JPS62227047A - Transferring method for sintered ore - Google Patents

Transferring method for sintered ore

Info

Publication number
JPS62227047A
JPS62227047A JP7160786A JP7160786A JPS62227047A JP S62227047 A JPS62227047 A JP S62227047A JP 7160786 A JP7160786 A JP 7160786A JP 7160786 A JP7160786 A JP 7160786A JP S62227047 A JPS62227047 A JP S62227047A
Authority
JP
Japan
Prior art keywords
sintered ore
ore
conveyor
belt conveyor
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7160786A
Other languages
Japanese (ja)
Inventor
Tetsuro Kitamura
哲朗 北村
Shinji Fukunaga
信二 福永
Masayoshi Kato
正義 加藤
Masanobu Takemura
竹村 眞宣
Masao Sato
佐藤 征男
Naoki Tochihara
栃原 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7160786A priority Critical patent/JPS62227047A/en
Publication of JPS62227047A publication Critical patent/JPS62227047A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To improve the stacked state of sintered ore so as to obtain superior cooling efficiency, by making the landing direction of sintered ore onto the conveyor of a cooling device face the traveling direction of the conveyor at the time of transferring sintered ore from a sintering machine to the cooling device. CONSTITUTION:The sintered ore 4 fallen from the ore discharge side of a Dwight-Loyd sintering machine 2 is crushed by a primary crusher 8 on a chute 5, which is al;lowed to land on the belt conveyor 7 of the cooling device 6 with changing its falling direction from direction D to direction E by means of a baffleplate 15. As a result, the sintered ore 4 lands in the direction E mutually opposite to the traveling direction B of the belt conveyor 7, so that large- diameter ores 10 are stacked on the lower layer side and small-diameter ores 11 on the upper layer side. In this way, by cooling the sintered ore 4 by means of a cooling gas passing through the belt conveyor 7 from the lower part to the upper part, heat exchange efficiency is improved and cooling efficiency is improved as well.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は焼結鉱の移載方法に関し、詳細には焼結機から
ベルトコンベア式冷却装置のコンベア上へ焼結鉱を移載
してコンベア上へ積付けるに際し、焼結鉱の積付は状況
を改善して冷却効果を向上させる為に実施される焼結鉱
の移載方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for transferring sintered ore, and specifically, a method for transferring sintered ore from a sintering machine to a conveyor of a belt conveyor type cooling device. When loading sintered ore onto a conveyor, the loading of sintered ore is related to a method of transferring sintered ore carried out to improve the situation and improve the cooling effect.

[従来の技術] 粉粒体の転勤特性は該粉粒体の粒径や形状に負うところ
が大きく、例えば粉粒体を、傾斜面に沿って流動落下さ
せる場合、該粉粒体が特に粒径の異なる粒子の混合物で
あるときには、粒径の大小に分かれて夫々集合し全体と
して片寄った積付は状態を呈することが知られている。
[Prior Art] The transfer characteristics of powder and granules largely depend on the particle size and shape of the powder and granules. For example, when the powder and granules are flown down along an inclined surface, the transfer characteristics of the powder and granules are particularly dependent on the particle size and shape. It is known that when the particles are a mixture of different sizes, the particles of different sizes aggregate and are stacked unevenly as a whole.

第2図は従来の焼結鉱製造設備1の要部を示す概略説明
図である。ドワイトロイド型焼結機2(以下単に焼結機
と呼ぶ)で焼成された焼結鉱4は焼結機2のベルトコン
ベア3によって矢印A方向に8送され排鉱側に至ってシ
ュート5に投入される。シュート5に投入された焼結鉱
4は、シュート5の途中に設けられた一次クラッシャ8
(破砕機)で破砕され、その後シュート5に沿って落下
移動しベルトコンベア式冷却装置6(以下単に冷却装置
と呼ぶ)の耐熱構造のコンベア7上に移載される。コン
ベア7上に移載された焼結鉱4は、コンベア走行方向(
矢印B方向)に8送されると共にコンベア7の下方から
上方へ貫通する様に供給される冷却用気体(例えば空気
)によって冷却され、その後図示しないクラッシャ(二
次)、成品スクリーン等を経て高炉装入用焼結鉱となる
。一方、焼結鉱4を冷却した後の冷却用気体は、熱交換
によって高温となり排気フード9を介して矢印Cの様に
排出される。
FIG. 2 is a schematic explanatory diagram showing the main parts of a conventional sintered ore production facility 1. As shown in FIG. The sintered ore 4 fired in the Dwight Lloyd type sintering machine 2 (hereinafter simply referred to as the sintering machine) is conveyed 8 in the direction of arrow A by the belt conveyor 3 of the sintering machine 2, reaches the ore discharge side, and is thrown into the chute 5. be done. The sintered ore 4 introduced into the chute 5 is passed through a primary crusher 8 installed in the middle of the chute 5.
(a crusher), and then falls along a chute 5 and is transferred onto a heat-resistant conveyor 7 of a belt conveyor type cooling device 6 (hereinafter simply referred to as a cooling device). The sintered ore 4 transferred onto the conveyor 7 is transported in the conveyor traveling direction (
It is cooled by cooling gas (for example, air) that is fed through the conveyor 7 from below to above in the direction of arrow B), and then passes through a crusher (secondary) (not shown), a product screen, etc., and then is sent to the blast furnace. It becomes sintered ore for charging. On the other hand, the cooling gas after cooling the sintered ore 4 becomes high in temperature due to heat exchange and is discharged as shown by arrow C through the exhaust hood 9.

第2図に示す様な既成の焼結鉱製造設備1においては、
焼結機2からコンベア7への落下移載方向(矢印りの方
向)と冷却装置6のコンベア走行方向(矢印B方向)と
は同一方向(図ではいずれも右向き)であるのが一般的
であり、この様な構成を採用することが次に述べる様な
問題を発生する原因になっていることが分かった。即ち
焼結機2の排鉱側から落下した焼結鉱はクラッシャ8に
よって大まかな解砕を受はシュートS上を右下方向へ落
下していくが、上記解砕によって生成する粒状焼結鉱に
は大きさにおいてかなりのばらつきがある。しかるに小
さい粉粒体はシュート5からベルトコンベア7上へおだ
やかに落下しベルトコンベア7への落下地点でそのまま
積層されていくが、大きい塊状体はシュート5からベル
トコンベア7上へ勢い良く落下し、更にベルトコンベア
7を転勤して遠方(図の右方向)へ転がっていく傾向を
示す。その結果ベルトコンベア7上では、第3図に示す
様に小径鉱11が下層を占め、大径鉱10が上層を占め
るという偏堆積状態が形成される。
In the existing sinter production equipment 1 as shown in Fig. 2,
Generally, the direction of drop and transfer from the sintering machine 2 to the conveyor 7 (the direction of the arrow) and the direction of conveyor travel of the cooling device 6 (the direction of the arrow B) are the same direction (both are rightward in the figure). It has been found that adopting such a configuration causes the following problems. That is, the sintered ore that falls from the ore discharge side of the sintering machine 2 is roughly crushed by the crusher 8, and then falls on the chute S in the lower right direction, but the granular sintered ore generated by the crushing is There is considerable variation in size. However, small particles fall gently from the chute 5 onto the belt conveyor 7 and are stacked as they are at the point where they fall onto the belt conveyor 7, but large lumps fall forcefully from the chute 5 onto the belt conveyor 7. Furthermore, it shows a tendency to move on the belt conveyor 7 and roll further away (towards the right in the figure). As a result, on the belt conveyor 7, as shown in FIG. 3, an unevenly deposited state is formed in which the small-diameter ore 11 occupies the lower layer and the large-diameter ore 10 occupies the upper layer.

[発明が解決しようとする問題点コ ところで冷却装置6における冷却方式は、前述した様に
、ベルトコンベア7の下方から冷却用気体を供給し、焼
結i12.層内を冷却用気体が上昇通過する間に焼結鉱
を冷却するというのが一般的である。この様な冷却方式
によって、第3図の様な偏堆積状態の焼結鉱を冷却する
と、大径鉱10の比表面積が小さいことや冷却用気体が
小径鉱を通過した後である為高温になっていること等に
起因し、焼結鉱層の上部へいくほど、特に大径鉱10は
ど有効な冷却を受けないことになり高温のままで冷却装
置6から排鉱されてしまう。冷却装置6から排鉱された
焼結鉱4は、その後更に別のベルトコンベア(搬送専用
コンベア)等によって高炉方向へ搬送されることは上述
の通りであるが、該搬送専用コンベアは焼結鉱4が冷却
された状態で移載されることを想定しており、耐熱構造
を採用しておらないのが一般的である。従って該搬送専
用コンベアは高温のままの焼結鉱4によって焼損してし
まい、その補修の為に長時間の操業休止を余儀なくされ
るという事態が生じる。この事態を回避する手段として
上記搬送専用コンベアを耐熱構造にすることも考えられ
るが既成の設備を耐熱構造に改装するのは根本的な解決
策にはなり得ないばかりでなく、かなりの経費が嵩むと
いう問題がある。
[Problems to be Solved by the Invention] As described above, the cooling system in the cooling device 6 is such that cooling gas is supplied from below the belt conveyor 7, and sintering i12. It is common practice to cool the sintered ore while a cooling gas passes upward through the bed. When sintered ore in an unevenly piled state as shown in Fig. 3 is cooled by such a cooling method, it will reach a high temperature because the specific surface area of the large-diameter ore 10 is small and the cooling gas has passed through the small-diameter ore. Due to this, the higher up the sintered ore layer, especially the large-diameter ore 10, is not effectively cooled and is discharged from the cooling device 6 while remaining at a high temperature. As mentioned above, the sintered ore 4 discharged from the cooling device 6 is then further conveyed toward the blast furnace by another belt conveyor (conveyor exclusively for conveyance), etc.; 4 is assumed to be transferred in a cooled state, and generally does not have a heat-resistant structure. Therefore, the dedicated conveyor is burnt out by the sintered ore 4 which remains at a high temperature, and a situation arises in which the operation is forced to be suspended for a long time for repair. As a way to avoid this situation, it is possible to make the above-mentioned transport conveyor a heat-resistant structure, but retrofitting the existing equipment to a heat-resistant structure is not only not a fundamental solution, but also requires a considerable amount of expense. There is a problem with bulk.

そこで冷却装置6側での改善、即ち冷却効率の向上を図
るのが本質的対策であるとの認識が持たれ、例えばレベ
ラーを使用して焼結鉱層厚さの抑制乃至均一化が検討さ
れた。これによって堆積層上部に偏在している犬径鉱1
0を下層側へ移行させ偏堆積状況を一気に解消すること
も期待されたが、実際問題としては殆んど実効が上がっ
ていないことが分かった。
Therefore, it was recognized that the essential measure was to improve the cooling device 6 side, that is, to improve the cooling efficiency, and for example, using a leveler to suppress or equalize the thickness of the sintered ore layer was considered. . As a result, Inukai ore 1 is unevenly distributed in the upper part of the sedimentary layer.
It was hoped that shifting 0 to the lower layer side would eliminate the uneven deposition situation all at once, but it was found that this was hardly effective in practice.

本発明は上記現状に鑑みてなされたものであって、その
目的は、焼結鉱を焼結機から冷却装置に移載する際に、
焼結鉱の積層状態を冷却効率の良い状態とする為に実施
される焼結鉱の移載方法を提供しようとするものである
The present invention has been made in view of the above-mentioned current situation, and its purpose is to:
It is an object of the present invention to provide a method for transferring sintered ore that is carried out in order to bring the stacked state of sintered ore into a state with good cooling efficiency.

[問題点を解決する為の手段] 本発明は、ドワイトロイド型焼結機の排鉱側からベルト
コンベア式冷却装置のコンベア上へ焼結鉱を傾斜方向に
落下移載するに当たり、焼結鉱のコンベア上への着床方
向と上記冷却装置のコンベア走行方向を互いに対向する
方向に形成する点に要旨を有するものである。
[Means for Solving the Problems] The present invention provides a method for transferring sintered ore in an inclined direction from the ore discharge side of a Dwight Lloyd type sintering machine onto the conveyor of a belt conveyor type cooling device. The main feature is that the direction in which the cooling device lands on the conveyor and the direction in which the cooling device runs on the conveyor are opposite to each other.

[作用] 本発明は上述の如く構成されるが、要は焼結鉱のコンベ
ア上への着床方向(落下移載方向)と、冷却装置のコン
ベア走行方向を互いに対向する方向に形成することによ
って大径鉱をむしろ下層側に偏在させ、それによって大
径の焼結鉱を有効に冷却しようとするものである。
[Operation] The present invention is configured as described above, but the important point is that the direction in which the sintered ore lands on the conveyor (falling and transferring direction) and the direction in which the cooling device runs on the conveyor are opposite to each other. This is intended to make large-diameter ore unevenly distributed in the lower layer, thereby effectively cooling large-diameter sintered ore.

本発明者らは、まず偏堆積現象の発生状況を、第5図を
用いて種々検討した。
The present inventors first conducted various studies on the occurrence of the uneven deposition phenomenon using FIG.

まず破砕した後の焼結鉱が大径及び小径の2種類の球形
粒子から成るものであると仮定する。偏堆積現象はこれ
らの焼結鉱がシュート5上及びコンベア7の静止粒子上
を転勤する過程で生じるものであるから、大径粒子と小
径粒子に分けてそれらの転勤状態を検討する必要がある
First, it is assumed that the sintered ore after crushing consists of two types of spherical particles, large diameter and small diameter. Since the uneven deposition phenomenon occurs during the process in which these sintered ores are transferred on the chute 5 and on the stationary particles on the conveyor 7, it is necessary to study the transfer status of large-diameter particles and small-diameter particles separately. .

最初に大径に10の運動方程式を表わすと下記(1) 
、(2)式の如く表わされる。
First, expressing the 10 equations of motion on the large diameter is as follows (1)
, expressed as equation (2).

du/ dt= g (cosψ−μsinφ):(平
板シュート5上) ・・・(1) u=V:(静止粒子層上)・・・(2)但しμは粒子摩
擦係数である。
du/dt=g (cos ψ-μ sin φ): (on the flat chute 5) (1) u=V: (on the stationary particle layer) (2) where μ is the particle friction coefficient.

一方小径鉱11は、大径鉱10の間隙を重力流出の式[
下記(3)式]にのりとり、v、rの相対速度で降下し
、静止粒子層表面に到達した時点で停止する。
On the other hand, the small-diameter ore 11 is filled with the gap between the large-diameter ore 10 using the gravity outflow formula [
(3) below], descends at a relative velocity of v and r, and stops when it reaches the surface of the stationary particle layer.

V、、= a (De −ds) ’  (n =2.
67)但しα :定数 De:大径鉱10の間隙の有効径 ds:小粒子径 上述の運動方程式は、第2図に示した従来技術を実施し
た場合に第3図に示す様な偏堆積現象が生じることを裏
付けるものである。即ち焼結鉱4をシュート5から冷却
装置6のベルトコンベア7上に落下8aiする際に、小
径鉱11はベルトコンベア7の上流側に着床し、大径i
10はそれより遠方、即ち下流側に着床する。その結果
第3図に示す様に小径鉱が下層へ、大径鉱が上層へとい
う偏堆積現象を呈することになる。
V,, = a (De - ds)' (n = 2.
67) However, α: Constant De: Effective diameter of the gap between large-diameter ore 10 ds: Small particle diameter The above equation of motion shows that when the conventional technique shown in FIG. This confirms that the phenomenon occurs. That is, when the sintered ore 4 falls 8ai from the chute 5 onto the belt conveyor 7 of the cooling device 6, the small diameter ore 11 lands on the upstream side of the belt conveyor 7, and the large diameter i
10 lands further away, that is, on the downstream side. As a result, as shown in Figure 3, a phenomenon occurs in which the small-diameter ore is deposited in the lower layer and the large-diameter ore is deposited in the upper layer.

そこで本発明者らは焼結鉱4のベルトコンベア7上への
着床方向と冷却装置6のコンベア走行方向を互いに対向
する方向に形成すれば、後記第4図に示す良好な偏堆積
現象即ち大径鉱10が下層部に、小径鉱が上層部に存在
する様な逆の偏堆積現象が形成されるのではないかとの
着想を得、本発明を完成するに至った。
Therefore, the inventors of the present invention found that if the direction in which the sintered ore 4 lands on the belt conveyor 7 and the direction in which the cooling device 6 runs on the conveyor are opposite to each other, a favorable uneven deposition phenomenon as shown in FIG. 4 described later can be achieved. The present invention was completed based on the idea that an opposite uneven deposition phenomenon might be formed in which large-diameter ore 10 is present in the lower layer and small-diameter ore is present in the upper layer.

[実施例] 第1図は本発明を実施する為に構成される焼結鉱製造設
備1の要部を示す概略説明図であり、第2図に示した従
来技術と対応する部分には同一の参照符号を付す。
[Example] Fig. 1 is a schematic explanatory diagram showing the main parts of a sintered ore manufacturing equipment 1 configured to carry out the present invention, and the parts corresponding to the conventional technology shown in Fig. 2 are the same. Attach the reference sign.

第1図に示した焼結鉱製造設備1は、ドワイトロイド型
焼結機2の排鉱側から落下させた焼結鉱をシュート5、
邪魔板15上を矢印り、E方向に方向変更させつつベル
トコンベア7上へ落下8載するものである。この過程に
おいて焼結鉱4は第2図の場合と同様−次クラッシャ8
で破砕され、シュート5に沿って落下8送される。前記
シュート5の途中には焼結鉱4の移送方向をコンベア7
の走行方向(B方向)と逆の方向に変換する為の邪魔板
15が設けられる。邪魔板15をシュート5の途中に設
けることによって、焼結鉱4は邪魔板15に衝突し、ベ
ルトコンベア7上への着床方向(矢印Eの方向)と上記
冷却装置6のコンベア走行方向(矢印Bの方向)を互い
に対向する方向とすることができる。
The sintered ore manufacturing equipment 1 shown in FIG.
An arrow is drawn on the baffle plate 15, and the object is dropped onto the belt conveyor 7 and placed thereon while changing the direction in the E direction. In this process, the sintered ore 4 is transferred to the next crusher 8 as in the case of Fig. 2.
It is crushed and sent down 8 along the chute 5. In the middle of the chute 5, there is a conveyor 7 which directs the direction of transport of the sintered ore 4.
A baffle plate 15 is provided to change the running direction (B direction) to the opposite direction. By providing the baffle plate 15 in the middle of the chute 5, the sintered ore 4 collides with the baffle plate 15, and the sintered ore 4 lands in the direction of landing on the belt conveyor 7 (in the direction of arrow E) and in the conveyor running direction of the cooling device 6 ( The directions of arrow B) may be opposite directions.

そして上述した運動方程式を考慮すると、大径鉱10は
落下速度が速く小径鉱11よりも遠くへ飛ばされるので
、第1図に示した構成を採用することに、1:って、+
怪哲10はコンベア走行方向の上流側で、小径鉱11は
コンベア走行方向の下流側で着床することになる。その
結果、ベルトコンベア7上では第4図に示す様に大径鉱
10が下層側に、小径鉱11が上層側に存在する積付は
状態となる。この様な焼結鉱4の積付は状態を達成する
ことによって、ベルトコンベア7の下方から供給される
低温の冷却用気体はまず大径焼結鉱10を有効に冷却し
、昇温されてから小径焼結鉱11に接触してこれを冷却
する。即ち冷却用気体の熱交換効率が向上するので、ダ
クト9からの排ガス温度も向上し排熱回収して利用する
場合においても有益である。
Considering the above-mentioned equation of motion, the large diameter ore 10 falls faster and is blown farther than the small diameter ore 11, so in adopting the configuration shown in Fig. 1, 1: +
The ore 10 will land on the upstream side in the conveyor running direction, and the small diameter ore 11 will land on the downstream side in the conveyor running direction. As a result, as shown in FIG. 4, on the belt conveyor 7, the large diameter ore 10 is on the lower layer side and the small diameter ore 11 is on the upper layer side. By achieving such a state of loading the sintered ore 4, the low-temperature cooling gas supplied from below the belt conveyor 7 first effectively cools the large-diameter sintered ore 10, and then the temperature is raised. The small-diameter sintered ore 11 is brought into contact therewith and cooled. That is, since the heat exchange efficiency of the cooling gas is improved, the temperature of the exhaust gas from the duct 9 is also improved, which is advantageous when exhaust heat is recovered and used.

尚焼結鉱4のベルトコンベア7上への着床方向と冷却装
置6のベルトコンベア7の走行方向を互いに対向する方
向に形成する為の手段については格別の制限を受けるこ
とがなく、例えばシュート5と一体的に形成されるフー
ド状のもの或は小径鉱11のみが通過するスクリーン状
のものを邪魔板15の代りに設置して、犬径鉱10を着
床方向のみを変換する構成を採用してもよい。
There are no particular restrictions on the means for forming the landing direction of the sintered ore 4 on the belt conveyor 7 and the running direction of the belt conveyor 7 of the cooling device 6 to be opposite to each other, such as a chute. 5 or a screen-like material through which only the small-diameter ore 11 passes can be installed in place of the baffle plate 15 to change only the landing direction of the dog-diameter ore 10. May be adopted.

次に本発明者らは下記(1)〜(3)の目的を掲げて実
験を行なった。
Next, the present inventors conducted experiments aiming at the following objectives (1) to (3).

(1)邪魔板15の傾斜角度θ(第1図参照)を変化さ
せて、その最適値及び許容範囲を調査する。
(1) The inclination angle θ (see FIG. 1) of the baffle plate 15 is varied and its optimum value and allowable range are investigated.

(2)ベルトコンベア7の送り速度を一定とし、ベルト
コンベア3からの排鉱速度を変化させ、偏堆積度合を調
査する。
(2) The feeding speed of the belt conveyor 7 is kept constant, the ore discharge speed from the belt conveyor 3 is varied, and the degree of uneven accumulation is investigated.

(3)シュート5及び邪魔板15の型式を実機と同じセ
ルフライニング方式のものとして所期の偏堆積逆転効果
が得られるか否かを確認する。
(3) Using the same self-lining type as the chute 5 and baffle plate 15 as in the actual machine, it is confirmed whether the desired uneven deposition reversal effect can be obtained.

(1) 、(2)の各実験を行なう為の条件を下記第1
表に示す。即ち送り速度を1.0 m/minと一定に
して傾斜角度θを36” 、40’ 、45°、50°
と変化した場合と、傾斜角度θを36°と一定にして焼
結機2からの排鉱速度を1.0.1.5.2.0 、3
.0  (m/min )と変化した場合である。
The conditions for conducting each experiment (1) and (2) are as follows.
Shown in the table. That is, the feed rate was kept constant at 1.0 m/min, and the inclination angle θ was 36'', 40', 45°, and 50°.
and when the inclination angle θ is kept constant at 36°, the ore discharge rate from the sintering machine 2 is 1.0.1.5.2.0, 3.
.. 0 (m/min).

第   1   表 尚繰り返し回数は、排鉱速度3.0m/minの場合は
2回であり、他の各場合は夫々3回ずつである。夫々の
結果を第6図及び第7図に示す。第6図は傾斜角度θが
偏析に及ぼす影響を示すグラフであり、第7図は排鉱量
が偏析に及ぼす影響を示すグラフである。
Table 1 The number of repetitions is 2 times when the ore discharge speed is 3.0 m/min, and 3 times in each of the other cases. The respective results are shown in FIGS. 6 and 7. FIG. 6 is a graph showing the effect of the inclination angle θ on segregation, and FIG. 7 is a graph showing the effect of the amount of discharged ore on segregation.

第6図及び第7図から下記の様に考察することができる
。即ち(1)傾斜角度θの変動は偏堆積に大きな影響を
与えるとは言えず、(2)排鉱量の増加は偏堆積度を低
下させるものであった。換言すれば、第4図に示した様
な良好な偏堆積状態を達成するには排鉱量を減少させる
のが有力であるが、実操業においては排鉱量を減少させ
ることは減産につながり好ましくない。但し傾斜角度θ
は安息角ψ(前記第5図参照)を考慮すると、36°程
度が好ましい。
The following considerations can be made from FIGS. 6 and 7. That is, (1) it could not be said that variations in the inclination angle θ had a large effect on the uneven deposition, and (2) an increase in the amount of discharged ore reduced the degree of uneven deposition. In other words, it is effective to reduce the amount of ore discharged in order to achieve a good uneven deposition condition as shown in Figure 4, but in actual operation, reducing the amount of ore discharged will lead to a reduction in production. Undesirable. However, the inclination angle θ
is preferably about 36° in consideration of the angle of repose ψ (see FIG. 5 above).

次に本発明者らは下記第2表に示す様な各粒径の焼結鉱
を所定割合に混合後、焼結機2のベルトコンベア3上に
積付け(層厚100mm)サイクロ減速機付モータにて
ベルトコンベア3,7を夫々駆動し、冷却装置6側のベ
ルトコンベア7に移載された焼結鉱4の上層及び下層を
サンプリングし、粒度分布の測定及びかさ密度の測定を
行なつ第   2   表 第8図から明らかな様に粒径の大きな焼結鉱が下層側に
存在し、粒径の小さな焼結鉱が上層側に存在し、前記第
5図に示した良好な偏堆積状態が達成されたことが理解
される。このことによって冷却装置6における焼結鉱4
の冷却効率を一段と向上することができ、従来の問題点
が一挙に解決された。ちなみに粒径30mmφの大径鉱
を本発明方法によって上層側に積付けた状態で冷却した
場合には、従来方法の場合と比べて40℃も低い温度ま
でン令却できることが認められた。
Next, the present inventors mixed sintered ore of each particle size as shown in Table 2 below at a predetermined ratio, and stacked it on the belt conveyor 3 of the sintering machine 2 (layer thickness 100 mm), which was equipped with a cyclo reducer. The belt conveyors 3 and 7 are driven by a motor, and the upper and lower layers of the sintered ore 4 transferred to the belt conveyor 7 on the side of the cooling device 6 are sampled, and the particle size distribution and bulk density are measured. As is clear from Table 2, Figure 8, sintered ore with larger grain sizes exists in the lower layer, and sintered ore with smaller grain sizes exists in the upper layer, resulting in the good uneven deposition shown in Figure 5 above. It is understood that the condition has been achieved. As a result, the sintered ore 4 in the cooling device 6
The cooling efficiency of the system was further improved, and the problems of the conventional system were solved all at once. Incidentally, when large-diameter ore with a grain size of 30 mmφ was cooled by the method of the present invention while stacked on the upper layer side, it was found that the temperature could be reduced by 40° C. compared to the conventional method.

第9図はシュート5及び邪魔板15をセルフライニング
構造とした例を示す。即ちシュート5については階段状
鋼板16aの角部に、又邪魔板15については傾斜鋼板
16bの下端部に、夫々耐摩耗材17を固設し、操業開
始時にシュート上部から送給される焼結鉱を破線に示す
位置まで保留し、該保留された焼結鉱自体を落下斜面と
して利用し、後から送給される焼結鉱を当該保留焼結鉱
上で転勤させ、ベルトコンベア7上へ落下せしめるもの
である。この様なシュート方式であれば鋼板の摩耗が抑
制され、高寿命のシュート5及び邪魔板15とすること
ができる。
FIG. 9 shows an example in which the chute 5 and the baffle plate 15 have a self-lining structure. That is, a wear-resistant material 17 is fixed to the corner of the stepped steel plate 16a for the chute 5, and to the lower end of the inclined steel plate 16b for the baffle plate 15, and the sintered ore is fed from the upper part of the chute at the start of operation. The sintered ore is held up to the position indicated by the broken line, and the held sintered ore itself is used as a falling slope, and the sintered ore to be fed later is transferred on the held sintered ore and falls onto the belt conveyor 7. It is something that forces you to do something. With such a chute system, wear of the steel plate is suppressed, and the chute 5 and baffle plate 15 can have a long life.

また第10図(a) 、 (b)はシュート5の横断面
形状を示すもので、シュート底面中央部5a、5bを中
高に構成し、シュート5上での焼結鉱の偏流を防止でき
る様に構成したものであり、邪魔板15についても同じ
様に構成することができる。
Moreover, FIGS. 10(a) and 10(b) show the cross-sectional shape of the chute 5, and the central parts 5a and 5b of the bottom of the chute are configured to have a medium height so that drifting of the sintered ore on the chute 5 can be prevented. The baffle plate 15 can be constructed in the same manner.

[発明の効果] 以上述べた如く本発明によれば、上述の構成を採用する
ことによって焼結鉱の積層状態を冷却効率の良い状態と
し、このことにより従来の問題点を一挙に解決し得たも
のである。
[Effects of the Invention] As described above, according to the present invention, by employing the above-described configuration, the stacked state of the sintered ore is made into a state with good cooling efficiency, thereby solving the conventional problems at once. It is something that

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する為に構成される焼結鉱製
造設備1の要部を示す概略説明図、第2図は従来技術を
示す概略説明図、第3図は焼結鉱の従来の偏堆積状態を
示す断面図、第4図は本発明方法に従って形成される良
好な偏堆積状態を示す断面図、第5図は偏堆積現象を想
定した図、第6図は傾斜角度θが偏堆積に及ぼす影習を
示すグラフ、第7図は排鉱量が偏堆積に及ぼす影響を示
すグラフ、第8図は焼結鉱の平均粒子径とかさ密度との
関係を示すグラフ、第9図及び第10図(a) 、 (
b)は本発明に使用する他のシュートの例を示す断面説
明図である。 2・・・焼結機     3.7・・・ベルトコンベア
4・・・焼結鉱     5・・・シュート6・・・冷
却装置
Fig. 1 is a schematic explanatory diagram showing the main parts of a sintered ore manufacturing equipment 1 configured to carry out the method of the present invention, Fig. 2 is a schematic explanatory diagram showing the prior art, and Fig. 3 is a schematic explanatory diagram showing the main parts of sintered ore manufacturing equipment 1 configured to carry out the method of the present invention. FIG. 4 is a cross-sectional view showing a conventional uneven deposition state, FIG. 4 is a cross-sectional view showing a good uneven deposition state formed according to the method of the present invention, FIG. 5 is a diagram assuming an uneven deposition phenomenon, and FIG. 6 is an inclination angle θ Figure 7 is a graph showing the influence of discharged ore on uneven deposition. Figure 8 is a graph showing the relationship between the average particle diameter and bulk density of sintered ore. Figures 9 and 10 (a), (
b) is an explanatory cross-sectional view showing another example of a chute used in the present invention. 2...Sintering machine 3.7...Belt conveyor 4...Sintered ore 5...Chute 6...Cooling device

Claims (1)

【特許請求の範囲】[Claims] ドワイトロイド型焼結機の排鉱側からベルトコンベア式
冷却装置のコンベア上へ焼結鉱を傾斜方向に落下移載す
るに当たり、焼結鉱のコンベア上への着床方向と上記冷
却装置のコンベア走行方向を互いに対向する方向に形成
することを特徴とする焼結鉱の移載方法。
When sintered ore is transferred from the ore discharge side of the Dwight Lloyd type sintering machine to the conveyor of the belt conveyor type cooling device in an inclined direction, the landing direction of the sintered ore on the conveyor and the conveyor of the cooling device are determined. A method for transferring sintered ore characterized by forming the traveling directions to be opposite to each other.
JP7160786A 1986-03-28 1986-03-28 Transferring method for sintered ore Pending JPS62227047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7160786A JPS62227047A (en) 1986-03-28 1986-03-28 Transferring method for sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7160786A JPS62227047A (en) 1986-03-28 1986-03-28 Transferring method for sintered ore

Publications (1)

Publication Number Publication Date
JPS62227047A true JPS62227047A (en) 1987-10-06

Family

ID=13465505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7160786A Pending JPS62227047A (en) 1986-03-28 1986-03-28 Transferring method for sintered ore

Country Status (1)

Country Link
JP (1) JPS62227047A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8273287B2 (en) 2003-07-16 2012-09-25 Siemens Vai Metals Technologies Gmbh System for the production of ore with green agglomerates containing a proportion of fines
CN108518986A (en) * 2018-04-18 2018-09-11 湖南理工学院 A kind of isothermal discharging sintering machine and discharge method with mobile device of climbing
JP2020164310A (en) * 2019-03-29 2020-10-08 日本製鉄株式会社 Conveyance device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131204A (en) * 1977-04-18 1978-11-15 Kawasaki Steel Co Cooling of sintered ore

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131204A (en) * 1977-04-18 1978-11-15 Kawasaki Steel Co Cooling of sintered ore

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8273287B2 (en) 2003-07-16 2012-09-25 Siemens Vai Metals Technologies Gmbh System for the production of ore with green agglomerates containing a proportion of fines
CN108518986A (en) * 2018-04-18 2018-09-11 湖南理工学院 A kind of isothermal discharging sintering machine and discharge method with mobile device of climbing
JP2020164310A (en) * 2019-03-29 2020-10-08 日本製鉄株式会社 Conveyance device

Similar Documents

Publication Publication Date Title
WO2012029862A1 (en) System for feeding reduced iron material
JPH04354809A (en) Device for classifying grain size in charging raw material for blast furnace
US3356213A (en) Apparatus for separating mixtures of solid particles
JP4972758B2 (en) Raw material charging equipment for sintering machine
US2367063A (en) Sinter treating means
US2480727A (en) Method for cooling
JPS62227047A (en) Transferring method for sintered ore
US2480726A (en) Rotary cooling bin
JP2714276B2 (en) Raw material supply device for sintering machine
JP7252446B2 (en) Conveyor
US3088723A (en) Air draft for pelletizing furnace
KR101373111B1 (en) Charging apparatus for raw material
JP2004346414A (en) Charging device for blast furnace
JP2000514498A (en) Gasification means and process and apparatus for filling sponge iron into a melt gasifier
JPS63206435A (en) Method and apparatus for charging sintering raw material
JP5217650B2 (en) Raw material charging method to blast furnace
JPH082644A (en) Carrier roller for belt conveyor transporting powder/ grain in bulk
JP5842738B2 (en) Blast furnace operation method
JPH01242708A (en) Fluidized-bed reducing equipment for iron ore
KR101977356B1 (en) Charging apparatus for raw material
JP2001227872A (en) Device for feeding material into sintering machine and its method for using
JPS6028672Y2 (en) Blast furnace top charging device
JPH045917B2 (en)
JPH05272872A (en) Control device for feed amount of sintering material
JPS62130225A (en) Method and apparatus for charging raw material to vertical type sintering machine