JPS62227033A - Manufacture of high silicon steel strip in continuous line - Google Patents

Manufacture of high silicon steel strip in continuous line

Info

Publication number
JPS62227033A
JPS62227033A JP7148986A JP7148986A JPS62227033A JP S62227033 A JPS62227033 A JP S62227033A JP 7148986 A JP7148986 A JP 7148986A JP 7148986 A JP7148986 A JP 7148986A JP S62227033 A JPS62227033 A JP S62227033A
Authority
JP
Japan
Prior art keywords
steel strip
treatment
concentration
steel sheet
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7148986A
Other languages
Japanese (ja)
Other versions
JPH0643608B2 (en
Inventor
Masahiro Abe
阿部 正広
Kazuhisa Okada
和久 岡田
Yasushi Tanaka
靖 田中
Masayuki Yamato
正幸 大和
Yoshiichi Takada
高田 芳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP61071489A priority Critical patent/JPH0643608B2/en
Publication of JPS62227033A publication Critical patent/JPS62227033A/en
Publication of JPH0643608B2 publication Critical patent/JPH0643608B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Chemical Vapour Deposition (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To continuously manufacture high silicon steel sheet as superior electrical sheet, by permeating Si to steel sheet surface layer by chemical gas phase vapor depositing method in nonoxidizing atmospheric gas contg. SiCl4, successively applying Si diffusion treatment to obtain the structure in which Si content is gradually decreased to center part from surface layer. CONSTITUTION:Relatively low Si steel sheet contg. about 3% Si is manufactured by hot and cold rollings, then the sheet is heated to 1,023-1,200 deg.C in atmosphere of nonoxidizing gas such as Ar, H2, N2 contg. 5-35% SiCl4 in mol fraction to form Fe3Si layer contg. 14.5% Si by chemical gas phase vapor depositing method on silicon steel sheet. This is heated in nonoxidizing atmospheric gas to diffuse Si in surface layer while gradually decreasing it in center direction resulting in 6.5% Si at surface layer part and about 3% Si remaining as it is in material silicon steel sheet at center part, silicon steel sheet having ununiform compsn. in Si concn. in thickness direction is obtd. and insulating film of magnesium phosphate is formed on surface. Electrical sheet superior in high frequency electrical characteristic is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、連続ラインにおける化学気相蒸着(以下、C
VDと称す)法による高珪素鋼帯の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is directed to chemical vapor deposition (hereinafter referred to as CO) in a continuous line.
The present invention relates to a method for manufacturing high-silicon steel strips by a method (referred to as VD).

〔従来の技術〕[Conventional technology]

電磁鋼板として高珪素鋼板が用いられている。この種の
鋼板はSiの含有量が増すほど妖損が低減され、Si:
6.5%では、磁歪が0となり、最大透磁率もピークと
なる等量も優れた磁気特性を呈することが知られている
High-silicon steel sheets are used as electrical steel sheets. In this type of steel plate, the higher the Si content, the lower the loss, and Si:
It is known that at 6.5%, the magnetostriction becomes 0 and the maximum magnetic permeability reaches its peak, exhibiting excellent magnetic properties.

従来、高珪素鋼板を製造する方法として、圧延法、直接
鋳造法及び滲珪法があるが、このうち圧延法は81含有
量4%程度までは製造可能であるが、それ以上のSi含
有量では加工性が著しく悪くなるため冷間加工は困難で
ある。また直接鋳造法、所謂ストリップキャスティング
は圧延法のような加工性の問題は生じないが、未だ開発
途上の技術であり、形状不良を起し易く、特に高珪素鋼
板の製造は困難である。
Conventionally, methods for producing high-silicon steel sheets include the rolling method, direct casting method, and silicon extrusion method. Of these, the rolling method can produce up to 81% Si content of about 4%, but Cold working is difficult because the workability deteriorates significantly. Further, although the direct casting method, so-called strip casting, does not have the problem of workability as the rolling method, it is still a technology under development and is prone to shape defects, making it particularly difficult to manufacture high-silicon steel sheets.

これに対し、滲珪法は低珪素鋼を溶製して圧延により薄
板とした後、表面からSlを浸透させることにより高珪
素鋼板を製造するもので、これによれば加工性や形状不
良の問題を生じることなく高珪素鋼板を得ることができ
る。
On the other hand, the silica method produces high-silicon steel sheets by melting low-silicon steel, rolling it into a thin plate, and then infiltrating Sl into the surface. A high-silicon steel plate can be obtained without causing any problems.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この滲珪法は、五弓、同郡により提案され、三谷、大西
らにより詳しく検討されたものであるが従来提案された
方法はいずれも浸透処理時間が30分以上と長く、また
CVD処理処理後行われる拡散熱処理も、蒸着したSi
を母材内部に均一に拡散させる必要から比較的長時間を
要し、事実上連続ラインには適用できないという根本的
な問題がある。またCVD処理温度も1230℃程度と
極めて高いことから浸透処理後の薄鋼板の形状が極めて
悪く、加えて処理温度が高過ぎるためエツジ部が過加熱
によって溶解するおそれがあり、連続ラインでの安定通
板が期待できない。
This infiltration method was proposed by Gokyu and Dokun, and was studied in detail by Mitani and Onishi, but all of the previously proposed methods required a long infiltration treatment time of 30 minutes or more, and also required CVD treatment. The subsequent diffusion heat treatment also
The fundamental problem is that it takes a relatively long time to uniformly diffuse the liquid into the base material, and it is virtually impossible to apply it to a continuous line. Furthermore, since the CVD treatment temperature is extremely high at around 1230℃, the shape of the thin steel sheet after penetration treatment is extremely poor.In addition, because the treatment temperature is too high, the edges may melt due to overheating, making it difficult to maintain stability in continuous lines. I can't expect it to pass.

加えて、Si含有量が4.0−以上の高珪素鋼板は脆性
であり、処理後鋼板をコイルに捲取る場合軸破断し易い
という問題もある。
In addition, high-silicon steel sheets with a Si content of 4.0- or more are brittle, and there is a problem in that they are susceptible to shaft breakage when the steel sheets are wound into coils after treatment.

本発明はこのような従来技術の欠点を改善するためにな
されたもので、滲珪法を用い、連続ラインにおいて短時
間でしかも高品質の高珪素鋼帯を安定して製造すること
ができる方法の提供を目的とする。
The present invention has been made in order to improve the drawbacks of the prior art, and provides a method that can stably produce high-quality high-silicon steel strips in a short period of time on a continuous line using the silicon extrusion method. The purpose is to provide.

〔問題を解決するための手段〕[Means to solve the problem]

このため本発明は、鋼帯を、SiCl4をmol分率で
5〜35チ含んだ無酸化性ガス雰囲気中で、化学気相蒸
着法により1023〜1200℃の温度で連続的に―珪
処理し1次いでS i C1゜を含まない無酸化性ガス
雰囲気中でSiを鋼帯内部に拡散させる拡散処理するに
自り、該拡散処理を、表層Si濃度が鋼帯厚み方向中心
部のSia度よりも高い状態にあるうちに打ち切り、S
i濃度が厚み方向で不均一な鋼帯を得るようにしたこと
をその基本的特徴とする。
Therefore, in the present invention, a steel strip is subjected to continuous silicon treatment at a temperature of 1023 to 1200°C by chemical vapor deposition in a non-oxidizing gas atmosphere containing 5 to 35 molar fraction of SiCl4. 1. Next, a diffusion treatment is performed to diffuse Si into the steel strip in a non-oxidizing gas atmosphere that does not contain SiC1°. Canceled while still high, S
Its basic feature is to obtain a steel strip in which the i concentration is non-uniform in the thickness direction.

また本発明は、上記拡散処理−冷却後、絶縁皮膜コーテ
ィング及び焼付処理を施すようにしたことを他の基本的
特徴とする。
Another basic feature of the present invention is that after the above-mentioned diffusion treatment and cooling, an insulating film coating and a baking treatment are performed.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において、母材たる鋼帯(出発薄鋼帯)の成分組
成は、特に限定はないが優れた磁気特性を得るため以下
のように定めるのが好ましい。
In the present invention, the composition of the steel strip (starting thin steel strip) serving as the base material is not particularly limited, but is preferably determined as follows in order to obtain excellent magnetic properties.

■3〜6.5%5t−F6合金の場合 C:0.01%以下、5ilo 〜4.0%、Mn :
 2チ以下、その他年可避不純物は極力低い方が望まし
い。
■3 to 6.5% 5t-F6 alloy C: 0.01% or less, 5ilo to 4.0%, Mn:
It is desirable that the content of other avoidable impurities be as low as possible.

■センダスト合金の場合 C:0.01チ以下、Si:4%以下、At:3〜8チ
、Ni:4%以下、Mn : 2 %以下、Cr 、 
Ti  などの耐食性を増す元素5%以下、その他の不
可避不純物は極力低い方が望ましい。
■For Sendust alloy C: 0.01 or less, Si: 4% or less, At: 3 to 8, Ni: 4% or less, Mn: 2% or less, Cr,
It is desirable that the content of elements that increase corrosion resistance, such as Ti, be 5% or less, and that the content of other unavoidable impurities be as low as possible.

鋼帯は熱間圧延−冷間圧延により得られるものに限らず
、直接鋳造・急冷凝固法により得られたものでもよい。
The steel strip is not limited to one obtained by hot rolling-cold rolling, but may be one obtained by direct casting or rapid solidification.

なお、鋼帯はCVD処理により板厚が減少するものであ
り、このため最終製品板厚に対し減少板厚分を付加した
板厚のものを用いる必要がある。
Note that the thickness of the steel strip is reduced by CVD treatment, and therefore it is necessary to use a steel strip with a thickness equal to the thickness of the final product plus the reduced thickness.

本発明は、このような鋼帯にCVD法による滲珪処理−
拡散処理を施すことにより高珪素鋼帯を得るものである
The present invention provides such a steel strip with a silicon-etched treatment by the CVD method.
A high-silicon steel strip is obtained by performing a diffusion treatment.

第1図は本発明法を実施するための連続処環ラインを示
すもので、(1)は加熱炉、(2)はCVD処理炉、(
3)は拡散処理炉、(4)は冷却炉である。
Figure 1 shows a continuous ring treatment line for carrying out the method of the present invention, in which (1) is a heating furnace, (2) is a CVD treatment furnace, (
3) is a diffusion treatment furnace, and (4) is a cooling furnace.

鋼帯(S)は加熱炉(1)でCVD処理温度またはその
近傍まで無酸化加熱された後、CVD処理炉(2)に導
かれ、S i C1,を含む無酸化性ガス雰囲気中でC
VD法による8珪処理が施される。SiClt、を含む
無酸化性ガスとは、中性或いは還元性ガスを意味し、S
iC2,のキャリアガスとしてはAr 、Nl 、He
 、Hz 、 Ct(4等を使用することができる。こ
れらキャリアガスのうち、排ガスの処理性を考慮した場
合、HSCH,等はHCtを発生させその処理の必要性
が生じる難点があり、このような問題を生じないAr 
、 He 、 N、が望ましく、さらに材料の窒化を防
止するという観点からすればこれらのうちでも特にAy
 、 )leが最も好ましい。
The steel strip (S) is heated in a heating furnace (1) in a non-oxidizing manner to a CVD treatment temperature or close to it, and then led to a CVD treatment furnace (2) where it is heated with C in a non-oxidizing gas atmosphere containing S i C1.
8-silicon processing is performed using the VD method. Non-oxidizing gas containing SiClt means a neutral or reducing gas, and S
The carrier gas for iC2 is Ar, Nl, He.
, Hz, Ct (4, etc.) can be used. Among these carrier gases, when considering the treatment properties of exhaust gas, HSCH, etc. have the disadvantage of generating HCt, which requires treatment. Ar that does not cause any problems
, He, and N are preferable, and from the viewpoint of preventing nitridation of the material, Ay is especially preferable.
, )le are most preferred.

CVD処理におけるW4帯表面の主反応は、5 Fe 
+SiCl4→FeaS i +2 FeC1*↑であ
る。Si 1原子が鋼帯面に蒸着してFeaSi層を形
成し、Fe 2原子FeC1,となりs FeC4の沸
点1023℃以上の温度において気体状態で鋼帯表面か
ら放散される。したがってSi原子量が28.086、
Fe原子量が55.847であることから、鋼帯は質量
減少し、これに伴い板厚も減少することになる。ちなみ
に、S13%鋼帯を母材とし、CVD処理でSi6.5
%鋼帯を製造すると、質量は8.7俤減少し、板厚は約
7.1%減少する・ 従来法においてCVD処理に時間がかかり過ぎるのは、
そのCVD処理条件に十分な検討が加えられていなかっ
たことによるものと考えられる0本発明者等が検討した
ところでは、CV D処理を迅速に行うための要素には
次のようなものがあることが判った。
The main reaction on the W4 band surface during CVD treatment is 5Fe
+SiCl4→FeaS i +2 FeC1*↑. One Si atom is deposited on the steel strip surface to form a FeaSi layer, and two Fe atoms become FeC1, which is diffused from the steel strip surface in a gaseous state at a temperature higher than the boiling point of s FeC4, 1023°C. Therefore, the Si atomic weight is 28.086,
Since the Fe atomic weight is 55.847, the mass of the steel strip decreases, and the plate thickness also decreases accordingly. By the way, the base material is S13% steel strip, and Si6.5 is made by CVD treatment.
% steel strip, the mass decreases by 8.7 yen and the plate thickness decreases by approximately 7.1%. The CVD process takes too long in the conventional method.
This is thought to be due to insufficient consideration being given to the CVD processing conditions.According to the inventors' investigation, the following factors are necessary for speedy CVD processing. It turned out that.

■雰囲気ガス中のSiClt4濃度の適正化。■Optimization of SiClt4 concentration in atmospheric gas.

■処理温度の適正化。■Optimization of processing temperature.

■S i Ct、の鋼帯表面への拡散及びFeCl2の
鋼帯表面からの放散の促進。
■ Promotion of diffusion of S i Ct to the steel strip surface and diffusion of FeCl2 from the steel strip surface.

このため本発明ではCVD処理における雰囲気ガス中の
Si濃度及び処理温度を規定するものである。
Therefore, in the present invention, the Si concentration in the atmospheric gas and the processing temperature in the CVD processing are specified.

まず、CVD処理における無酸化性ガス雰囲気中の5i
cl、濃度mol分率で5〜35チに規定し、このよう
な雰囲気中で鋼帯を連続的にCVD処理する。
First, 5i in a non-oxidizing gas atmosphere during CVD treatment.
The steel strip is continuously subjected to CVD treatment in such an atmosphere, with the concentration and mol fraction defined as 5 to 35 Cl.

雰囲気中の5icz、が5チ未満であると期待するSi
富化効果が得られず、また、例えば鋼帯のSiを1.0
チ富化するために5分以上も必要となる等、処理に時間
がかかり過ぎ、連続プロセス化することが困難となる。
Si expects that 5icz in the atmosphere is less than 5chi
No enrichment effect can be obtained, and for example, if the Si of the steel strip is 1.0
The treatment takes too much time, such as requiring more than 5 minutes for enrichment, making it difficult to implement a continuous process.

一方、SiClt、を35%を超えて含有させても界面
における反応が律速になり、それ以上のSi富化効果が
期待できなくなる。
On the other hand, even if SiClt is contained in an amount exceeding 35%, the reaction at the interface becomes rate-limiting, and no further Si enrichment effect can be expected.

またCVD処理では、5ick 8度が高いほど所謂カ
ーケンダールボイドと称する大きなボイドが生成し易い
。このボイドはSiCl413度が15%程度まではほ
とんど見られないが、15%を超えると生成しはじめる
。しかし、SiClt4濃度が35%以下では、ボイド
が生成してもCVD処理に引き続き行われる拡散処理に
よりほぼ完全に消失させることができる。
Further, in the CVD process, the higher the 5ick 8 degrees, the more likely a large void called a Kirkendahl void is generated. These voids are hardly seen when the SiCl413 degree is about 15%, but when it exceeds 15%, they begin to form. However, when the SiClt4 concentration is 35% or less, even if voids are generated, they can be almost completely eliminated by a diffusion process performed subsequent to the CVD process.

ボイドが消滅するために要する時間は、拡散処理温度に
強く依存し、拡散開始後に表層s11度の低下に応じて
処理温度を上げることにより、短時間でボイドを消滅さ
せることができる。しかしながら、SiCl479度が
35%を超えると、発生するボイドの径が太き(なり、
また隣接するボイドが合体してさらに大きなものとなり
、長時間拡散均熱処理を施してもボイドが残存してしま
う。これに対し、5tcz。
The time required for voids to disappear strongly depends on the diffusion treatment temperature, and by increasing the treatment temperature in accordance with the decrease in surface layer s11 degrees after the start of diffusion, voids can be eliminated in a short time. However, when SiCl479 degrees exceeds 35%, the diameter of the voids that occur becomes thick (becomes
In addition, adjacent voids coalesce and become even larger, and the voids remain even after long-time diffusion soaking treatment. On the other hand, 5tcz.

濃度が35−以下であればあまり大きなボイドにはなら
ないため拡散処理で消滅可能である・ CVD処理温度は1023〜1200℃の範囲とする・
CVD処理反応は鋼帯表面における反応であるから、こ
の処理温度は厳密には鋼帯表面温度である。
If the concentration is 35- or less, the voids will not be too large and can be eliminated by diffusion treatment.The CVD treatment temperature should be in the range of 1023 to 1200℃.
Since the CVD treatment reaction is a reaction on the steel strip surface, the treatment temperature is strictly the steel strip surface temperature.

CVD処理による反応生成物であるFeC1゜の沸点は
1023℃であり、この温度以下ではFeC4が鋼帯表
面から気体状態で放散されず、鋼帯表面に液体状に付着
して蒸着反応を阻害してしまう。本発明者らが行った基
礎実験の結果では、このFect!の沸点を境に、単位
時間当りのSiの富化割合が著しく異なり、 1023
℃以下では蒸着速度が小さいため連続プロセスへの適用
は困難である。このため処理温度の下限は1023℃と
する。
The boiling point of FeC1°, which is a reaction product from the CVD process, is 1023°C, and below this temperature, FeC4 does not dissipate from the steel strip surface in a gaseous state, but adheres to the steel strip surface in a liquid state and inhibits the vapor deposition reaction. I end up. According to the results of basic experiments conducted by the inventors, this Fect! The enrichment rate of Si per unit time differs markedly across the boiling point of 1023
At temperatures below ℃, the deposition rate is low, making it difficult to apply to continuous processes. Therefore, the lower limit of the processing temperature is set to 1023°C.

一方、上限を1200℃と規定する理由は次の通りであ
る。Fe5Siの融点は、第3図に示すF、 −Si状
態図から明らかなように1250℃であるが、発明者等
の実験によれば、1250℃より低い1230℃程度で
処理した場合でも、鋼帯表面が部分的に溶解し、また、
鋼帯エツジ部分が過加熱のため溶解する。このように1
250℃以下でも鋼帯が溶解するのは、鋼帯表面ではF
e3Si相当のSi濃度14.5%以上にSiが蒸着さ
れているためであると推定される。
On the other hand, the reason why the upper limit is specified as 1200°C is as follows. The melting point of Fe5Si is 1250°C, as is clear from the F, -Si phase diagram shown in Figure 3. However, according to experiments by the inventors, even when treated at about 1230°C, which is lower than 1250°C, the melting point of Fe5Si is 1250°C. The surface of the band is partially dissolved, and
The edge of the steel strip melts due to overheating. Like this 1
The reason why the steel strip melts even below 250℃ is because F on the surface of the steel strip is
It is presumed that this is because Si is deposited at a Si concentration of 14.5% or more equivalent to e3Si.

これに対し処理温度が1200℃以下であれば鋼帯表面
は溶解は全く認められず、また、エツジの過加熱も、鋼
帯中心部の平均温度を1200℃とすることで、122
0℃程度におさえることが可能であり、微量な溶解で済
むことが実験的に確認できた。以上の理由から、CVD
処理温度は1023℃〜12oo℃と規定する。
On the other hand, if the treatment temperature is 1200°C or less, no melting will be observed on the surface of the steel strip, and overheating of the edges will be reduced by setting the average temperature at the center of the steel strip to 1200°C.
It was experimentally confirmed that the temperature could be kept at about 0°C and only a small amount of dissolution was required. For the above reasons, CVD
The processing temperature is specified as 1023°C to 120°C.

以上のようにしてCVD処理された鋼帯(S)は、引き
続き拡散炉(3)に導かれS i C1,を含まない無
酸化性ガス雰囲気中で拡散処理される。
The steel strip (S) subjected to the CVD treatment as described above is subsequently led to a diffusion furnace (3) and subjected to a diffusion treatment in a non-oxidizing gas atmosphere containing no Si C1.

すなわち、CVD処理直後では、鋼帯表面近くは中心部
に較べ、Si濃度が極めて高く、鋼帯を均熱することに
よって表面に過濃状態にあるSiを鋼帯内部正こ拡散さ
せる処理をする。
In other words, immediately after the CVD treatment, the Si concentration near the surface of the steel strip is extremely high compared to the center, and by soaking the steel strip, the Si that is excessively concentrated on the surface is diffused into the steel strip. .

しかし、本発明では、この拡散熱処理によりSiを鋼帯
門番こ均一に拡散させるようなことはせず、表層Si濃
度が鋼帯厚み方向中心部の81濃度よりも高い状態にあ
るうち化拡散処理を打ち切り、Si濃度が厚み方向で不
均一な鋼帯とするものである。
However, in the present invention, Si is not uniformly diffused into the steel strip by this diffusion heat treatment, and the surface layer Si concentration is higher than the 81 concentration at the center of the steel strip in the thickness direction. The steel strip has a non-uniform Si concentration in the thickness direction.

本発明者等が拡散処理時間を短縮化するという観点から
CVD処理鋼材のSig度分布と磁気特性との関係等に
ついて検討を加えた結果、高珪素鋼材の磁気特性は鋼材
表層部の結晶粒径とSi濃度に大きく支配され、表層部
を所定の粒度とSi濃度に調整することにより。
The present inventors investigated the relationship between the Sig degree distribution and magnetic properties of CVD-treated steel materials from the perspective of shortening the diffusion treatment time, and found that the magnetic properties of high-silicon steel materials depend on the grain size of the surface layer of the steel material. and Si concentration, and by adjusting the surface layer part to a predetermined particle size and Si concentration.

Si濃度を板厚方向で均一としなくとも十分な磁気特性
が得られることを見い出した。そして、このような傾向
は特に高周波磁気特性において顕著であることも判った
It has been found that sufficient magnetic properties can be obtained even if the Si concentration is not uniform in the thickness direction. It has also been found that this tendency is particularly remarkable in high frequency magnetic properties.

このため本発明では、CVD処理に続く拡散処理を、表
層Si濃度が鋼帯厚み方向中心部のSi濃度よりも高い
状態にあるうちに打ち切り、Si濃度が厚み方向で不均
一な鋼帯を得るようにしたものである。
Therefore, in the present invention, the diffusion treatment following the CVD treatment is discontinued while the surface layer Si concentration is higher than the Si concentration at the center in the thickness direction of the steel strip, thereby obtaining a steel strip in which the Si concentration is non-uniform in the thickness direction. This is how it was done.

このような方法によれば短時間の拡散熱処理により磁気
特性が十分確保された鋼帯を得ることができる。加えて
、このようにして得られた鋼帯は、厚みの中心部が低S
i濃度に維持されているため靭性が確保され、破断をへ
適切に防ぐことができる。
According to such a method, a steel strip with sufficiently secured magnetic properties can be obtained through short-time diffusion heat treatment. In addition, the steel strip obtained in this way has a low S in the center of the thickness.
Since the concentration is maintained at 1, the toughness is ensured and breakage can be appropriately prevented.

第4図は本発明法における鋼帯板厚方向のSi濃度分布
の変化を示すものであり、3%Si添加鋼の鋼帯を母材
とし、これをCVD処理−拡散処理した場合を示してい
る。(A)はCVD処理直後の状態を示しており、鋼帯
表面にはFe5Si相i (Si: 14.5%)のS
iが蒸着している。本発明ではこのような鋼帯を(B)
状態まで拡散熱処理し、板厚方向でSi濃度が不均一な
鋼帯を得る。(B)に示す例では表層のSi濃度が6.
5%になるまで拡散熱処理が施されたものであり、板厚
中心部はほぼ母材Si濃度たる3%に維持されている。
Figure 4 shows the change in the Si concentration distribution in the thickness direction of the steel strip according to the method of the present invention, and shows the case where a steel strip containing 3% Si is used as the base material and this is subjected to CVD treatment and diffusion treatment. There is. (A) shows the state immediately after CVD treatment, and S of Fe5Si phase i (Si: 14.5%) is on the surface of the steel strip.
i is deposited. In the present invention, such a steel strip (B)
A steel strip having a non-uniform Si concentration in the thickness direction is obtained. In the example shown in (B), the Si concentration in the surface layer is 6.
Diffusion heat treatment was performed until the Si concentration reached 5%, and the central part of the plate thickness was maintained at approximately 3%, which is the Si concentration of the base material.

このようにして得られるw4帝は、拡散熱処理温度と処
理時間を選択して表層部を追出な粒径とSi濃度に調整
することにより優れた磁気特性、特に高周波磁気特性を
確保することができる。
The W4 obtained in this way can ensure excellent magnetic properties, especially high-frequency magnetic properties, by selecting the diffusion heat treatment temperature and treatment time and adjusting the surface layer to a suitable particle size and Si concentration. can.

この拡散処理は、鋼帯表面を酸化させない為に、無酸化
雰囲気中で行う必要があり、また高温で行うほど処理時
間が少な(て済む。
This diffusion treatment must be performed in a non-oxidizing atmosphere to prevent the surface of the steel strip from being oxidized, and the higher the temperature, the shorter the treatment time.

拡散処理は、一定温度で行ってもよいが、第3図のFe
−8t状態図から判るように、拡散の進行とともに鋼帯
表膚部のSi (1%度が減少しその融点が上がること
から、拡散の進行に伴い鋼帯を溶解させない程度に徐々
に昇温させる(例えば複数段階で昇温させる)ことによ
り、処理を短時間で行うことができる。
The diffusion treatment may be performed at a constant temperature, but the Fe
As can be seen from the −8t phase diagram, as the diffusion progresses, the Si (1% degree) on the surface of the steel strip decreases and its melting point increases, so as the diffusion progresses, the temperature is gradually increased to the extent that the steel strip does not melt. By increasing the temperature (for example, increasing the temperature in multiple steps), the treatment can be carried out in a short time.

このような拡散処理後、鋼帯(S)は冷却炉(4)で冷
却され、しかる後捲取られる。鋼?f (S)は通常、
常温ないし300℃までの温間状態で捲取られる。一般
に、Si含有量が多く(例えば4.0%以上)、板厚が
比較的厚い鋼帯は温間で捲取るのが好ましい。
After such a diffusion treatment, the steel strip (S) is cooled in a cooling furnace (4) and then rolled up. steel? f (S) is usually
It is rolled up at room temperature to 300°C. In general, it is preferable to wind a steel strip with a high Si content (for example, 4.0% or more) and a relatively thick plate at a warm temperature.

CVD処理速度を鋼帯の連続処理を可能ならしめるまで
高めるには、上述したように雰囲気ガス中のSiCl4
濃度と処理温度の適正化を図ることが必要であるが、こ
れに加え鋼帯表面への5tcz、拡散とFeC4の鋼帯
表面からの放散とを促進、することによりCVD処理速
度をより高めることが可能となる。
In order to increase the CVD processing speed to the point where continuous processing of steel strips is possible, SiCl4 in the atmospheric gas is
It is necessary to optimize the concentration and processing temperature, but in addition to this, it is possible to further increase the CVD processing speed by promoting the diffusion of 5tcz to the steel strip surface and the dissipation of FeC4 from the steel strip surface. becomes possible.

従来では、CVD処理で反応ガスを大きく流動させると
、蒸着層にボイドが発生し、また蒸着層の純度も低下す
るとされ、このためガス流動は必要最小限にとどめると
いう考え方が定着していた。しかし本発明者等の研究で
は、このようにガス流動が抑えられることにより、反応
ガスの母材界面への拡散移動。
Conventionally, it has been believed that large flow of reactive gas in CVD treatment causes voids to occur in the deposited layer and also reduces the purity of the deposited layer, so the idea has been that the flow of gas should be kept to the minimum necessary. However, in the research conducted by the present inventors, by suppressing the gas flow in this way, the reaction gas diffuses and moves to the base material interface.

及び反応副生成物の界面表層からの離脱がスムース1こ
行われず、このため処理に長時間を要すること、さらに
はガス流動が抑えられるためCVD処理炉内の反応ガス
濃度に分布を生じ、この結果蒸着膜厚の不均一化を招く
ことが判った。
The separation of reaction by-products and reaction by-products from the interface surface layer does not occur smoothly, which results in long processing times.Furthermore, gas flow is suppressed, causing a distribution in the reaction gas concentration within the CVD processing furnace. As a result, it was found that this resulted in non-uniformity in the thickness of the deposited film.

そして、このような事実に基づきさらに検討を加えた結
果、CVD処理炉において吹込ノズルにより雰囲気ガス
を被処理材に吹付け、或いはファン等により雰囲気を強
制循環させることによりSiCl4の鋼帯表面への拡散
及び反応生成物たるFeC4の鋼帯表面からの放散、を
著しく促進し、高い蒸着速度でしかも蒸着膜の不均一化
を抑えつつCVD処理できることが判った。
Based on these facts, we conducted further studies and found that SiCl4 can be applied to the surface of the steel strip by blowing atmospheric gas onto the treated material using a blowing nozzle in the CVD processing furnace, or by forcing the atmosphere to circulate using a fan, etc. It has been found that diffusion and dissipation of FeC4, a reaction product, from the surface of the steel strip are significantly promoted, and CVD processing can be performed at a high deposition rate while suppressing non-uniformity of the deposited film.

このようなCVD処理性の向上は、吹付ノズルにより雰
囲気ガスを鋼帯表面に吹付ける方法が特に有効である。
A method in which atmospheric gas is sprayed onto the surface of the steel strip using a spray nozzle is particularly effective for improving CVD processability.

第5図はこのノズル吹付方式による実施状況を示すもの
で、 CVD処理炉(2)内に鋼帯(S)に面して吹付
ノズル(5)が配置され、鋼帯表面にSiCl4を當む
雰囲気ガスが吹付けられる。第6図(イ)及び仲)は、
吹付ノズル(5)による吹付状況を示すもので、ビ)に
示すように鋼帯面に対して直角に、或いは(C4に示す
ように斜め方向から吹付けることができる。
Figure 5 shows the implementation status of this nozzle spraying method, in which a spray nozzle (5) is placed in the CVD treatment furnace (2) facing the steel strip (S), and sprays SiCl4 onto the surface of the steel strip. Atmospheric gas is sprayed. Figure 6 (a) and naka) are
This shows the spraying situation by the spray nozzle (5), which can spray at right angles to the steel strip surface as shown in B) or obliquely as shown in (C4).

このようなノズル吹付lこよる単位時間車りのSi  
富化割合は、ガスの鋼帯表面に対する衝突流速の増大に
比例して大きくなるが、流速を過剰に大きくしても界面
における反応律速となるためそれ以上のSi富化効果は
期待できない。一般的番こは、5 Nm/sec以下の
流速で十分な効果が得られる。
Such a nozzle sprays a unit time of Si
The enrichment ratio increases in proportion to the increase in the flow velocity of gas colliding with the steel strip surface, but even if the flow velocity is increased excessively, the reaction rate at the interface becomes rate-determining, so no further Si enrichment effect can be expected. In general, a sufficient effect can be obtained with a flow rate of 5 Nm/sec or less.

また本発明では、上記拡散処理−冷却後、鋼帯に連続的
に絶縁皮膜コーティングを施し焼付処理後捲取るように
することができる。
Further, in the present invention, after the above-mentioned diffusion treatment and cooling, the steel strip can be continuously coated with an insulating film and then rolled up after the baking treatment.

第2図はこのための連続処理ラインを示すもので、(6
)はコーティング装置、(7)は焼付炉である。
Figure 2 shows the continuous processing line for this purpose.
) is a coating device, and (7) is a baking furnace.

電磁鋼板は通常積層状態で使用され、この場合積層され
る各鋼板はそれぞれ絶縁される必要がある。このため電
磁鋼板には絶縁皮膜コーティングが施される。
Electrical steel sheets are usually used in a laminated state, and in this case, each of the laminated steel sheets needs to be insulated. For this reason, electrical steel sheets are coated with an insulating film.

Si含有量が4.0分以上の鋼帯は、常温状態ではぜい
性材料であり、はとんど塑性変形しない。このため絶縁
皮膜コーティングをCVD処理ラインど別ラインで行っ
た場合、コイルの捲戻し、捲取り時に鋼帯が破断するお
それがある。そこで、本発明は拡散処理−冷却後、鋼帯
(S)にコーティング装置(6)で絶縁塗料を塗布し、
次いで塗装焼付炉(7)で焼付処理する・絶縁塗料とし
ては、無機系、有機系の適宜なものを用いることができ
る。無機系塗料としては、例えばリン酸マグネシウム、
無水クロム改、シリカゾル等が、また有機系塗料として
はプラスチック樹脂等が用いられる。塗料ハロールコー
タ方式、スプレ一方式等により鋼帯(S)に塗布され、
無機系塗料の場合には約800℃程度、有機系血相の場
合には200〜300℃程度で焼付処理する・なお前記
加熱炉(17では無酸化加熱が行われるものであり、こ
のため電気間接加熱、誘導加熱、ラジアントチューブ間
接加熱、直火還元加熱等の加熱方式を単独または運車に
組み合せた加熱方法が採られる。なお1間接加熱刃式を
採る場合、加熱に先立ち電気洗浄等の前処理が行われる
。前処理を含めた加熱方式として例えば次のようなもの
を採用できる。
A steel strip with a Si content of 4.0 min or more is a brittle material at room temperature and hardly undergoes plastic deformation. For this reason, if the insulating film coating is performed on a separate line such as a CVD processing line, there is a risk that the steel strip will break during unwinding or unwinding of the coil. Therefore, in the present invention, after the diffusion treatment and cooling, the steel strip (S) is coated with an insulating paint using a coating device (6).
The coating is then baked in a paint baking oven (7). As the insulating paint, an appropriate inorganic or organic type can be used. Examples of inorganic paints include magnesium phosphate,
Anhydrous chromium modified, silica sol, etc. are used, and as the organic paint, plastic resin etc. are used. The paint is applied to the steel strip (S) using a halo coater method, one-way spray method, etc.
In the case of inorganic paints, the baking process is carried out at approximately 800℃, and in the case of organic paints, it is baked at approximately 200 to 300℃. Heating methods such as heating, induction heating, radiant tube indirect heating, direct flame reduction heating, etc., are used alone or in combination with the vehicle.In addition, if one indirect heating blade method is used, before heating, electric cleaning etc. Treatment is performed. For example, the following heating method including pretreatment can be adopted.

■前処理−〔予熱〕−電気間接加熱(または誘導加熱) ■前処理−〔予熱〕−ラジアントチューブ加熱−電気間
接加熱(または誘導加熱)■〔予熱〕−直火還元加熱−
電気間接加熱(または誘導加熱) ■前処理−〔予熱〕−ラジアントチューブ間接加熱(セ
ラミックラジアントチューブ方式) %式% また、冷却炉(4)での冷却方式に特に限定はなくガス
ジェット冷却、ミスト冷却、放射冷却等の各種冷却方式
を単独または組合せた形で採用することができる。
■Pretreatment - [Preheating] - Electrical indirect heating (or induction heating) ■Pretreatment - [Preheating] - Radiant tube heating - Electrical indirect heating (or induction heating) ■ [Preheating] - Direct flame reduction heating -
Electrical indirect heating (or induction heating) ■Pretreatment - [Preheating] - Radiant tube indirect heating (ceramic radiant tube method) % formula % There are no particular limitations on the cooling method in the cooling furnace (4), such as gas jet cooling, mist cooling, etc. Various cooling methods such as cooling and radiation cooling can be used alone or in combination.

本発明は、6.5%Si鋼帯のような珪素含有量が極め
て高い鋼帯の製造に好適なものであることは以上述べた
通りであるが、従来、圧延法で製造する場合に変形が多
く歩留りが悪かったSi : 2〜4%程度の高珪素鋼
帯も容易に製造できる利点がある。
As mentioned above, the present invention is suitable for manufacturing steel strips with extremely high silicon content, such as 6.5% Si steel strips. There is an advantage that steel strips with a high silicon content of about 2 to 4% can be easily produced, which had a poor yield due to a large amount of Si.

〔実施例〕〔Example〕

0実施例−1 小型のCVD処理炉=惨←炸暑←を用い、・CVD処理
性に対するSI Ct4鑓度及びCVD処理温度の影響
を調べた。その結果を第7図及び第8図に示す。
0 Example-1 Using a small CVD processing furnace = misery←exploding heat←, the influence of SI Ct4 temperature and CVD processing temperature on CVD processability was investigated. The results are shown in FIGS. 7 and 8.

図中、Aが雰囲気法、すなわちノズル吹付を行わないで
CVD処理した場合、またBがノズル吹付法、すなわち
第5図に示すように雰囲気カスを鋼帯面に0.5 nL
/3の流速で吹き付けつつCVD処理した場合を示す。
In the figure, A is the atmosphere method, that is, CVD treatment without nozzle spraying, and B is the nozzle spraying method, that is, as shown in Figure 5, 0.5 nL of atmospheric debris was applied to the steel strip surface.
This shows the case where CVD treatment was performed while spraying at a flow rate of /3.

なお、これによれば、S i Ct、濃度5qb以上、
C’VD処理温度1023℃以上番こおいて大きなSi
富化効果が得られている。また同じ条件でも、吹付ノズ
ルにより雰囲気ガスを吹付ける方法の場合、単に雰囲気
中で鋼帯を通板せしめる場合に較べ格段に優れたSi富
化効果(CVD処理性)が得られていることが判る。
According to this, S i Ct, concentration 5 qb or more,
When the C'VD treatment temperature is 1023°C or higher, large Si
An enrichment effect has been obtained. In addition, even under the same conditions, the method of spraying atmospheric gas with a spray nozzle provides a much superior Si enrichment effect (CVD processability) compared to the method of simply passing the steel strip through the atmosphere. I understand.

第9図は同様のCVD処理炉を用い、雰囲気法Aとノズ
ル吹付法Bの蒸着時間と鋼帯中81濃度(母材Si量士
蒸着Sl量)との関係を、Si : 3%、板厚0.5
−の鋼帯をSiCl4@度21俤、処理温度1150℃
でCVD処理した場合について調べたものである。なお
、ノズル吹吹付けた。同図から判るように、6.5%S
i鋼相当のs1蒸着量を得るために雰囲気法人では7分
かかるのに対し、ノズル吹付法Bでは1.5分で処理す
ることができた。
Fig. 9 shows the relationship between the deposition time and the 81 concentration in the steel strip (base material Si quantity, evaporated Sl amount) for the atmosphere method A and nozzle spraying method B using a similar CVD processing furnace.Si: 3%, plate Thickness 0.5
- steel strip with SiCl4 @ 21 degrees, treatment temperature 1150℃
This study investigated the case of CVD treatment. In addition, it was sprayed with a nozzle. As can be seen from the figure, 6.5%S
While it takes 7 minutes in the atmosphere corporation to obtain the s1 deposition amount equivalent to i steel, the nozzle spraying method B was able to complete the process in 1.5 minutes.

第10図はノズル吹付法における衝突ガス流速と鋼帯の
Si富化割合(第7図及び°第8図と同様)との関係を
示すものであり、所定レベルまでは衝突カス流速に比例
して鋼帯のSi富化割合が増大している。
Figure 10 shows the relationship between the collision gas flow velocity and the Si enrichment ratio of the steel strip (same as Figures 7 and 8) in the nozzle blowing method. Up to a certain level, the relationship is proportional to the collision gas flow velocity. Therefore, the Si enrichment ratio of the steel strip is increasing.

0実施例−2 第1図に示す連続プロセスにより、それぞれ同量のSi
蒸着量で拡散処理時間を変えた鋼帯を製造し、これらの
鋼帯のSi拡散の度合い及び磁気特性を調べた・ 具体的には板厚0.35mx、板幅900周の813チ
含有鋼帯を素材とし、ラインスピードを5〜s o m
pmの範囲で変化させることにより拡散炉の通過時間を
変え、CVD処理(CVD処理温度1050〜1150
℃)−拡散処理を行った。なお、ラインスピードの違い
によってSi蒸着量が変化しないようにするため、ライ
ンスピードに応じCVDg囲気ガス中のSiC/4濃度
(10〜30tL)、及びガス吹付ノズルからの雰囲気
ガス吹付量を変え、Siの蒸着量がラインスピードに関
係なく一定となるよう調整した。本実施例では母材を含
めた平均Si濃度が6.5 wt ’16となるような
蒸着量でSiを蒸着させ、才た一連の処理は第11図に
示す熱サイクルで行った。なお、拡散処理時間が短い鋼
帯については、表層部のSl −IJが非常に多いこと
から、表層のヒビ割れを防止するため温間(250〜3
00℃)で巻壜った。
0 Example-2 By the continuous process shown in Fig. 1, the same amount of Si
Steel strips were produced with different diffusion treatment times depending on the amount of vapor deposition, and the degree of Si diffusion and magnetic properties of these steel strips were investigated. Specifically, steel containing 813 Ti was used with a thickness of 0.35 m and a width of 900 laps. Use obi as material, line speed 5~s o m
The passage time of the diffusion furnace is changed by changing the pm range, and the CVD treatment (CVD treatment temperature 1050-1150
°C)-diffusion treatment was performed. In addition, in order to prevent the Si deposition amount from changing due to differences in line speed, the SiC/4 concentration in the CVDg surrounding gas (10 to 30 tL) and the amount of atmospheric gas sprayed from the gas spray nozzle were changed according to the line speed. The amount of Si vapor deposited was adjusted to be constant regardless of the line speed. In this example, Si was deposited in an amount such that the average Si concentration including the base material was 6.5 wt'16, and a series of treatments were performed using a thermal cycle shown in FIG. In addition, regarding steel strips with short diffusion treatment time, since the surface layer has a very large amount of Sl-IJ, warm treatment (250 to 3
00℃).

第12図はCVD処理ままの鋼帯及び拡散時間が各5分
、10分、20分、40分の上記#4帝について、板厚
方向断面のSi6:&度およびre濃度をXMAにより
測定したもので、約40分の拡散処理(1200℃)で
ほぼ均一にSiが拡散されている。
Figure 12 shows the Si6: & degree and re concentration of the cross section in the plate thickness direction measured by XMA for the steel strips as CVD treated and for #4 steel with diffusion times of 5 minutes, 10 minutes, 20 minutes, and 40 minutes, respectively. Si was almost uniformly diffused in the diffusion process (1200° C.) for about 40 minutes.

第13図は上記と同様条件により拡散時間を変えて得ら
れたサンプルについて、磁気特性たる鉄損を測定した結
果を示すもので、拡散処理時間10分程度、すなわち第
12図(C)程度のSi拡散状態でSiを均一拡散させ
た場合とほぼ同等の十分に高い磁気特性が得られている
ことが判る。
Figure 13 shows the results of measuring the iron loss, which is a magnetic property, for samples obtained under the same conditions as above but with different diffusion times. It can be seen that sufficiently high magnetic properties almost equivalent to those obtained when Si is uniformly diffused in the Si-diffused state are obtained.

0実施例−3 実施例−2と同様の素材鋼帯について、連続プロセスに
より各種5ict4濃度の雰囲気でCUD処理をし、引
き続き1200CX10分の拡散均熱処理を施し、ボイ
ドの残存度合いを調べた。その結果を第1表に示す。
Example 3 The same raw material steel strip as in Example 2 was subjected to CUD treatment in an atmosphere with various 5ict4 concentrations through a continuous process, followed by diffusion soaking treatment at 1200C for 10 minutes, and the degree of residual voids was investigated. The results are shown in Table 1.

このように5tcz、濃度30%、35チではボイドの
残存が認められた。そこで、5ict、 濃度30%、
35チについて、処理温度を、A)  1200℃一定
×10分 a)  1200℃×5分→1250℃×5分C)  
1200℃×3分→1250℃×3分→1280℃×4
分の3水準に設定して鋼帯を製造し、それらのボイド残
存を調査した。その結果を第2表に示する。
Thus, voids were observed to remain at 5tcz, concentration 30%, and 35chi. Therefore, 5 ict, concentration 30%,
For 35 chips, the processing temperature was A) 1200℃ constant x 10 minutes a) 1200℃ x 5 minutes → 1250℃ x 5 minutesC)
1200℃ x 3 minutes → 1250℃ x 3 minutes → 1280℃ x 4
Steel strips were produced by setting the level to 3/3, and the remaining voids in them were investigated. The results are shown in Table 2.

第    2    表 このように拡散処理条件を選択することによりSiC1
% 35 %でもある程度満足し得る製品が得られる。
Table 2 By selecting the diffusion treatment conditions as shown above, SiC1
A somewhat satisfactory product can be obtained even with a concentration of 35%.

但し、実際には若干の温度制御によりボイドを消滅させ
ることができるSiC4濃度30%以下が好ましい。
However, in reality, it is preferable that the SiC4 concentration be 30% or less so that voids can be eliminated by slight temperature control.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明によれば、連続ラインにおいて短時間
のCVD処理及び拡散熱処理により優れた磁気特性の高
珪素鋼帯を得ることができ、また1200℃以下の温度
でCVD処理を行うため鋼帯の形状不良やエツジ部溶解
等の問題を生じさせることがなく、加えて磁気持性を損
うことなく鋼帯の靭性を向上させることができ、このよ
うなことからラインの長大化を招くことな(高品質の高
珪素銅板を能率的に製造することができる。
According to the present invention described above, a high-silicon steel strip with excellent magnetic properties can be obtained by short-time CVD treatment and diffusion heat treatment in a continuous line. It does not cause problems such as poor shape or edge melting, and in addition, it can improve the toughness of the steel strip without impairing its magnetic properties. (It is possible to efficiently manufacture high-quality, high-silicon copper plates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明法を実施するための
連続処理ラインを示す説明図である。第3図はFe−8
i系状態図である、第4図(AXB)は本発明の拡散熱
処理における鋼帯板厚方向のSi濃度分布の変化を示す
ものである。第5図及び第6図G() (1:9はノズ
ル吹付方式によるCVD処理状況を示すもので、第5図
は全体説明図、第6図ビ)及び(qはそれぞれノズル吹
付方法を示す説明図である。第7図はcvn処理におけ
るガス中5ict4濃度と鋼帯Si富化割合との関係、
第8図はCVD処理温度と鋼帯Si富化割合との関係を
それぞれ示すものである。第9図は本発明におけるSi
蒸着時間と鋼帯中Si 9度との関係を、雰曲気法及び
ノズル吹付法で比較して示したものである。第1θ図は
ノズル吹付法によるCVD処理処理語いて、雰囲気ガス
の鋼帯に対する衝突ガス流速と鋼帯Si富化割合との関
係を示すものである。第11図は実施例で採った熱サイ
クルを示すものである。第12図(a)〜(e)は実施
例における各供試材のSi濃度分布を示すものである。 第13図は実施例ζこおける各供試材の磁気特性を示す
ものである。 図において、(1)は加熱炉、(2)はCVD処理炉、
(3)は拡散処理炉、(4)は冷却炉、(6)はコーテ
ィング装置、(力は焼付炉、(S)は鋼帯である― 特許出願人  日本鋼管株式会社 発 明 者   阿   部   正   広間   
       岡   1)  和   大同    
       1)   中         哨同 
       大   和   正   室間    
      高   1)  芳   −代理人弁理士
   吉   原   省   三向  升−士   
吉   原   弘   子第4図 Si  濃度 3X  8.5X Si  濃度 第5図 第 6 図 (イ)              (ロ)Si  窩
 イと・害り 弓’r    (wt’、ン藁)第13
図 &収賄間 手続補正書(自発) 昭f++ 61年  671250 特許11長ビ 宇 賀 道 部    殿(特、nli
ボ肖IX                  殿)I
 ・11件の表示 昭和61 年 特  許 願第 71489弓2、発明
の名称 [III続ラインにおける高珪素#I帯の製造方法(4
12)  目木鋼管株式会社 4代理人 5、  hli正命令の11付 7捕市の内容 別紙のとおり 補   正   内   容 /本願明細畜牛第12JilO行G冒頭に「鋼帯表面は
」とあろを「鋼帯表面の」と訂正する。
FIGS. 1 and 2 are explanatory diagrams showing continuous processing lines for carrying out the method of the present invention, respectively. Figure 3 shows Fe-8
FIG. 4 (AXB), which is an i-system phase diagram, shows changes in the Si concentration distribution in the thickness direction of the steel strip during the diffusion heat treatment of the present invention. Fig. 5 and Fig. 6 G () (1:9 shows the CVD processing situation using the nozzle spraying method, Fig. 5 is an overall explanatory diagram, Fig. 6 B) and (q indicate the nozzle spraying method, respectively. It is an explanatory diagram. Figure 7 shows the relationship between the 5ict4 concentration in the gas and the steel strip Si enrichment ratio in the CVN treatment,
FIG. 8 shows the relationship between the CVD treatment temperature and the Si enrichment ratio of the steel strip. Figure 9 shows the Si in the present invention.
The relationship between the deposition time and the Si 9 degree in the steel strip is shown by comparing the atmospheric air method and the nozzle spray method. FIG. 1θ shows the relationship between the flow velocity of the atmospheric gas colliding with the steel strip and the Si enrichment ratio of the steel strip during the CVD treatment using the nozzle spraying method. FIG. 11 shows the thermal cycle taken in the example. FIGS. 12(a) to 12(e) show the Si concentration distribution of each sample material in the example. FIG. 13 shows the magnetic properties of each sample material in Example ζ. In the figure, (1) is a heating furnace, (2) is a CVD processing furnace,
(3) is a diffusion treatment furnace, (4) is a cooling furnace, (6) is a coating device, (power is a baking furnace, and (S) is a steel strip. Patent applicant: Nippon Kokan Co., Ltd. Inventor: Tadashi Abe hall
Oka 1) Wa Daido
1) Central patrol
Tadashi Yamato Muroma
High 1) Yoshi - Agent Patent Attorney Sho Yoshihara Masaru Mimukai - Attorney
Hiroko Yoshihara Fig. 4 Si concentration 3X 8.5X Si concentration Fig. 5 Fig. 6
Figure & amendment to bribery procedure (voluntary) Showa ++ 1961 671250 Patent 11 Chief Bi Uga Michibe (special, nli
Bosho IX (Den) I
・Display of 11 items 1986 Patent Application No. 71489 Bow 2, Title of Invention [Method for manufacturing high silicon #I band in III continuation line (4
12) Meki Steel Pipe Co., Ltd. 4 Agent 5, Contents of the 11th Attachment 7 of the HLI Positive Order Amended as per attached Contents/Specification of this application Cattle No. 12 JilO line G At the beginning, ``The surface of the steel strip is'' is changed to `` Corrected to ``on the surface of the steel strip.''

Claims (2)

【特許請求の範囲】[Claims] (1)鋼帯を、SiCl_4をmol分率で5〜35%
含んだ無酸化性ガス雰囲気中で、化学気相蒸着法により
1023〜1200℃の温度で連続的に滲珪処理し、次
いでSiCl_4を含まない無酸化性ガス雰囲気中でS
iを鋼帯内部に拡散させる拡散処理するに当り、該拡散
処理を、表層Si濃度が鋼帯厚み方向中心部のSi濃度
よりも高い状態にあるうちに打ち切り、Si濃度が厚み
方向で不均一な鋼帯を得ることを特徴とする連続ライン
における高珪素鋼帯の製造方法。
(1) Steel strip with SiCl_4 in a mol fraction of 5 to 35%
In a non-oxidizing gas atmosphere containing SiCl_4, silicon was continuously treated by chemical vapor deposition at a temperature of 1023 to 1200°C, and then S in a non-oxidizing gas atmosphere containing no SiCl_4.
When conducting the diffusion treatment to diffuse i into the steel strip, the diffusion treatment is stopped while the surface layer Si concentration is higher than the Si concentration at the center of the steel strip in the thickness direction, so that the Si concentration is non-uniform in the thickness direction. 1. A method for producing high-silicon steel strip in a continuous line, characterized by obtaining a steel strip with high silicon content.
(2)鋼帯を、SiCl_4をmol分率で5〜35%
含んだ無酸化性ガス雰囲気中で、化学気相蒸着法により
1023〜1200℃の温度で連続的に滲珪処理し、次
いでSiCl_4を含まない無酸化性ガス雰囲気中でS
iを鋼帯内部に拡散させる拡散処理するに当り、該拡散
処理を、表層Si濃度が鋼帯厚み方向中心部のSi濃度
よりも高い状態にあるうちに打ち切り、Si濃度が厚み
方向で不均一な鋼帯を得、冷却後絶縁皮膜コーティング
及び焼付処理することを特徴とする連続ラインにおける
高珪素鋼帯の製造方法。
(2) Steel strip with SiCl_4 at a mol fraction of 5 to 35%
In a non-oxidizing gas atmosphere containing SiCl_4, silicon was continuously treated by chemical vapor deposition at a temperature of 1023 to 1200°C, and then S in a non-oxidizing gas atmosphere containing no SiCl_4.
When conducting the diffusion treatment to diffuse i into the steel strip, the diffusion treatment is stopped while the surface layer Si concentration is higher than the Si concentration at the center of the steel strip in the thickness direction, so that the Si concentration is non-uniform in the thickness direction. 1. A method for producing a high-silicon steel strip in a continuous line, which comprises obtaining a high-silicon steel strip, which is then cooled, coated with an insulating film, and subjected to a baking treatment.
JP61071489A 1986-03-28 1986-03-28 Method for producing high silicon steel strip in continuous line Expired - Lifetime JPH0643608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61071489A JPH0643608B2 (en) 1986-03-28 1986-03-28 Method for producing high silicon steel strip in continuous line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61071489A JPH0643608B2 (en) 1986-03-28 1986-03-28 Method for producing high silicon steel strip in continuous line

Publications (2)

Publication Number Publication Date
JPS62227033A true JPS62227033A (en) 1987-10-06
JPH0643608B2 JPH0643608B2 (en) 1994-06-08

Family

ID=13462122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61071489A Expired - Lifetime JPH0643608B2 (en) 1986-03-28 1986-03-28 Method for producing high silicon steel strip in continuous line

Country Status (1)

Country Link
JP (1) JPH0643608B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089061A (en) * 1986-03-28 1992-02-18 Nkk Corporation Method for producing high silicon steel strip in a continuously treating line
JPH04246157A (en) * 1991-01-29 1992-09-02 Nkk Corp High silicon steel sheet excellent in soft-magnetic property
EP0947596A1 (en) * 1998-03-31 1999-10-06 Nkk Corporation Silicon steel having low residual magnetic flux density
US5993568A (en) * 1998-03-25 1999-11-30 Nkk Corporation Soft magnetic alloy sheet having low residual magnetic flux density
EP0987341A1 (en) * 1998-03-12 2000-03-22 Nkk Corporation Silicon steel sheet and method for producing the same
WO2017170749A1 (en) * 2016-03-31 2017-10-05 Jfeスチール株式会社 Electrical steel sheet and production method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342019A (en) * 1976-09-29 1978-04-17 Hitachi Ltd Floating type magnetic head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342019A (en) * 1976-09-29 1978-04-17 Hitachi Ltd Floating type magnetic head

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089061A (en) * 1986-03-28 1992-02-18 Nkk Corporation Method for producing high silicon steel strip in a continuously treating line
JPH04246157A (en) * 1991-01-29 1992-09-02 Nkk Corp High silicon steel sheet excellent in soft-magnetic property
EP0987341A1 (en) * 1998-03-12 2000-03-22 Nkk Corporation Silicon steel sheet and method for producing the same
US6527876B2 (en) * 1998-03-12 2003-03-04 Nkk Corporation Silicon steel sheet and method for producing the same
EP0987341A4 (en) * 1998-03-12 2006-04-05 Jfe Steel Corp Silicon steel sheet and method for producing the same
US5993568A (en) * 1998-03-25 1999-11-30 Nkk Corporation Soft magnetic alloy sheet having low residual magnetic flux density
EP0947596A1 (en) * 1998-03-31 1999-10-06 Nkk Corporation Silicon steel having low residual magnetic flux density
WO2017170749A1 (en) * 2016-03-31 2017-10-05 Jfeスチール株式会社 Electrical steel sheet and production method therefor

Also Published As

Publication number Publication date
JPH0643608B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
CA1323291C (en) Method for producing high silicon steel strip in a continuously treating line
JP5189587B2 (en) Method of melt dip coating of flat steel products made of high strength steel
JP2008523243A5 (en)
JP2009531538A5 (en)
EP4215628A1 (en) A method of annealing steel sheets
JPS62227033A (en) Manufacture of high silicon steel strip in continuous line
JPS62227035A (en) Manufacture of high silicon steel strip in continuous line
JPS62227032A (en) Manufacture of high silicon steel strip in continuous line
JPH0643611B2 (en) Method for producing high silicon steel strip in continuous line
JPS62227034A (en) Manufacture of high silicon steel strip in continuous line
JP4259061B2 (en) Method for producing grain-oriented electrical steel sheet
JPS6326355A (en) Production of metallic material
JPS62227079A (en) Manufacture of high silicon steel strip in continuous line
JPH0465898B2 (en)
JPH0549747B2 (en)
JP3446051B2 (en) Method for producing high silicon steel sheet with excellent surface properties
JPH0549743B2 (en)
JPS6326329A (en) Chemical vapor deposition treatment
JPH0549744B2 (en)
JP2001504161A (en) Method of heat treating thin plate coated with ZnAL by hot dip galvanizing method
JPS6324033A (en) Production of metallic material by utilizing chemical vapor deposition
JP2001107218A (en) Method for producing high silicon steel strip by gas siliconizing treating method
JPS61207563A (en) Production of alloyed hot dip galvanized steel sheet
JPH11293414A (en) High silicon steel plate excellent in high frequency magnetic property and its production
JPH048504B2 (en)