1 for a certain period of time. The results are shown in Table 1.

第1表に示すように、90℃における処理では変化がな
く、100℃以上では結晶成長があり、より高温になる
ごとに、リン酸三カルシウムの水酸アパタイトへの転化
が観察された。
As shown in Table 1, there was no change when treated at 90°C, crystal growth occurred at temperatures above 100°C, and conversion of tricalcium phosphate to hydroxyapatite was observed at higher temperatures.

実施例2 チタン分5 g / Ilを含む塩化第2チタンの塩酸
水溶液にカルシウム分が5 g / lとなるようにす
第1表 ン酸水素カルシウムを溶解して塗布液を作製した。
Example 2 A coating solution was prepared by dissolving dibasic calcium hydrogen phosphate having a calcium content of 5 g/l in an aqueous hydrochloric acid solution of titanium chloride containing a titanium content of 5 g/Il.

実施例1と同じチタン材を同様にブラスト処理した後、
アセトンで脱脂し60℃で20%塩酸水溶液を用いて酸
洗して表面耐着物を除去してチタン基材とした。
After blasting the same titanium material as in Example 1,
It was degreased with acetone and pickled with a 20% aqueous hydrochloric acid solution at 60° C. to remove the surface deposits to obtain a titanium base material.

該チタン基材に前記塗布液を塗布し、80℃で15分間
乾燥し、引き続いて流通空気中500℃で15分間加熱
焼成した。この操作を4回繰り返して約1〜2μmの厚
さを有する酸化チタン−リン酸三カルシウム混合物より
成る強固な下地層被覆を形成した。
The coating solution was applied to the titanium substrate, dried at 80° C. for 15 minutes, and then fired in flowing air at 500° C. for 15 minutes. This operation was repeated four times to form a strong base layer coating of the titanium oxide-tricalcium phosphate mixture having a thickness of about 1 to 2 .mu.m.

これに、リン酸カルシウム化合物の懸濁液を塗布し、8
0℃で1時間乾燥後アルゴン雰囲気中800℃で2時間
加熱焼結した。該懸濁液は、水酸化カルシウムを10%
硝酸水溶液に溶解し、これにCa 2 +イオンをPO
43−イオンとのモル比が3:2となるようにリン酸水
素カルシウムを加え、更に実施例1と同じリン酸三カル
シウム粉末を加えて作製した。
A suspension of calcium phosphate compound was applied to this, and 8
After drying at 0°C for 1 hour, it was heated and sintered at 800°C for 2 hours in an argon atmosphere. The suspension contains 10% calcium hydroxide.
Dissolved in nitric acid aqueous solution and added Ca 2+ ions to it as PO
Calcium hydrogen phosphate was added so that the molar ratio with 43-ion was 3:2, and the same tricalcium phosphate powder as in Example 1 was further added.

その結果、極めて強固な厚さ約50μmのリン酸カルシ
ウム化合物の被覆層を有するチタン板が得られた。
As a result, a titanium plate having an extremely strong coating layer of a calcium phosphate compound having a thickness of approximately 50 μm was obtained.

この被覆チタン板をオートクレーブ中で水蒸気の存在下
180℃で3時間水熱処理したところ被覆層のリン酸カ
ルシウム化合物が大部分水酸アパタイトに転化し、結晶
性の良好な水酸アパタイト被覆を有するチタン板を得る
ことができた。
When this coated titanium plate was hydrothermally treated at 180°C for 3 hours in the presence of water vapor in an autoclave, most of the calcium phosphate compound in the coating layer was converted to hydroxyapatite, resulting in a titanium plate having a hydroxyapatite coating with good crystallinity. I was able to get it.

叉施闇ユ ウレタンフオームに微細なチタン粒子の懸濁液をしみこ
ませ、不活性雰囲気中で焼結を行って気孔率90〜95
%の3次元網状チタンを得た。
The urethane foam is impregnated with a suspension of fine titanium particles and sintered in an inert atmosphere to achieve a porosity of 90-95.
% three-dimensional reticular titanium was obtained.

これを基材として80℃で15%塩酸水溶液中にてエツ
チングを行って表面を活性化し、その表面に実施例1と
同様な条件でリン酸カルシウム化合物の下地層と被覆層
を形成した。ただし塗付液の塗付はブラシ法では不十分
なので、液中への浸漬によった。この結果、表面全体に
むらなく約50μmの厚さのリン酸カルシウム化合物の
下地層及び被覆層から成る複合被覆を有する3次元網状
チタン複合材を得ることができた。
Using this as a base material, etching was performed in a 15% hydrochloric acid aqueous solution at 80° C. to activate the surface, and a base layer and a coating layer of a calcium phosphate compound were formed on the surface under the same conditions as in Example 1. However, since the brush method was insufficient for applying the coating solution, immersion in the solution was used. As a result, it was possible to obtain a three-dimensional reticulated titanium composite material having a composite coating consisting of a base layer and a coating layer of a calcium phosphate compound having a thickness of about 50 μm evenly over the entire surface.

この複合材をステンレススチール製オートクレーブ中に
入れ、150℃で4時間水熱処理した。
This composite material was placed in a stainless steel autoclave and hydrothermally treated at 150° C. for 4 hours.

この処理により非晶質に近いリン酸カルシウム化合物が
結晶性の比較的良好な水酸アパタイトとリン酸三カルシ
ウムとの混合物になった。
Through this treatment, the nearly amorphous calcium phosphate compound became a mixture of hydroxyapatite and tricalcium phosphate with relatively good crystallinity.

(発明の効果) 本発明では、第1に基材としてチタン又はチタン合金を
使用しているため、本発明に関わる複合材を人工骨や人
工歯根とした場合に生体に無害かつ安定で溶出の可能性
もなく、しかも軽量で機械強度が十分に大きく工作も容
易である。
(Effects of the Invention) First, the present invention uses titanium or titanium alloy as the base material, so when the composite material of the present invention is used as an artificial bone or artificial tooth root, it is harmless to living organisms, stable, and does not elute. Moreover, it is lightweight, has sufficient mechanical strength, and is easy to work with.

第2に、チタン又はチタン合金の表面にリン酸カルシウ
ム化合物を被覆しであるため、生体内における親和性が
十分に大きく容易にかつ十分な強度をもって接合するこ
とができる。
Second, since the surface of titanium or titanium alloy is coated with a calcium phosphate compound, it has a sufficiently high affinity in vivo and can be bonded easily and with sufficient strength.

第3に、まず基材表面にリン酸カルシウム化合物等の加
熱焼成による下地層を形成しその上に加熱焼結による被
覆層を形成した複合被覆であるため、基材と下地層及び
下地層と被覆層とのそれぞれの間の親和力が非常に大き
く、しかも表層が強度の大きい加熱焼結による層である
ため全体的な強度が大きい。
Thirdly, it is a composite coating in which a base layer of a calcium phosphate compound or the like is first formed on the surface of the base material by heating and sintering, and then a covering layer is formed on top of that by heating and sintering. The affinity between each of them is very large, and the overall strength is high because the surface layer is a layer formed by heating and sintering with high strength.

第4に、下地層形成の際に、基材にリン酸カルシウム化
合物等の溶液を塗布し該溶液からリン酸カルシウム化合
物等を析出させるようにしであるので、どのような形状
の基材にも表面全体に均一な被覆を形成することができ
、更にリン酸カルシウム化合物の歩留まりが良好である
とともに被覆の状態を容易に制御して良質の被覆を形成
することができる。
Fourthly, when forming the base layer, a solution such as a calcium phosphate compound is applied to the base material and the calcium phosphate compound etc. is precipitated from the solution, so that it can be applied uniformly over the entire surface of any shape of the base material. Furthermore, the yield of the calcium phosphate compound is good, and the condition of the coating can be easily controlled to form a high-quality coating.

第5に、加熱焼結して形成した比較的結晶性が悪いリン
酸カルシウム化合物の被覆層を水熱処理してその結晶性
を良好にしであるため、被覆層自体の強度が増強される
とともに、生体への親和性も向上し、生体インブラント
材としての機能が飛躍的に向上する。
Fifth, since the coating layer of the calcium phosphate compound, which is formed by heating and sintering and has relatively poor crystallinity, is hydrothermally treated to improve its crystallinity, the strength of the coating layer itself is enhanced, and it is This improves the affinity of the material and dramatically improves its function as a bioimplant material.

Claims (3)

【特許請求の範囲】[Claims] (1)チタン又はチタン合金基材の表面を活性化処理し
、該基材上に主としてリン酸カルシウム化合物を溶解さ
せた塩酸又は硝酸水溶液を塗布し加熱焼成して該基材上
にリン酸カルシウム化合物を含む下地層を形成し、次い
でその上にリン酸カルシウム化合物の懸濁液を塗布し加
熱焼結してリン酸カルシウム化合物の被覆層を形成する
ことによりチタン複合材を形成し、更に該複合材を水熱
処理して前記被覆層を改質することを特徴とするチタン
複合材の製造方法。
(1) Activate the surface of a titanium or titanium alloy base material, apply an aqueous solution of hydrochloric acid or nitric acid in which a calcium phosphate compound is mainly dissolved, and heat and bake it to coat the base material with a base material containing a calcium phosphate compound. A titanium composite material is formed by forming a geological layer, then applying a suspension of a calcium phosphate compound thereon and heating and sintering it to form a coating layer of a calcium phosphate compound, and then hydrothermally treating the composite material to form a coating layer of the calcium phosphate compound. A method for producing a titanium composite material, comprising modifying a coating layer.
(2)塩酸又は硝酸水溶液がリン酸カルシウム化合物の
他にチタン及び/又はスズ及び/又はそれらの化合物を
溶解させたものである特許請求の範囲第(1)項に記載
の製造方法。
(2) The manufacturing method according to claim (1), wherein the hydrochloric acid or nitric acid aqueous solution is one in which titanium and/or tin and/or their compounds are dissolved in addition to the calcium phosphate compound.
(3)水熱処理を100〜200℃の水蒸気中で行うよ
うにした特許請求の範囲第(1)項に記載の製造方法。
(3) The manufacturing method according to claim (1), wherein the hydrothermal treatment is performed in steam at 100 to 200°C.
JP7050486A 1986-03-24 1986-03-28 Production of composite titanium material coated with calcium phosphate compound Granted JPS62227094A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP7050486A JPS62227094A (en) 1986-03-28 1986-03-28 Production of composite titanium material coated with calcium phosphate compound
GB8706463A GB2189815B (en) 1986-03-24 1987-03-18 Titanium composite materials coated with calcium phosphate compound and process for production thereof
CA000532486A CA1283028C (en) 1986-03-24 1987-03-19 Titanium composite materials coated with calcium phosphate compound and process for production thereof
SE8701194A SE462564B (en) 1986-03-24 1987-03-23 TITANIC COMPOSITION MATERIAL COATED WITH A CALCIUM PHOSPHATE COMPOUND AND PROCEDURES FOR PREPARING THEREOF
DE3709457A DE3709457C2 (en) 1986-03-24 1987-03-23 Titanium composites coated with a calcium phosphate compound and process for their manufacture
FR8704092A FR2603608B1 (en) 1986-03-24 1987-03-24 TITANIUM COMPOSITE MATERIAL COATED WITH CALCIUM PHOSPHATE AND PROCESS FOR THE PRODUCTION THEREOF
IT47766/87A IT1205766B (en) 1986-03-24 1987-03-24 TITANIUM COMPOSITE MATERIALS COVERED WITH CALCIUM PHOSPHATE COMPOUND AND PROCEDURE TO PRODUCE THEM
US07/029,519 US4882196A (en) 1986-03-24 1987-03-24 Process for the production of a titanium composite materials coated with calcium phosphate compound
CH1128/87A CH671965A5 (en) 1986-03-24 1987-03-24
US07/338,791 US4960646A (en) 1986-03-24 1989-04-17 Titanium composite materials coated with calcium phosphate compound
US07/504,457 US5141576A (en) 1986-03-24 1990-04-04 Titanium composite materials coated with calcium phosphate compound and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7050486A JPS62227094A (en) 1986-03-28 1986-03-28 Production of composite titanium material coated with calcium phosphate compound

Publications (2)

Publication Number Publication Date
JPS62227094A true JPS62227094A (en) 1987-10-06
JPH0420988B2 JPH0420988B2 (en) 1992-04-07

Family

ID=13433425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7050486A Granted JPS62227094A (en) 1986-03-24 1986-03-28 Production of composite titanium material coated with calcium phosphate compound

Country Status (1)

Country Link
JP (1) JPS62227094A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388074B1 (en) * 2000-09-04 2003-06-18 주식회사 오스코텍 Implant coated by calcium phosphate thin film
JP2006131469A (en) * 2004-11-08 2006-05-25 National Institute Of Advanced Industrial & Technology Apatite composite material coated with apatite having crystal orientation
JP2016536067A (en) * 2013-07-18 2016-11-24 エックスパンド・バイオテクノロジー・ベー・フェー Method for producing osteoinductive calcium phosphate and the product thus obtained

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388074B1 (en) * 2000-09-04 2003-06-18 주식회사 오스코텍 Implant coated by calcium phosphate thin film
JP2006131469A (en) * 2004-11-08 2006-05-25 National Institute Of Advanced Industrial & Technology Apatite composite material coated with apatite having crystal orientation
JP4595084B2 (en) * 2004-11-08 2010-12-08 独立行政法人産業技術総合研究所 Apatite composite coated with apatite with crystal orientation
JP2016536067A (en) * 2013-07-18 2016-11-24 エックスパンド・バイオテクノロジー・ベー・フェー Method for producing osteoinductive calcium phosphate and the product thus obtained
US10561683B2 (en) 2013-07-18 2020-02-18 Kuros Biosciences B.V. Method for producing an osteoinductive calcium phosphate and products thus obtained
US11147836B2 (en) 2013-07-18 2021-10-19 Kuros Biosciences B.V. Method for producing an osteoinductive calcium phosphate and products thus obtained

Also Published As

Publication number Publication date
JPH0420988B2 (en) 1992-04-07

Similar Documents

Publication Publication Date Title
US4882196A (en) Process for the production of a titanium composite materials coated with calcium phosphate compound
US4794023A (en) Process for producing a calcium phosphate compound coated composite material
JPH0360502B2 (en)
JPS6399867A (en) Composite material coated with calcium phosphate and its production
JPH08299429A (en) Method for surface treatment of titanium implant and bio-compatible titanium implant
JPS6234566A (en) Production of bone implant
JP4423423B2 (en) Calcium phosphate compound-coated composite and method for producing the same
JP4425198B2 (en) Calcium titanate / amorphous carbon composite, coating material using the same, and method for producing the same
JPH0763503B2 (en) Calcium phosphate coating forming method and bioimplant
JP2004183017A (en) Surface treatment method for metal titanium based base material and metal titanium based medical material
JPS62227094A (en) Production of composite titanium material coated with calcium phosphate compound
KR20170096267A (en) A method for preparation of a metallic implant comprising biocompatable fluoride ceramic coating
JPS62221359A (en) Titanium composite material coated with calcium phosphate and its production
JP2775523B2 (en) Bone substitute material and its manufacturing method
JP3129041B2 (en) Implant and manufacturing method thereof
JPH0214061B2 (en)
JP4282799B2 (en) Process for producing β-tricalcium phosphate coating
JPH026537B2 (en)
JPH0747116A (en) Manufacture of implant
JPH0829150B2 (en) Manufacturing method of intraosseous implant
JPH05146504A (en) Organism implantation member and manufacture thereof
JPS6234559A (en) Production of bone implant
JP4625943B2 (en) Bone substitute material and manufacturing method thereof
JPH0214060B2 (en)
JPH0363062A (en) Preparation of composite material coated with calcium phosphate compound