JPS62226827A - Method and device for producing optical element - Google Patents

Method and device for producing optical element

Info

Publication number
JPS62226827A
JPS62226827A JP6956386A JP6956386A JPS62226827A JP S62226827 A JPS62226827 A JP S62226827A JP 6956386 A JP6956386 A JP 6956386A JP 6956386 A JP6956386 A JP 6956386A JP S62226827 A JPS62226827 A JP S62226827A
Authority
JP
Japan
Prior art keywords
optical element
optical
molding
glass
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6956386A
Other languages
Japanese (ja)
Inventor
Toru Ariga
亨 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6956386A priority Critical patent/JPS62226827A/en
Publication of JPS62226827A publication Critical patent/JPS62226827A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/47Bi-concave
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/72Barrel presses or equivalent, e.g. of the ring mould type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To obtain the titled optical element in a short time by cooling an optical element while keeping the non-optical face of the element at a temp. higher than that of the optical face during cooling to prevent the generation of internal stress when the optical element made of glass is produced by molding. CONSTITUTION:A glass material for molding the optical element is supplied into the cavity formed between plural molding members such as barrel dies 2 and 6 and forming dies 4 and 5, and heated and softened to produce the optical element 1 by molding. When the element is cooled, the non-optical face 8 of the glass optical element 1 which is not used for the transmission or reflection of light is heated by a heater 3 provided in the barrel die 2, and kept at a temp. higher than that of the optical face 7 which is used for the transmission or reflection of light. Under such conditions, the element is cooled. Consequently, the stress generated in the optical element 1 is relieved while only the non-optical face 8 is deformed, and the optical element 1 having the optical face 7 with excellent form precision can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光学素子の製造方法および装置に関するもので
、特に、複数の型部材の間に形成されるキャビティ内に
光学素子成形用ガラス素材を供給し、該ガラス素子を加
熱軟化し、モールド成形により光学素子を製造する方法
および装置に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method and apparatus for manufacturing an optical element, and in particular, to a method and apparatus for manufacturing an optical element. The present invention relates to a method and apparatus for manufacturing an optical element by supplying the glass element, heating and softening the glass element, and molding the glass element.

(従来の技術) 従来この種の製造方法および装置は、加熱軟化したガラ
ス素材をモールド成形した後、全体的に均一に冷却する
プロセスを経て光学素子を製造していた。この方法およ
び装置は、カメラ用小口径レンズやコンパクトディスク
用読み取リレンズ等で既に多くの成果を上げてきた。
(Prior Art) Conventionally, in this type of manufacturing method and apparatus, an optical element has been manufactured through a process of molding a heated and softened glass material and then uniformly cooling the entire molded material. This method and device have already achieved many results in small-diameter lenses for cameras, reading relenses for compact discs, and the like.

(発明が解決しようとする問題点) ところが、上記の如き従来の製造方法および装置では、
比較的大型の光学素子の成形は困難であるとされていた
。その理由は、光学素子が大きくなるほど冷却時の中心
部と表面付近の温度差が大きくなるため、内部に応力が
発生するからでる。内部に応力があると、光学的には複
屈折が生じ、光学素子としては大きな欠点となる。又、
冷却中に応力の一部が開放されることもあるが、その時
には光学面として必要な表面の形状精度が崩れてしまう
という欠点が生ずる。
(Problems to be solved by the invention) However, in the conventional manufacturing method and apparatus as described above,
It has been considered difficult to mold relatively large optical elements. The reason for this is that as the optical element becomes larger, the temperature difference between the center and the vicinity of the surface increases during cooling, which generates stress inside. If there is internal stress, optical birefringence will occur, which is a major drawback as an optical element. or,
Although some of the stress may be released during cooling, there is a drawback that in this case the surface shape accuracy required as an optical surface is lost.

上述の2つの欠点は、冷却速度を遅くしてやれば、光学
素子の中心部と表面付近の温度差があまり大きくならな
いため解消することができる。ところが冷却速度を遅く
することは、1個の光学素子を成形するのに要する時間
が長くなり、量産には大きな欠点となる。
The above two drawbacks can be overcome by slowing down the cooling rate, since the temperature difference between the center and the surface of the optical element does not become too large. However, slowing the cooling rate increases the time required to mold one optical element, which is a major drawback for mass production.

(発明の目的) 本発明は、上述の従来の光学素子のモールドにおける欠
点を除去し、光学素子の生産速度を遅くすることなく、
かつ内部に応力を発生することなしに光学素子を製造す
る方法および装置を提供することにある。
(Objective of the Invention) The present invention eliminates the drawbacks of the conventional optical element molds described above, and without slowing down the production speed of optical elements.
Another object of the present invention is to provide a method and apparatus for manufacturing an optical element without generating internal stress.

(問題点を解決する手段) 本発明による光学素子の製造方法は、上記のような問題
点を解決する手段として大型のガラス製光学素子の成形
後の冷却を行なう際、光学素子の光が透過または反射し
ない面(以下非光学面と呼ぶ)を光が透過または反射す
る面(以下光学面と呼ぶ)よりも高い温度に保ちながら
冷却する方法を採る。このような方法で冷却を行なうと
、光学素子内部に発生する応力は、非光学面のみを変形
して開放され、その結果内部応力は無視しうるほど小さ
く、かつ十分に良好な形状精度の光学面を持ったガラス
製光学素子が得られる。このような冷却方法を採用する
ことにより、前述の小型の光学素子と同程度の時間で大
型の光学素子が製造可能である。
(Means for Solving the Problems) As a means for solving the above-mentioned problems, the method for manufacturing an optical element according to the present invention is such that when cooling a large glass optical element after molding, the light of the optical element is transmitted through the optical element. Alternatively, a method is adopted in which a surface that does not reflect light (hereinafter referred to as a non-optical surface) is kept at a higher temperature than a surface that transmits or reflects light (hereinafter referred to as an optical surface) while being cooled. When cooling is performed in this manner, the stress generated inside the optical element is released by deforming only the non-optical surface, and as a result, the internal stress is negligibly small and the optical element has sufficiently good shape accuracy. A glass optical element with a surface is obtained. By employing such a cooling method, a large-sized optical element can be manufactured in about the same amount of time as the aforementioned small-sized optical element.

(発明の概要) 本発明による光学素子の製造方法は、複数の型部材の間
に形成されるキャビティ内に光学素子成形用ガラス素材
を供給し、該ガラス素材を加熱軟化しモールド成形によ
り光学素子を製造する方法において、ガラス素材を加熱
軟化してモールド成形によって形成した後に冷却する際
、該ガラス製光学素子の光の透過又は反射に使用しない
非光学面を該ガラス製光学素子の光の透過又は反射に使
用する光学面よりも高い温度に保ちながら冷却すること
を特徴とする。
(Summary of the Invention) A method for manufacturing an optical element according to the present invention includes supplying a glass material for molding an optical element into a cavity formed between a plurality of mold members, heating and softening the glass material, and molding the optical element. In the method of manufacturing, when a glass material is heated and softened and formed by molding and then cooled, a non-optical surface that is not used for transmitting or reflecting light of the glass optical element is Alternatively, the optical surface is cooled while being maintained at a higher temperature than the optical surface used for reflection.

また、本発明による光学素子の製造装置は、複数の型部
材の間に形成されるキャビティ内に光学素子成形用ガラ
ス素材を供給し、該ガラス素材を加熱軟化しモールド成
形により光学素子を製造する装置において、光学素子の
非光学面に接する型部材内に加熱手段を配置し、光学素
子を加熱軟化しモールド成形により光学素子を形成した
後に冷却の際に、該加熱手段を付勢することにより光学
素子の光学面よりも非光学面を高い温度に保ちながら冷
却するようにしたことを特徴とする。
Further, the optical element manufacturing apparatus according to the present invention supplies a glass material for molding an optical element into a cavity formed between a plurality of mold members, heats and softens the glass material, and manufactures an optical element by molding. In the apparatus, a heating means is disposed in a mold member in contact with a non-optical surface of an optical element, and the heating means is energized during cooling after heating and softening the optical element and forming an optical element by molding. It is characterized in that the non-optical surface of the optical element is cooled while being kept at a higher temperature than the optical surface.

(実施例) 以下、本発明の詳細を実施例について説明する。(Example) Hereinafter, details of the present invention will be explained with reference to examples.

以下の説明は両凹レンズの成形に本発明を適用した例に
関するものであるが、本発明は他の形状のレンズにも適
用できるのみならず、後に説明するように、カメラ用ペ
ンタプリズム或いはレーザービームプリンタのトーリッ
クレンズ等にも適用できる。
The following explanation relates to an example in which the present invention is applied to molding a biconcave lens, but the present invention can be applied not only to lenses of other shapes but also to pentaprisms for cameras or laser beams, as will be explained later. It can also be applied to toric lenses of printers, etc.

第1図は本発明の一実施例における成形型の横進を表わ
す断面図であって、1は成形された両凹レンズ、2はレ
ンズ1を保持する調型、3は調型2に巻かれているヒー
タ、4及び5は成形型、6は成形型4を保持する調型で
ある。
FIG. 1 is a cross-sectional view showing the lateral movement of the mold in an embodiment of the present invention, in which 1 is a molded biconcave lens, 2 is a mold that holds the lens 1, and 3 is a mold that is wound around the mold 2. 4 and 5 are molds, and 6 is a mold for holding the mold 4.

尚、調型2の上下面にはそれぞれ成形型5、調型6との
間を熱的に絶縁するためセラミックコーティングを施し
である。
Note that ceramic coatings are applied to the upper and lower surfaces of the mold 2 to provide thermal insulation between the mold 5 and the mold 6, respectively.

第2図は第1図の成形型構造を使って得られた両凹レン
ズであって、7は光学面、8は非光学面である。
FIG. 2 shows a biconcave lens obtained using the mold structure shown in FIG. 1, in which 7 is an optical surface and 8 is a non-optical surface.

本実施例で使用した硝材は重フリント系の硝材であって
、零両凹レンズの所定の寸法は直径40 mm、中心肉
厚4.3mm 、周縁部肉厚8.6mmである。
The glass material used in this example is a heavy flint type glass material, and the predetermined dimensions of the zero biconcave lens are a diameter of 40 mm, a center wall thickness of 4.3 mm, and a peripheral wall thickness of 8.6 mm.

本実施例の手順は次の通りである。The procedure of this example is as follows.

レンズ1が成形された後(500℃)、所定の速度で冷
却しはじめる。その時ヒータ3に通電し調型2のレンズ
1の非光学面に接する部分が500℃のままに保たれる
ようにする。レンズ1の光学面付近が500−61℃に
なったなら、それ以降はレンズ1の非光学面と光学面の
温度差が△Tを保つようヒータ3に通電しながら冷却す
る。このような温度差ΔTを付けて冷却するのは常温ま
でする必要はなく、粘性による変形が生じない温度にな
ったら解除して良い。本実施例ではその温度の目安とし
てガラス転穆点より10℃以上低い温度(410℃)で
ヒータ3の通電をやめて△Tを0にした。
After the lens 1 is molded (500° C.), cooling begins at a predetermined rate. At this time, the heater 3 is energized so that the portion of the lens 1 of adjustment type 2 in contact with the non-optical surface is maintained at 500°C. When the temperature near the optical surface of the lens 1 reaches 500-61° C., cooling is performed while energizing the heater 3 so that the temperature difference between the non-optical surface and the optical surface of the lens 1 is maintained at ΔT. Cooling with such a temperature difference ΔT does not need to be carried out to room temperature, and may be canceled once the temperature reaches a temperature at which deformation due to viscosity does not occur. In this example, as a guideline for the temperature, the heater 3 was turned off and ΔT was set to 0 at a temperature (410° C.) that was 10° C. or more lower than the glass inversion point.

本実施例の結果を△Tが10℃、5℃、0℃(即ち温度
差0の従来の均一冷却の場合)について示す。
The results of this example are shown for ΔT of 10° C., 5° C., and 0° C. (that is, in the case of conventional uniform cooling with zero temperature difference).

ここで最大面形状変化はすべて内側に向っている。Here, all the maximum surface shape changes are inward.

この結果から明瞭に△Tを大きくすることは光学面7の
精度を良好に保つ効果があることが解る。特に△Tが1
0℃のときは内部応力を複屈折で表わすと約4nmでカ
メラ用レンズとしても十分に使用可能である。非光学面
8は、肉視では解らないが変形していると推測される。
From this result, it is clear that increasing ΔT has the effect of keeping the precision of the optical surface 7 favorable. Especially △T is 1
At 0° C., the internal stress expressed in terms of birefringence is approximately 4 nm, which is sufficient for use as a camera lens. The non-optical surface 8 is presumed to be deformed, although it cannot be seen with the naked eye.

尚、ΔTが10℃と5℃のとき周縁部の面形状がやや崩
れていたが、これは非光学面加熱の影響と思われる。本
方法の欠点として注意が必要と思われる。
Incidentally, when ΔT was 10° C. and 5° C., the surface shape of the peripheral portion was slightly distorted, but this seems to be due to the effect of heating the non-optical surface. This seems to be a drawback of this method that requires attention.

本発明の本質な点は、冷却時に非光学面の温度を光学面
の温度より高くすることである。従ってその手段は必ず
しも前記実施例に限らない。
The essential point of the present invention is to make the temperature of the non-optical surface higher than the temperature of the optical surface during cooling. Therefore, the means thereof are not necessarily limited to the above embodiments.

例えば、銅のような熱伝導の良い物質の一端を低熱源に
接触させ、もう一つの端を第1図の成形型4及び5に接
触させればその物質を通って成形型4及び5から低熱源
へ熱が流れて光学面の方が非光学面より温度を低くでき
る。
For example, if one end of a material with good thermal conductivity, such as copper, is brought into contact with a low heat source and the other end is brought into contact with molds 4 and 5 in FIG. The temperature of the optical surface can be lower than that of the non-optical surface because heat flows to the low heat source.

或いは、前記実施例の調型2を発熱材料で作成しても良
い。例えば調型2をモリブデンで作成し、それに電流を
流せば調型2自体が加熱して前記実施例と同様の効果を
得ることができる。
Alternatively, the mold 2 of the above embodiment may be made of a heat-generating material. For example, if the mold 2 is made of molybdenum and a current is passed through it, the mold 2 itself will be heated and the same effect as in the previous embodiment can be obtained.

一方、光学素子の形状もレンズ形状に限らない。カメラ
用ペンタプリズムは6つの光学面と1つの非光学面から
成っている。レーザービームプリンタのトーリックレン
ズは2つの光学面と4つの非光学面から成っている。
On the other hand, the shape of the optical element is not limited to the lens shape. A camera pentaprism consists of six optical surfaces and one non-optical surface. The toric lens of a laser beam printer consists of two optical surfaces and four non-optical surfaces.

いずれにしても、光学素子の形状に従って非光学面の温
度を光学面の温度より高くする手段を講ずれば、本発明
の目的は達成できるのである。
In any case, the object of the present invention can be achieved by taking measures to make the temperature of the non-optical surface higher than the temperature of the optical surface according to the shape of the optical element.

(発明の効果) 以上説明したように、本発明は光学素子をモールド成形
により製造するにあたって、非光学面を光学面よりも高
い温度に保ちながら冷却するという簡単な方法で内部応
力の発生と光学面の形状精度の崩れを防止する効果を達
成することがで鮒、これによりガラス製の大型の光学素
子を短時間で製造できる。
(Effects of the Invention) As explained above, the present invention uses a simple method of cooling the non-optical surface while keeping the non-optical surface at a higher temperature than the optical surface when manufacturing an optical element by molding. By achieving the effect of preventing the collapse of surface shape accuracy, large-sized optical elements made of glass can be manufactured in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により大型のガラス製の光学素子を製造
する成形型の型構造の一例を示す断面図、第2図は第1
図の型で成形されたガラス製の光学素子である。 1・・・ガラス製の光学素子 2・・・調型3・・・ヒ
ータ       4・・・成形型5・・・成形型  
     6・・・胴壁7・・・光学面       
8・・・非光学面代理人  谷 山 輝 雄 ゛パ 岸  1) 正  行:i°゛−′ロ 第1図 第2図
FIG. 1 is a sectional view showing an example of the mold structure of a mold for producing a large glass optical element according to the present invention, and FIG.
This is a glass optical element molded using the mold shown in the figure. 1... Glass optical element 2... Adjustment mold 3... Heater 4... Molding mold 5... Molding mold
6... Trunk wall 7... Optical surface
8...Non-optical surface agent Teruo Taniyama Pagishi 1) Correct line: i°゛-'Ro Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)複数の型部材の間に形成されるキャビティ内に光
学素子成形用ガラス素材を供給し、該ガラス素材を加熱
軟化しモールド成形により光学素子を製造する方法にお
いて、ガラス素材を加熱軟化してモールド成形によって
形成した後に冷却する際、該ガラス製光学素子の光の透
過又は反射に使用しない非光学面を該ガラス製光学素子
の光の透過又は反射に使用する光学面よりも高い温度に
保ちながら冷却することを特徴とする光学素子の製造方
法。
(1) In a method of supplying a glass material for molding an optical element into a cavity formed between a plurality of mold members, heating and softening the glass material, and manufacturing an optical element by molding, the glass material is heated and softened. When cooling after forming by molding, the non-optical surfaces of the glass optical element that are not used for transmitting or reflecting light are heated to a higher temperature than the optical surfaces of the glass optical element that are used for transmitting or reflecting light. A method for manufacturing an optical element characterized by cooling while maintaining the same.
(2)複数の型部材の間に形成されるキャビティ内に光
学素子成形用ガラス素材を供給し、該ガラス素材を加熱
軟化しモールド成形により光学素子を製造する装置にお
いて、光学素子の非光学面に接する型部材内に加熱手段
を配置し、光学素子を加熱軟化しモールド成形により光
学素子を形成した後に冷却の際に、該加熱手段を付勢す
ることにより光学素子の光学面よりも非光学面を高い温
度に保ちながら冷却するようにしたことを特徴とする光
学素子の製造装置。
(2) In an apparatus for manufacturing an optical element by supplying a glass material for molding an optical element into a cavity formed between a plurality of mold members, heating and softening the glass material, and molding the non-optical surface of the optical element. A heating means is disposed in the mold member in contact with the optical element, and after the optical element is heated and softened and the optical element is formed by molding, the heating means is energized to make the optical element more non-optical than the optical surface of the optical element. An optical element manufacturing device characterized by cooling the surface while keeping the surface at a high temperature.
JP6956386A 1986-03-27 1986-03-27 Method and device for producing optical element Pending JPS62226827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6956386A JPS62226827A (en) 1986-03-27 1986-03-27 Method and device for producing optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6956386A JPS62226827A (en) 1986-03-27 1986-03-27 Method and device for producing optical element

Publications (1)

Publication Number Publication Date
JPS62226827A true JPS62226827A (en) 1987-10-05

Family

ID=13406353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6956386A Pending JPS62226827A (en) 1986-03-27 1986-03-27 Method and device for producing optical element

Country Status (1)

Country Link
JP (1) JPS62226827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015850A1 (en) * 1995-10-27 1997-05-01 Hoya Corporation Optical fiber fixing member and method of production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015850A1 (en) * 1995-10-27 1997-05-01 Hoya Corporation Optical fiber fixing member and method of production thereof
US6240235B1 (en) 1995-10-27 2001-05-29 Hoya Corporation Optical fiber fixing member and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPH0811224A (en) Manufacture and manufacturing device of microlens
JPS62226827A (en) Method and device for producing optical element
JP3140242B2 (en) Mold for molding optical element, molding method, and optical element molding apparatus
JP4265866B2 (en) Plastic optical element manufacturing method, plastic optical element manufacturing apparatus, and plastic optical element
JP2002283352A (en) Method for manufacturing plastic optical element
JP3279859B2 (en) Manufacturing method of plastic molded products
JP2000247653A (en) Metal mold for forming optical element and optical element
JPS62128932A (en) Molding method for glass lens
JP3274196B2 (en) Mirror manufacturing method
JP3173872B2 (en) Optical element molding die and optical element molding method using the molding die
JPS60171233A (en) Glass lens molding device
JP3199467B2 (en) Glass surface smoothing method
JP2949956B2 (en) Mold for forming optical element and optical element
JP3236450B2 (en) Optical fiber end face treatment method
JP3879143B2 (en) Lens material manufacturing method, molded lens manufacturing method, and lens material manufacturing apparatus
JPS61242920A (en) Molding device for lens
JPS62252331A (en) Method for forming glass lens
JP3068261B2 (en) Glass optical element molding method
JP2501588B2 (en) Mold for press molding optical glass element and molding method thereof
JPS6195912A (en) Molding method of microlens
JPH0585747A (en) Mold for molding glass lens and production of glass lens
JP3217153B2 (en) Optical material molding die, optical material molding method using the same, and optical material obtained thereby
JPH0570155A (en) Mold for glass lens molding
JPH06191865A (en) Metallic mold for molding optical element
JP2003266504A (en) Plastic optical element and method for manufacturing it