JPH026537B2 - - Google Patents

Info

Publication number
JPH026537B2
JPH026537B2 JP61064013A JP6401386A JPH026537B2 JP H026537 B2 JPH026537 B2 JP H026537B2 JP 61064013 A JP61064013 A JP 61064013A JP 6401386 A JP6401386 A JP 6401386A JP H026537 B2 JPH026537 B2 JP H026537B2
Authority
JP
Japan
Prior art keywords
titanium
calcium phosphate
phosphate compound
base material
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61064013A
Other languages
Japanese (ja)
Other versions
JPS62221360A (en
Inventor
Takayuki Shimamune
Masashi Hosonuma
Yukie Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP61064013A priority Critical patent/JPS62221360A/en
Priority to GB8706463A priority patent/GB2189815B/en
Priority to CA000532486A priority patent/CA1283028C/en
Priority to SE8701194A priority patent/SE462564B/en
Priority to DE3709457A priority patent/DE3709457C2/en
Priority to FR8704092A priority patent/FR2603608B1/en
Priority to CH1128/87A priority patent/CH671965A5/fr
Priority to IT47766/87A priority patent/IT1205766B/en
Priority to US07/029,519 priority patent/US4882196A/en
Publication of JPS62221360A publication Critical patent/JPS62221360A/en
Priority to US07/338,791 priority patent/US4960646A/en
Publication of JPH026537B2 publication Critical patent/JPH026537B2/ja
Priority to US07/504,457 priority patent/US5141576A/en
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、人工骨、歯、歯根等のインプラント
材並びにそれらの接合材等に有用な、表面を骨や
歯の組織との親和性に特に優れたリン酸カルシウ
ム化合物で被覆したチタン又はチタン合金及びそ
の製造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is useful for implant materials such as artificial bones, teeth, tooth roots, etc., and their bonding materials, and has a surface that is compatible with bone and tooth tissues. The present invention particularly relates to titanium or titanium alloy coated with an excellent calcium phosphate compound and a method for producing the same.

(従来技術とその問題点) 人工骨、人工歯根等の生体インプラント材とし
てその物理的強度並びに工作性の点から金属が使
用されてきた。古くは耐蝕性、生体への影響の点
から貴金属が使用されたが、良好な耐蝕性を示す
合金の開発によつてステンレススチール等の合金
材がとつて換わるようになつてきた。また、コバ
ルトを主とした生体インプラント用の金属材料も
開発され使用されている。
(Prior Art and its Problems) Metals have been used as biological implant materials for artificial bones, artificial tooth roots, and the like because of their physical strength and workability. In the past, precious metals were used because of their corrosion resistance and their impact on living organisms, but with the development of alloys that exhibit good corrosion resistance, alloy materials such as stainless steel have begun to replace them. In addition, metal materials for biological implants mainly made of cobalt have been developed and used.

これらの金属材料の中では貴金属は安定である
が高価であり、比重が大きく重量が大きくなる欠
点を有している。ステンレススチール等の合金は
耐蝕性が良好ではあるが、成分的には生体内で溶
出が起こつた場合毒性が問題となるようなものが
含まれている場合があり、必ずしも万能とはいえ
ない。又比重が8前後あり、重すぎるという欠点
を有している。
Among these metal materials, noble metals are stable but expensive, and have the disadvantage of having a large specific gravity and weight. Although alloys such as stainless steel have good corrosion resistance, they may contain components that pose toxicity problems if they elute in vivo, so they are not necessarily all-purpose. It also has a specific gravity of around 8, which has the disadvantage of being too heavy.

最近では無毒で安定で比重が比較的小さく軽く
て扱いやすい点でチタン(d20=4.50)やチタン
合金が使われるようになつてきた。
Recently, titanium (d 20 = 4.50) and titanium alloys have come into use because they are non-toxic, stable, have a relatively small specific gravity, are light, and are easy to handle.

これらの金属材料はいずれも十分な機械強度を
有し工作性も良好であるが、共通してそのままで
は生体内で骨組織との親和性がないという欠点を
有している。
All of these metal materials have sufficient mechanical strength and good workability, but they have a common drawback that they have no affinity with bone tissue in vivo if used as is.

一方金属よりも安定でしかも軽いセラミツク材
料を使用する研究が行われており、代表的な材料
としてα−アルミナが知られている。この物質は
化学的に安定であるばかりでなく、毒性もなく軽
く機械強度が極めて大きいという特徴を有する
が、金属に比較して加工性が極めて悪いこと又こ
のままでは金属材料と同様に骨組織との親和性が
ないという欠点を有する。又安定化ジルコニアも
その靭性が良好な点から使われ始めているが、α
−アルミナと同様の欠点を有する。
On the other hand, research is being conducted on the use of ceramic materials that are more stable and lighter than metals, and α-alumina is known as a typical material. This material is not only chemically stable, but also non-toxic, lightweight, and has extremely high mechanical strength. The disadvantage is that there is no affinity for Stabilized zirconia is also beginning to be used due to its good toughness, but α
- Has the same drawbacks as alumina.

安定材料として表面を主に多孔質化したガラス
材料も知られているが、機械強度、生体との親和
性、加工性とも不十分であるという欠点を有して
いる。
Glass materials whose surfaces are mainly porous are known as stable materials, but they have the drawbacks of insufficient mechanical strength, compatibility with living organisms, and processability.

最近に至つては従来の材料に共通の欠点であつ
た生体との親和性のないことを解決したアパタイ
トセラミツクスが提案されている。即ち骨や歯の
無機主成分は、リン酸カルシウム化合物(水酸ア
パタイトを主成分とする)であり、この成分を主
とするアパタイトセラミツクスは骨との親和性が
極めて良好であり、生体埋込後の同化は極めて優
れている。
Recently, apatite ceramics have been proposed that solve the common drawback of conventional materials, which is their lack of compatibility with living organisms. In other words, the main inorganic component of bones and teeth is a calcium phosphate compound (mainly composed of hydroxyapatite), and apatite ceramics containing this component have extremely good affinity with bones, and after implantation in a living body. Assimilation is extremely good.

しかし、理想的と思えるアパタイトセラミツク
スについても機械強度が弱い、成型性、加工性が
悪い等の欠点を有しており、その使用できる部分
は限定されている。
However, even apatite ceramics, which seem to be ideal, have drawbacks such as low mechanical strength, poor moldability, and poor workability, and the areas where they can be used are limited.

これらの欠点を解消するため金属やセラミツク
の表面にアパタイトコーテイングを行い複合材と
して生体親和性を有する金属やセラミツク材の開
発が望まれている。このためには金属−セラミツ
ク、セラミツク−セラミツク接合技術が必要であ
るが、現在のところはプラズマ溶射法のみが知ら
れている。
In order to eliminate these drawbacks, it is desired to develop a biocompatible metal or ceramic material as a composite material by coating the surface of the metal or ceramic with apatite. For this purpose, metal-ceramic and ceramic-ceramic bonding techniques are required, but at present only plasma spraying is known.

プラズマ溶射法はこのような接合には有用であ
るが、複雑な形状を有する材料に対して表面全体
に被覆することが困難であること、又その特性上
多孔材の表面全部を被覆することが不可能であ
り、又高価な装置を要すること、高価なアパタイ
ト粒子の歩留まりが悪いこと、コーテイングと基
材の接合が必ずしも十分でない等の欠点を有す
る。
Plasma spraying is useful for such joining, but it is difficult to coat the entire surface of materials with complex shapes, and due to its characteristics, it is difficult to coat the entire surface of porous materials. It is not possible and requires expensive equipment, the yield of expensive apatite particles is poor, and the bonding between the coating and the base material is not necessarily sufficient.

(発明の目的) 本発明の目的は、軽量で工作性が良好でしかも
機械強度が十分にあり、生体内での溶出等がなく
しかも骨組織等生体内での親和性を高めた、人工
骨、人工歯根等のインプラント材に適した材料を
提供することにある。
(Objective of the Invention) The object of the present invention is to create an artificial bone that is lightweight, has good workability, has sufficient mechanical strength, does not elute in the living body, and has increased compatibility in the living body such as bone tissue. The purpose of the present invention is to provide materials suitable for implant materials such as artificial tooth roots.

(問題点を解決するための手段) 本発明は、第1にチタン又はチタン合金基材上
に、リン酸カルシウム化合物とチタン及び/又は
スズ及び/又はそれらの化合物の塩酸又は硝酸水
溶液から加熱焼成により形成されたリン酸カルシ
ウム化合物と酸化チタン及び/又は酸化スズから
成る下地層を設け、その上に加熱焼結により形成
されたリン酸カルシウム化合物の被覆層を有する
チタン複合材であり、第2にチタン又はチタン合
金基材の表面を活性化処理し、リン酸カルシウム
化合物とチタン及び/又はスズ及び/又はそれら
の化合物の塩酸又は硝酸水溶液を塗布し、加熱焼
成して該基材上にリン酸カルシウム化合物と酸化
チタン及び/又は酸化スズから成る下地層を形成
し、次いでその上にリン酸カルシウム化合物の懸
濁液を塗布し加熱焼結してリン酸カルシウム化合
物の被覆層を形成するようにしたチタン複合材の
製造方法であり、その最大の特徴とするところ
は、チタン又はチタン合金基材にリン酸カルシウ
ム化合物を被覆するにあたり、加熱焼成による下
地層と加熱焼結による被覆層を形成し、かつ下地
層に基材と強固な結合を形成し得る酸化チタン及
び/又は酸化スズを含有させた点にある。
(Means for Solving the Problems) The present invention first provides a method for forming titanium or a titanium alloy base material by heating and baking a calcium phosphate compound and a hydrochloric acid or nitric acid aqueous solution of titanium and/or tin and/or those compounds. It is a titanium composite material that has a base layer made of a calcium phosphate compound and titanium oxide and/or tin oxide, and a coating layer of a calcium phosphate compound formed by heating and sintering on the base layer. The surface of the material is activated, a hydrochloric acid or nitric acid aqueous solution of a calcium phosphate compound and titanium and/or tin and/or those compounds is applied, and the calcium phosphate compound and titanium oxide and/or oxide are applied onto the base material by heating and baking. This method of manufacturing titanium composites involves forming a base layer made of tin, then applying a suspension of a calcium phosphate compound thereon, and heating and sintering it to form a coating layer of the calcium phosphate compound. The feature is that when coating a titanium or titanium alloy base material with a calcium phosphate compound, a base layer is formed by heating and sintering, and a coating layer is formed by heating and sintering, and the base layer can form a strong bond with the base material. The point is that it contains titanium oxide and/or tin oxide.

以下本発明をより詳細に説明する。 The present invention will be explained in more detail below.

本発明は、チタン又はチタン合金基材上にリン
酸カルシウム化合物の被覆を形成した人工骨や人
工歯根等のインプラント材に好適なチタン複合材
及びその製造方法である。
The present invention is a titanium composite material suitable for implant materials such as artificial bones and artificial tooth roots, in which a calcium phosphate compound coating is formed on a titanium or titanium alloy base material, and a method for manufacturing the same.

本発明においてリン酸カルシウム化合物とは、
リン酸三カルシウム、リン酸水素カルシウム、リ
ン酸二水素カルシウムのほか水酸アパタイト(ヒ
ドロキシリン酸カルシウム)をはじめとするフツ
素、塩素、水酸基を含むカルシウムのリン酸塩で
あるリン灰石(アパタイト)系化合物を総称する
ものであり、本発明では下地層及び被覆層として
これらの化合物のほか生体に無害な若干の他の化
合物や不純物を含むものを適宜用いることができ
る。本発明ではチタン又はチタン合金の表面にリ
ン酸カルシウム化合物の被覆を設けることによ
り、生体内において十分大きな親和性で骨等との
接合を行うことができる。
In the present invention, the calcium phosphate compound is
Apatite-based calcium phosphates containing fluorine, chlorine, and hydroxyl groups, including tricalcium phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate, and hydroxyapatite (calcium hydroxyphosphate). It is a general term for compounds, and in the present invention, as the base layer and the coating layer, in addition to these compounds, materials containing some other compounds or impurities that are harmless to living organisms can be used as appropriate. In the present invention, by providing a coating of a calcium phosphate compound on the surface of titanium or a titanium alloy, it can be bonded to bones etc. with sufficiently high affinity in vivo.

本発明のチタン又はチタン合金基材におけるチ
タン又はチタン合金とは、金属チタン及び例えば
Ta、Nb、白金族金属、Al、V等を添加したチタ
ン合金から選択されるものであり、前記基材は形
状が板状、棒状等である平滑なものであつても、
スポンジ状の多孔表面を有するものであつてもよ
い。基材としてチタン又はチタン合金を使用する
のは、これらが生体内で無毒かつ安定であつて、
かつ溶出するステンレススチール等の合金と比較
してその比重が約60%と軽量であり、しかも金属
であるため機械強度が十分に大きく工作が容易だ
からである。該基材は予めその表面を水洗、酸
洗、超音波洗浄、蒸気洗浄等により洗浄化処理し
て不純物を除去して後述するリン酸カルシウム化
合物と酸化チタン及び/又は酸化スズとの親和性
を向上させてもよく、更に必要に応じて該表面を
ブラスト及び/又はエツチング処理により粗面化
して後述するリン酸カルシウム化合物と酸化チタ
ン及び/又は酸化スズとの親和性を向上させると
ともに活性化を行うようにすることもできる。な
お、エツチングは化学的な方法ばかりでなく、ス
パタリング等の物理的方法で行つてもよい。
The titanium or titanium alloy in the titanium or titanium alloy base material of the present invention refers to metallic titanium and e.g.
It is selected from titanium alloys to which Ta, Nb, platinum group metals, Al, V, etc. are added, and even if the base material is smooth and plate-shaped, rod-shaped, etc.
It may have a spongy porous surface. Titanium or titanium alloy is used as a base material because it is non-toxic and stable in vivo.
Moreover, compared to alloys such as eluted stainless steel, its specific gravity is approximately 60% lighter, and since it is a metal, it has sufficient mechanical strength and is easy to work with. The surface of the base material is cleaned in advance by water washing, pickling, ultrasonic cleaning, steam cleaning, etc. to remove impurities and improve the affinity of the calcium phosphate compound described below with titanium oxide and/or tin oxide. Furthermore, if necessary, the surface may be roughened by blasting and/or etching treatment to improve the affinity between the calcium phosphate compound described below and titanium oxide and/or tin oxide, and to perform activation. You can also do that. Note that etching may be performed not only by a chemical method but also by a physical method such as sputtering.

次に、前記基材表面に前記リン酸カルシウム化
合物とチタン及び/又はスズ及び/又はそれらの
化合物の塩酸又は硝酸水溶液を塗布し、加熱焼成
により基材のチタン又はチタン合金と強固な結合
を有する、酸化チタン及び/又は酸化スズを含む
リン酸カルシウム化合物から成る下地層を形成す
る。この場合には、リン酸カルシウム化合物とし
てリン酸水素カルシウム化合物やリン酸二水素カ
ルシウム等の溶解度の大きい化合物を使用して均
一な水溶液とすることが望ましい。本発明ではリ
ン酸カルシウム化合物等を溶解させた溶液を基材
上に塗布しその後該化合物等を溶液から析出させ
るので、基材がどのような形状、例えば表面を多
孔質とした材料であつても表面全体に均一な被覆
を形成することができる。
Next, an aqueous solution of the calcium phosphate compound and titanium and/or tin and/or their compounds in hydrochloric acid or nitric acid is applied to the surface of the base material, and heated and fired to form a strong bond with the titanium or titanium alloy of the base material. A base layer made of a calcium phosphate compound containing titanium and/or tin oxide is formed. In this case, it is desirable to use a highly soluble compound such as a calcium hydrogen phosphate compound or calcium dihydrogen phosphate as the calcium phosphate compound to form a uniform aqueous solution. In the present invention, a solution in which a calcium phosphate compound, etc. is dissolved is applied onto the substrate, and then the compound, etc. is precipitated from the solution. Therefore, no matter what shape the substrate is, for example, a material with a porous surface, the surface A uniform coating can be formed over the entire surface.

塩酸又は硝酸に溶解させるチタンあるいはスズ
又はそれらの化合物は、塩酸又は硝酸に溶解し加
熱焼成することにより酸化チタン又は酸化スズを
生ずるものであれば金属単体でも化合物でもよ
く、化合物としては例えば塩化第1チタン、塩化
第2チタン、塩化第1スズ及び塩化第2スズ等の
ハロゲン化合物をはじめとする無機塩、シユウ酸
スズ等の有機塩及びn−ブチルチタネートやアル
コキシスズ等の有機金属化合物等を挙げることが
でき、酸化チタン及び酸化スズ自体も含まれる。
Titanium, tin, or a compound thereof to be dissolved in hydrochloric acid or nitric acid may be an elemental metal or a compound as long as titanium oxide or tin oxide is produced by dissolving it in hydrochloric acid or nitric acid and heating and baking it. Inorganic salts including halogen compounds such as titanium chloride, titanium chloride, stannous chloride, and stannic chloride, organic salts such as tin oxalate, and organometallic compounds such as n-butyl titanate and alkoxytin. titanium oxide and tin oxide themselves.

前記リン酸カルシウム化合物等を溶解させるた
めに塩酸又は硝酸水溶液を使用するのは、リン酸
カルシウム化合物等の溶解が容易なだけでなく、
これによつて基材のチタン又はチタン合金の一部
が加熱焼成時に溶解し、リン酸カルシウム化合物
と化学的結合を形成し、附着性の強固なリン酸カ
ルシウム被覆を形成させることができるからであ
る。
The use of hydrochloric acid or nitric acid aqueous solution to dissolve the calcium phosphate compounds, etc. not only facilitates the dissolution of the calcium phosphate compounds, etc.
This is because part of the titanium or titanium alloy of the base material melts during heating and firing, forms a chemical bond with the calcium phosphate compound, and forms a calcium phosphate coating with strong adhesion.

加熱焼成の温度は200〜800℃であり、200℃よ
り低いと加熱焼成が十分に行われず、又基材との
附着も十分に行われない。800℃より高いとチタ
ン又はチタン合金の基材の表面酸化が優勢にな
り、リン酸カルシウム化合物の基材への附着性が
悪化する。加熱焼成すると塩酸又は硝酸水溶液中
のチタン化合物及び/又はスズ化合物が酸化チタ
ン及び/又は酸化スズとなるとともに、酸化チタ
ン及び/又は酸化スズを含むリン酸カルシウム化
合物の下地層が基材上に形成される。
The temperature for heating and firing is 200 to 800°C, and if it is lower than 200°C, heating and firing will not be performed sufficiently, and adhesion to the base material will not be performed sufficiently. When the temperature is higher than 800°C, surface oxidation of the titanium or titanium alloy base material becomes dominant, and adhesion of the calcium phosphate compound to the base material deteriorates. When heated and fired, the titanium compound and/or tin compound in the hydrochloric acid or nitric acid aqueous solution becomes titanium oxide and/or tin oxide, and a base layer of a calcium phosphate compound containing titanium oxide and/or tin oxide is formed on the base material. .

本発明でリン酸カルシウム化合物の下地層に酸
化チタン及び/又は酸化スズを含ませる理由は、
これらが基材であるチタン又はチタン合金と極め
て強固な結合を形成し、基材と下地層の結合をよ
り強固なものにするからであり、更に酸化チタン
及び酸化スズは化学的に極めて安定であり生体内
で化学変化を受けることがないため毒性のある物
質が溶出したり下地層の被覆が脆弱化したりする
ことがない。
The reason why the base layer of the calcium phosphate compound contains titanium oxide and/or tin oxide in the present invention is as follows.
This is because they form an extremely strong bond with the base material titanium or titanium alloy, making the bond between the base material and the underlying layer even stronger. Furthermore, titanium oxide and tin oxide are chemically extremely stable. Yes, because it does not undergo chemical changes in the living body, there is no chance of toxic substances leaching out or weakening of the underlying layer.

下地層に含ませる酸化チタン及び/又は酸化ス
ズの量は適宜選定できるが、重量で80%以下が好
ましい。
The amount of titanium oxide and/or tin oxide to be included in the underlayer can be selected as appropriate, but is preferably 80% or less by weight.

次にこの表面にリン酸カルシウム化合物の被覆
層を必要な厚さに積層するが、この被覆層のリン
酸カルシウム化合物は下地層のリン酸カルシウム
化合物と同一であつても異なつていてもよい。こ
の被覆層は下地に基材と強く結合したリン酸カル
シウム化合物被覆があるので、通常の焼結法によ
つて容易に行うことができる。
Next, a coating layer of a calcium phosphate compound is laminated on this surface to a required thickness, and the calcium phosphate compound in this coating layer may be the same as or different from the calcium phosphate compound in the base layer. This coating layer can be easily formed by a normal sintering method since the base material has a calcium phosphate compound coating that is strongly bonded to the base material.

即ちリン酸カルシウム化合物の薄層の下地層を
被覆した基材に所望のリン酸カルシウム化合物の
懸濁液を塗布する。懸濁液濃度は、必要とする被
覆層の厚さによつて自由に選択することができ
る。乾燥後に加熱焼結を行うが、その温度は300
℃から900℃がよい。
That is, a suspension of the desired calcium phosphate compound is applied to a substrate coated with a thin underlayer of calcium phosphate compound. The suspension concentration can be freely selected depending on the required thickness of the coating layer. After drying, heating and sintering is performed at a temperature of 300°C.
A temperature between ℃ and 900℃ is good.

300℃以下では加熱焼結が進行せず、900℃以上
ではチタンのα−β転移点を越える恐れがあり基
材へ悪影響を及ぼす可能性があるので望ましくな
い。なお、焼結温度及び時間はリン酸カルシウム
化合物の状態、厚さ等によつて決定される。温度
が高いとリン酸三カルシウムが、比較的低いと水
酸化アパタイトが優勢になる。
If it is below 300°C, heating sintering will not proceed, and if it is above 900°C, it may exceed the alpha-beta transition point of titanium, which may have an adverse effect on the base material, which is not desirable. Note that the sintering temperature and time are determined depending on the condition, thickness, etc. of the calcium phosphate compound. When the temperature is high, tricalcium phosphate becomes dominant, and when the temperature is relatively low, hydroxyapatite becomes dominant.

被覆層形成に懸濁液を使用する理由の1つは、
形成される被覆層表面に凹凸をつけて離脱に対す
る抵抗を大きくし親和性を増大させることであ
る。
One of the reasons for using a suspension to form a coating layer is
The purpose is to provide unevenness to the surface of the coating layer to increase resistance to detachment and increase affinity.

なお、必要に応じて下地層及び被覆層とも上記
操作を繰り返して所望の厚さにすることができ
る。
Note that, if necessary, the above operation can be repeated for both the base layer and the coating layer to obtain a desired thickness.

本発明でチタン又はチタン合金基材上に酸化チ
タン及び/又は酸化スズを含むリン酸カルシウム
化合物の下地層とリン酸カルシウム化合物の被覆
層とを積層する理由は、加熱焼成により比較的機
械強度は小さいが基材のチタン又はチタン合金表
面全体に対して均一で親和力の大きいリン酸カル
シウム化合物を主とする下地層を形成し、該下地
層上にこの下地層と同一又は類似した物性を有す
るリン酸カルシウム化合物を加熱焼結法で被覆し
て下地層と該被覆層との間に強固な結合を付与す
るとともに強度の大きいリン酸カルシウム化合物
を形成させ、基材との親和力が大きくかつ強度も
十分に大きいチタン複合材を提供するためであ
り、基材上に焼結法による単一の被覆層を形成す
るのみであると該被覆層の強度は大きいが基材と
の親和性が小さくかつ剥離しやすくなり、本発明
のようなインプラント材等として有用な複合材を
得ることはできない。
In the present invention, the base layer of a calcium phosphate compound containing titanium oxide and/or tin oxide and the coating layer of a calcium phosphate compound are laminated on a titanium or titanium alloy base material. A heating sintering method in which a base layer mainly composed of a calcium phosphate compound that is uniform and has a high affinity is formed on the entire surface of titanium or titanium alloy, and a calcium phosphate compound having the same or similar physical properties as the base layer is deposited on the base layer. To provide a titanium composite material that has a strong affinity with the base material and has sufficiently high strength by coating it with a base layer to provide a strong bond between the base layer and the coating layer and to form a calcium phosphate compound with high strength. However, if only a single coating layer is formed on the base material by sintering, the strength of the coating layer is high, but the affinity with the base material is low and it becomes easy to peel off. Composite materials useful as implant materials etc. cannot be obtained.

(実施例) 以下本発明の実施例を記載するが、これらの実
施例は本発明を限定するものではない。
(Examples) Examples of the present invention will be described below, but these Examples do not limit the present invention.

実施例 1 縦10cm×横10cm×厚さ3mmのJIS1級チタン材の
表面を#80のステンレスカツトワイヤーを使用し
てブラスト処理し表面を荒らしアセトンで脱脂
し、その後60℃で20%塩酸水溶液で酸洗して表面
附着物を除去してチタン基材とした。
Example 1 The surface of a JIS grade 1 titanium material measuring 10 cm long x 10 cm wide x 3 mm thick was blasted using a #80 stainless steel cut wire, the surface was roughened and degreased with acetone, and then treated with a 20% aqueous hydrochloric acid solution at 60°C. A titanium base material was obtained by acid washing to remove surface deposits.

チタン分5g/を含む塩化第2チタンの塩酸
水溶液にカルシウム分が5g/となるようにリ
ン酸水素カルシウムを溶解して塗布液を作製し
た。この塗布液を前記チタン基材に塗布し、80℃
で15分間乾燥し、引き続いて流通空気中500℃で
15分間加熱焼成した。この操作を4回繰り返して
約1〜2μmの厚さを有する酸化チタン−リン酸三
カルシウム混合物より成る強固な下地層被覆を形
成した。
A coating solution was prepared by dissolving calcium hydrogen phosphate in an aqueous hydrochloric acid solution of titanium chloride containing 5 g/a of titanium so that the calcium content was 5 g/a. This coating solution was applied to the titanium base material and heated to 80°C.
Dry for 15 minutes at 500 °C and subsequently in flowing air.
It was heated and baked for 15 minutes. This operation was repeated four times to form a strong base layer coating of the titanium oxide-tricalcium phosphate mixture having a thickness of about 1 to 2 .mu.m.

このリン酸三カルシウムと酸化チタンの混合被
覆を有するチタン基材に、リン酸三カルシウム試
薬(特級)粉末をメノー乳鉢で10時間粉砕後5%
塩酸水溶液に分散して作製したリン酸カルシウム
化合物懸濁液を塗布した。
On this titanium base material having a mixed coating of tricalcium phosphate and titanium oxide, tricalcium phosphate reagent (special grade) powder was crushed in an agate mortar for 10 hours and then 5%
A suspension of a calcium phosphate compound prepared by dispersing it in an aqueous hydrochloric acid solution was applied.

懸濁液を塗布したチタン基材は80℃にて1時間
乾燥し、更にアルゴンガス中900℃で1時間加熱
した。この操作を2回繰り返して厚さ約50μmの
強固で一様なリン酸カルシウム化合物の被覆層を
有するチタン基材を得た。
The titanium substrate coated with the suspension was dried at 80°C for 1 hour, and further heated at 900°C for 1 hour in argon gas. This operation was repeated twice to obtain a titanium base material having a strong and uniform coating layer of a calcium phosphate compound with a thickness of about 50 μm.

比較のためにチタンを含むリン酸三カルシウム
の下地層を設けずに、直接前処理したチタン板上
に前記リン酸カルシウム化合物懸濁液を塗布し、
同じ条件で加熱処理を2回繰り返したところ、同
様に約50μmのリン酸三カルシウムの被覆を形成
することはできたが、被覆の物理的強度が不十分
でハンマーで軽くたたくだけでひび割れ及び剥げ
落ちが生じた。
For comparison, the calcium phosphate compound suspension was applied directly onto a pretreated titanium plate without providing a base layer of tricalcium phosphate containing titanium;
When the heat treatment was repeated twice under the same conditions, it was possible to form a tricalcium phosphate coating with a thickness of about 50 μm, but the physical strength of the coating was insufficient and it cracked and peeled off just by tapping it with a hammer. A drop occurred.

実施例 2 実施例1と同様にしてチタン基材を準備した。
リン酸水素カルシウムとシユウ酸スズを20%硝酸
水溶液に溶解し、カルシウムとスズをそれぞれ5
g/含む塗布液を作製した。この塗布液を前記
チタン基材上に塗布し150℃で10分間乾燥し、続
いて流通空気中で520℃で15分間焼成した。この
操作を6回繰り返して厚さ約1〜2μmの酸化スズ
−リン酸カルシウム化合物の混合物から成る強固
な下地層を得た。
Example 2 A titanium base material was prepared in the same manner as in Example 1.
Dissolve calcium hydrogen phosphate and tin oxalate in a 20% nitric acid aqueous solution, and add 5% calcium and tin each.
A coating solution containing g/g was prepared. This coating solution was applied onto the titanium base material, dried at 150°C for 10 minutes, and then baked at 520°C for 15 minutes in circulating air. This operation was repeated six times to obtain a strong base layer of a mixture of tin oxide and calcium phosphate compound having a thickness of about 1 to 2 μm.

このリン酸カルシウム化合物と酸化スズの混合
物下地層を有するチタン基材に更にリン酸カルシ
ウム化合物懸濁液を塗布した。該懸濁液は、水酸
化カルシウム(Ca(OH)2)を10%硝酸水溶液に
溶解し、この水溶液にCa2+イオンとPO3-イオン
とのモル比が3:2となるように、リン酸水素カ
ルシウム(CaHPO4)を加え、更にリン酸三カル
シウム微粉末を加えて作製した。
A suspension of the calcium phosphate compound was further applied to the titanium base material having the base layer of the mixture of the calcium phosphate compound and tin oxide. The suspension was prepared by dissolving calcium hydroxide (Ca(OH) 2 ) in a 10% nitric acid aqueous solution, and adding Ca 2+ ions and PO 3- ions to this aqueous solution in a molar ratio of 3:2. It was prepared by adding calcium hydrogen phosphate (CaHPO 4 ) and further adding tricalcium phosphate fine powder.

この懸濁液を塗布したチタン基材を80℃で1時
間乾燥後、空気中で750℃で3時間加熱焼結した。
この操作を2回繰り返して厚さ約100μmの強固で
一様なリン酸カルシウム化合物の被覆層を有する
チタン基材を得た。
The titanium substrate coated with this suspension was dried at 80° C. for 1 hour, and then heated and sintered in air at 750° C. for 3 hours.
This operation was repeated twice to obtain a titanium base material having a strong and uniform coating layer of a calcium phosphate compound with a thickness of about 100 μm.

実施例 3 実施例1と同様にして処理したチタン基材上に
酸化チタン−酸化スズ−リン酸カルシウム化合物
から成る下地層を形成した。
Example 3 A base layer made of a titanium oxide-tin oxide-calcium phosphate compound was formed on a titanium base material treated in the same manner as in Example 1.

塗布液は、塩化第1スズをアミルアルコール中
に溶解し還流してアルコキシスズとした後、少量
の水を加え放置し塩化第2チタンの塩酸水溶液を
加え、更にリン酸水素カルシウムを溶解して作製
した。該塗布液は、チタン2g/、スズ3g/
及びカルシウム5g/を含んでいた。
The coating solution was prepared by dissolving stannous chloride in amyl alcohol and refluxing it to obtain alkoxytin, then adding a small amount of water, leaving it to stand, adding an aqueous hydrochloric acid solution of titanium chloride, and further dissolving calcium hydrogen phosphate. Created. The coating liquid contains 2 g of titanium and 3 g of tin.
and calcium 5g/.

この塗布液を前記チタン基材に塗布し室温で乾
燥後更に180℃で20分間乾燥し、更に480℃で20分
間加熱焼結した。この操作を6回繰り返して、厚
さ1〜2μmの酸化チタン−酸化スズ−リン酸カル
シウム化合物から成る下地層被覆を形成した。
This coating solution was applied to the titanium base material, dried at room temperature, further dried at 180°C for 20 minutes, and further heated and sintered at 480°C for 20 minutes. This operation was repeated six times to form a base layer coating of a titanium oxide-tin oxide-calcium phosphate compound having a thickness of 1 to 2 μm.

この基材上に実施例1と同じ懸濁液を塗布し、
80℃にて1時間乾燥後アルゴンガス中850℃で1
時間加熱焼結した。この操作を2回繰り返して厚
さ約50μmの強固で一様なリン酸カルシウム化合
物の被覆層を有するチタン基材を得た。
Applying the same suspension as in Example 1 onto this substrate,
After drying at 80℃ for 1 hour, drying at 850℃ in argon gas.
Sintered by heating for hours. This operation was repeated twice to obtain a titanium base material having a strong and uniform coating layer of a calcium phosphate compound with a thickness of about 50 μm.

比較のため、懸濁液の焼結をチタンの転移点以
上である950℃で実施したところ、強固な被覆が
得られたがチタン基材の結晶粒が極めて大きくな
つた。これは通常の使用には問題はないと思われ
るが、特別に力が加わる部分に長期間使用された
場合には支障が生ずるものと予想される。
For comparison, when the suspension was sintered at 950°C, above the transition point of titanium, a strong coating was obtained, but the grains of the titanium substrate became extremely large. Although this does not seem to be a problem during normal use, it is expected that problems will occur when used for a long period of time in areas where special force is applied.

実施例 4 実施例1と同様に処理したTi−6%Al−4%
V合金から成るチタン基材上に、酸化チタン−酸
化スズ−リン酸カルシウム化合物から成る下地層
被覆を形成した。
Example 4 Ti-6%Al-4% treated in the same manner as Example 1
A base layer coating made of a titanium oxide-tin oxide-calcium phosphate compound was formed on a titanium base material made of a V alloy.

塗布液は、実施例1と実施例2で使用したもの
を使用した。つまり、まず第1に実施例1の塩化
第2チタン−リン酸水素カルシウムの塩酸水溶液
を同条件で塗布し加熱焼成して被覆を形成した
後、実施例2のシユウ酸スズ−リン酸水素カルシ
ウムの硝酸水溶液を塗布し実施例1と同条件で加
熱焼成した。この操作を各4回づつ計8回繰り返
してチタン−リン酸カルシウム化合物系被覆とス
ズ−リン酸カルシウム化合物系被覆を交互に形成
させた。これにより実質的に酸化チタン−酸化ス
ズ−リン酸カルシウム化合物の混合物である厚さ
2〜3μmの強固な下地層被覆を得た。
The coating liquid used in Example 1 and Example 2 was used. That is, first, a hydrochloric acid aqueous solution of titanium chloride-calcium hydrogen phosphate of Example 1 was applied under the same conditions, heated and baked to form a coating, and then tin oxalate-calcium hydrogen phosphate of Example 2 was applied. A nitric acid aqueous solution was applied and baked under the same conditions as in Example 1. This operation was repeated 8 times, 4 times each, to alternately form a titanium-calcium phosphate compound coating and a tin-calcium phosphate compound coating. This resulted in a strong base layer coating with a thickness of 2 to 3 μm, which was essentially a mixture of titanium oxide, tin oxide, and calcium phosphate compounds.

この上に、水酸アパタイト懸濁液を塗布し、80
℃にて1時間乾燥後空気を断つて800℃で2時間
加熱焼結した。該懸濁液は、水酸化カルシウム
(Ca(OH)2を10%硝酸水溶液に溶解し、これに
Ca2+イオンとPO3-イオンのモル比が5:3とな
るようにリン酸水素カルシウム(CaHPO4)を加
え、更に水酸アパタイトをメノー乳鉢で10時間微
粉砕したものを加えて作製した。
On top of this, apply hydroxyapatite suspension and
After drying at 800°C for 1 hour, the air was cut off and sintering was performed at 800°C for 2 hours. The suspension is prepared by dissolving calcium hydroxide (Ca(OH) 2) in a 10% aqueous nitric acid solution.
Calcium hydrogen phosphate (CaHPO 4 ) was added so that the molar ratio of Ca 2+ ions and PO 3- ions was 5:3, and hydroxyapatite finely ground in an agate mortar for 10 hours was added. .

(発明の効果) 本発明では、第1に基材としてチタン又はチタ
ン合金を使用しているため、本発明に関わる複合
材を人工骨や人工歯根とした場合に生体に無害か
つ安定で溶出の可能性もなく、しかも軽量で機械
強度が十分に大きく工作も容易である。
(Effects of the Invention) First, the present invention uses titanium or titanium alloy as the base material, so when the composite material of the present invention is used as an artificial bone or artificial tooth root, it is harmless to living organisms, stable, and does not elute. Moreover, it is lightweight, has sufficient mechanical strength, and is easy to work with.

第2に、チタン又はチタン合金の表面にリン酸
カルシウム化合物を被覆してあるため、生体内に
おける親和性が十分に大きく容易にかつ十分な強
度をもつて接合することができる。
Second, since the surface of titanium or titanium alloy is coated with a calcium phosphate compound, it has a sufficiently high affinity in vivo and can be bonded easily and with sufficient strength.

第3に、まず基材表面に酸化チタン及び/又は
酸化スズを含むリン酸カルシウム化合物の加熱焼
成による下地層を形成しその上に加熱焼結による
被覆層を形成した複合被覆であるため、特に基材
のチタン又はチタン合金と下地層の酸化チタン及
び/又は酸化スズとの間に極めて強固な結合が形
成され、酸化チタン及び/又は酸化スズを含まな
い場合よりもその強度が増大する。下地層と被覆
層との間の親和力も両者がリン酸カルシウム化合
物を主成分とするため非常に大きく、しかも表層
が強度の大きい加熱焼結による層であるため全体
的に強度が大きい。
Thirdly, since it is a composite coating in which a base layer is first formed on the surface of the base material by heating and firing a calcium phosphate compound containing titanium oxide and/or tin oxide, and then a coating layer is formed by heating and sintering on top of that, the base layer is An extremely strong bond is formed between the titanium or titanium alloy and the titanium oxide and/or tin oxide of the underlayer, and its strength is increased compared to the case where titanium oxide and/or tin oxide is not included. The affinity between the base layer and the covering layer is also very large because both have a calcium phosphate compound as a main component, and since the surface layer is a layer formed by heating and sintering with high strength, the overall strength is high.

第4に、しかも基材にリン酸カルシウム化合物
等の溶液を塗布し該溶液からリン酸カルシウム化
合物等を析出させるようにしてあるので、どのよ
うな形状の基材にも表面全体に均一な被覆を形成
することができ、更にリン酸カルシウム化合物の
歩留まりが良好であるとともに被覆の状態を容易
に制御して良質の被覆を形成することができる。
Fourth, since a solution such as a calcium phosphate compound is applied to the base material and the calcium phosphate compound is precipitated from the solution, a uniform coating can be formed over the entire surface of the base material of any shape. Furthermore, the yield of the calcium phosphate compound is good, and the state of the coating can be easily controlled to form a high-quality coating.

Claims (1)

【特許請求の範囲】 1 チタン又はチタン合金基材上に、リン酸カル
シウム化合物とチタン及び/又はスズ及び/又は
それらの化合物の塩酸又は硝酸水溶液から加熱焼
成により形成されたリン酸カルシウム化合物と酸
化チタン及び/又は酸化スズから成る下地層を設
け、その上に加熱焼結により形成されたリン酸カ
ルシウム化合物の被覆層を有することを特徴とす
るチタン複合材。 2 下地層及び/又は被覆層のリン酸カルシウム
化合物が主に水酸アパタイト及び/又はリン酸三
カルシウムである特許請求の範囲第1項に記載の
チタン複合材。 3 チタン又はチタン合金基材の表面を活性化処
理し、リン酸カルシウム化合物とチタン及び/又
はスズ及び/又はそれらの化合物の塩酸又は硝酸
水溶液を塗布し、加熱焼成して該基材上にリン酸
カルシウム化合物と酸化チタン及び/又は酸化ス
ズから成る下地層を形成し、次いでその上にリン
酸カルシウム化合物の懸濁液を塗布し加熱焼結し
てリン酸カルシウム化合物の被覆層を形成するこ
とを特徴とするチタン複合材の製造方法。 4 下地層及び/又は被覆層として形成されるリ
ン酸カルシウム化合物が、主に水酸アパタイト及
び/又はリン酸三カルシウムである特許請求の範
囲第3項に記載の製造方法。 5 チタン化合物として塩化チタン、スズ化合物
として塩化スズを用いる特許請求の範囲第3項に
記載の製造方法。 6 チタン化合物としてn−ブチルチタネート、
スズ化合物としてアルコキシスズを用いる特許請
求の範囲第3項に記載の製造方法。 7 チタン又はチタン合金基材表面の活性化をブ
ラスト処理及び/又はエツチング処理により行う
特許請求の範囲第3項に記載の製造方法。 8 下地層を形成する加熱焼成を200〜800℃の温
度で行う特許請求の範囲第3項に記載の製造方
法。 9 被覆層を形成する加熱焼結を300〜900℃の温
度で行う特許請求の範囲第3項に記載の製造方
法。
[Claims] 1. A calcium phosphate compound, titanium oxide and/or titanium oxide, and/or a calcium phosphate compound formed on a titanium or titanium alloy base material from a hydrochloric acid or nitric acid aqueous solution of titanium and/or tin and/or those compounds by heating and firing. A titanium composite material comprising a base layer made of tin oxide and a coating layer of a calcium phosphate compound formed by heating and sintering thereon. 2. The titanium composite material according to claim 1, wherein the calcium phosphate compound of the base layer and/or the coating layer is mainly hydroxyapatite and/or tricalcium phosphate. 3 Activate the surface of the titanium or titanium alloy base material, apply a calcium phosphate compound and a hydrochloric acid or nitric acid aqueous solution of titanium and/or tin and/or those compounds, and heat and bake to form a calcium phosphate compound and a calcium phosphate compound on the base material. A titanium composite material characterized in that a base layer made of titanium oxide and/or tin oxide is formed, and then a suspension of a calcium phosphate compound is applied thereon and heated and sintered to form a coating layer of a calcium phosphate compound. Production method. 4. The manufacturing method according to claim 3, wherein the calcium phosphate compound formed as the base layer and/or the coating layer is mainly hydroxyapatite and/or tricalcium phosphate. 5. The manufacturing method according to claim 3, wherein titanium chloride is used as the titanium compound and tin chloride is used as the tin compound. 6 n-butyl titanate as a titanium compound,
The manufacturing method according to claim 3, in which alkoxytin is used as the tin compound. 7. The manufacturing method according to claim 3, wherein the surface of the titanium or titanium alloy base material is activated by blasting and/or etching. 8. The manufacturing method according to claim 3, wherein heating and firing for forming the base layer is performed at a temperature of 200 to 800°C. 9. The manufacturing method according to claim 3, wherein the heating sintering to form the coating layer is performed at a temperature of 300 to 900°C.
JP61064013A 1986-03-24 1986-03-24 Titanium composite material coated with calcium phosphate and its production Granted JPS62221360A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP61064013A JPS62221360A (en) 1986-03-24 1986-03-24 Titanium composite material coated with calcium phosphate and its production
GB8706463A GB2189815B (en) 1986-03-24 1987-03-18 Titanium composite materials coated with calcium phosphate compound and process for production thereof
CA000532486A CA1283028C (en) 1986-03-24 1987-03-19 Titanium composite materials coated with calcium phosphate compound and process for production thereof
SE8701194A SE462564B (en) 1986-03-24 1987-03-23 TITANIC COMPOSITION MATERIAL COATED WITH A CALCIUM PHOSPHATE COMPOUND AND PROCEDURES FOR PREPARING THEREOF
DE3709457A DE3709457C2 (en) 1986-03-24 1987-03-23 Titanium composites coated with a calcium phosphate compound and process for their manufacture
FR8704092A FR2603608B1 (en) 1986-03-24 1987-03-24 TITANIUM COMPOSITE MATERIAL COATED WITH CALCIUM PHOSPHATE AND PROCESS FOR THE PRODUCTION THEREOF
CH1128/87A CH671965A5 (en) 1986-03-24 1987-03-24
IT47766/87A IT1205766B (en) 1986-03-24 1987-03-24 TITANIUM COMPOSITE MATERIALS COVERED WITH CALCIUM PHOSPHATE COMPOUND AND PROCEDURE TO PRODUCE THEM
US07/029,519 US4882196A (en) 1986-03-24 1987-03-24 Process for the production of a titanium composite materials coated with calcium phosphate compound
US07/338,791 US4960646A (en) 1986-03-24 1989-04-17 Titanium composite materials coated with calcium phosphate compound
US07/504,457 US5141576A (en) 1986-03-24 1990-04-04 Titanium composite materials coated with calcium phosphate compound and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61064013A JPS62221360A (en) 1986-03-24 1986-03-24 Titanium composite material coated with calcium phosphate and its production

Publications (2)

Publication Number Publication Date
JPS62221360A JPS62221360A (en) 1987-09-29
JPH026537B2 true JPH026537B2 (en) 1990-02-09

Family

ID=13245864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61064013A Granted JPS62221360A (en) 1986-03-24 1986-03-24 Titanium composite material coated with calcium phosphate and its production

Country Status (1)

Country Link
JP (1) JPS62221360A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155250A (en) * 1983-02-22 1984-09-04 日本特殊陶業株式会社 Artificial joint

Also Published As

Publication number Publication date
JPS62221360A (en) 1987-09-29

Similar Documents

Publication Publication Date Title
US4960646A (en) Titanium composite materials coated with calcium phosphate compound
CN1101705C (en) Bone substitute material and process for producing the same
US4794023A (en) Process for producing a calcium phosphate compound coated composite material
JPH0360502B2 (en)
JPS6399867A (en) Composite material coated with calcium phosphate and its production
JP5087768B2 (en) Biocompatible high-strength ceramic composite material and manufacturing method thereof
JP2001269357A (en) Living body implant material, and method of manufacturing for the same
Jemat et al. Effects of TiO2 on microstructural, mechanical properties and in-vitro bioactivity of plasma sprayed yttria stabilised zirconia coatings for dental application
JP4423423B2 (en) Calcium phosphate compound-coated composite and method for producing the same
JP4425198B2 (en) Calcium titanate / amorphous carbon composite, coating material using the same, and method for producing the same
JPH0763503B2 (en) Calcium phosphate coating forming method and bioimplant
JP3325529B2 (en) Biomaterial coated with biocompatible thin film
JPS5945384B2 (en) Manufacturing method for high-strength biological components
JPH0139787B2 (en)
JPH026537B2 (en)
JP2775523B2 (en) Bone substitute material and its manufacturing method
JPS62227094A (en) Production of composite titanium material coated with calcium phosphate compound
JP4282799B2 (en) Process for producing β-tricalcium phosphate coating
JPH0214061B2 (en)
JP2623315B2 (en) Calcium phosphate coated ceramics and method for producing the same
JP4625943B2 (en) Bone substitute material and manufacturing method thereof
KR960010743B1 (en) Artificial implant and the method thereof
JP2001340445A (en) Biological material covered with biologically affinitive thin layer
JPH101375A (en) Calcium phosphate based porous composite body and its production
JPS6234559A (en) Production of bone implant