JPS62226811A - Production of alumina carrier - Google Patents

Production of alumina carrier

Info

Publication number
JPS62226811A
JPS62226811A JP61067258A JP6725886A JPS62226811A JP S62226811 A JPS62226811 A JP S62226811A JP 61067258 A JP61067258 A JP 61067258A JP 6725886 A JP6725886 A JP 6725886A JP S62226811 A JPS62226811 A JP S62226811A
Authority
JP
Japan
Prior art keywords
aluminum
reaction
alkali metal
solution
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61067258A
Other languages
Japanese (ja)
Other versions
JPH068174B2 (en
Inventor
Toshio Yamaguchi
敏男 山口
Yoshimasa Inoue
井上 好昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP61067258A priority Critical patent/JPH068174B2/en
Publication of JPS62226811A publication Critical patent/JPS62226811A/en
Publication of JPH068174B2 publication Critical patent/JPH068174B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To produce a boehmite gel having a uniform particle size distribution by using aluminium sulfate which is a cheap alumina material and sodium aluminate under specified conditions. CONSTITUTION:A soln. of an alkali metal aluminate, especially sodium aluminate, is added to a soln. of the salt of aluminum and a mineral acid, especially aluminum sulfate, is the presence of a hydroxycarboxylic acid, especially gluconic acid, to control the pH to 7-10, and an aluminum hydroxide slurry is obtained. The soln. of the salt of aluminum and a mineral acid and the soln. of an alkali metal aluminate are simultaneously added to the slurry while keeping the pH at 7-10, and the alumina carrier is produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はベーマイトの結晶成長を制御し、且つそれから
得られるアルミナ担体の細孔容積と細孔径を調節し、ひ
いては鋭い細孔分布を有するアルミナ担体を製造する方
法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention controls the crystal growth of boehmite, and adjusts the pore volume and pore diameter of the alumina support obtained therefrom, thereby improving the alumina support with a sharp pore distribution. The present invention relates to a method for manufacturing a carrier.

(従来の技術) 近年、触媒担体に求められる性質として調節された細孔
分布をもつことが挙げられる。通常触媒活性は触媒の表
面積に支配されるが、ある特定のサイズの分子だけに関
して選択的に触媒反応を行わしめる場合には、表面積よ
りも細孔径の値および分布が問題となってくる。一般に
、多くの触媒反応において触媒の細孔径は活性および選
択性に大きな影響を与える重要な因子の一つである。細
孔径を小さくすると、反応分子の細孔内拡散抵抗が増大
し、有効係数が減少するため活性は低下する。逆に細孔
径を必要以上に大きくすると、有効係数は増加するが、
表面積が減少することによる活性の低下をきたす。
(Prior Art) In recent years, one of the properties required of catalyst carriers is to have a controlled pore distribution. Catalytic activity is usually controlled by the surface area of the catalyst, but when a catalytic reaction is carried out selectively with respect to molecules of a certain size, the value and distribution of pore diameter becomes more important than the surface area. Generally, in many catalytic reactions, the pore size of the catalyst is one of the important factors that greatly influences the activity and selectivity. When the pore diameter is decreased, the resistance to diffusion of reactive molecules in the pores increases, and the effectiveness coefficient decreases, resulting in a decrease in activity. Conversely, if the pore size is made larger than necessary, the effective coefficient increases, but
Activity decreases due to a decrease in surface area.

また、必要以上の大きな細孔径は、目的とする反応分子
より大きなサイズの分子をも活性サイトに導くため反応
の選択性も低下する。従って、目的とする反応に対して
十分活性な触媒を作るには、その反応に最適な大きさの
細孔径の細孔を多く有する、すなわち鋭い細孔分布を有
する担体を得る必要がある。
In addition, an unnecessarily large pore diameter also leads to molecules larger than the target reaction molecules to the active site, thereby reducing the selectivity of the reaction. Therefore, in order to produce a catalyst that is sufficiently active for a desired reaction, it is necessary to obtain a carrier that has many pores with the optimum pore size for the reaction, that is, a support that has a sharp pore distribution.

ところで、触媒担体として熱安定性および機械的強度に
優れるr−アルミナがよく用いられる。これはベーマイ
トゲルを焼成することによす作うれる。ベーマイトゲル
は別名擬ベーマイトと呼ばれる繊維状のベーマイト微結
晶の水和ゲルであり、一般に非晶質の水酸化アルミニウ
ムを50℃以上、pH6〜11の条件下で熟成すること
により得られる。平均細孔径を望ましい値に設定し、且
つ平均細孔直径近傍の細孔径の細孔容積が全細孔容積の
大部分を占める鋭い細孔分布をもつアルミナ担体を得る
にはこの擬イーマイト結晶の大きさおよびその分布を適
切な値に調節しなければならない。
Incidentally, r-alumina, which has excellent thermal stability and mechanical strength, is often used as a catalyst carrier. It is made by calcining boehmite gel. Boehmite gel is a hydrated gel of fibrous boehmite microcrystals, also called pseudo-boehmite, and is generally obtained by aging amorphous aluminum hydroxide at a temperature of 50° C. or higher and a pH of 6 to 11. In order to set the average pore diameter to a desired value and obtain an alumina support with a sharp pore distribution in which the pore volume of pores with a pore diameter near the average pore diameter accounts for most of the total pore volume, it is necessary to use this pseudo-eemite crystal. The size and its distribution must be adjusted to appropriate values.

一般に、アルミナ担体の細孔径を調節する方法としては
ベーマイトゲル成型物の焼成温度を変化させる方法が知
られている。しかし、この方法では平均細孔直径を調節
することは可能だが、細孔分布に関しては最初に用いた
ベーマイトゲルの粒子サイズ分布によって決定されるの
で粒子サイズの揃ったベーマイトゲルを用いない限り、
鋭い細孔分布を持つアルミナ担体は得られない。また、
ベーマイトゲルの粒子を成長させる方法としては、加水
分解して生成した水酸化アルミニウムを熟成する方法も
よく知られているが、通常採用されている加水分解函(
6〜11)では、微結晶の溶解速度が著しく小さく、微
結晶が溶解してより大きな結晶が成長する粒子成長の速
度は極めて小さくなる。従って、ベーマイトゲル粒子の
成長に長時間を要する。
Generally, as a method of adjusting the pore diameter of an alumina carrier, a method of changing the firing temperature of a boehmite gel molded product is known. However, although it is possible to adjust the average pore diameter with this method, the pore distribution is determined by the particle size distribution of the boehmite gel initially used, so unless a boehmite gel with uniform particle sizes is used,
An alumina support with a sharp pore distribution cannot be obtained. Also,
A well-known method for growing boehmite gel particles is to age aluminum hydroxide produced by hydrolysis, but the commonly used hydrolysis box (
In cases 6 to 11), the dissolution rate of microcrystals is extremely low, and the rate of particle growth in which microcrystals are dissolved and larger crystals grow is extremely low. Therefore, it takes a long time for the boehmite gel particles to grow.

特公昭57−44605において、水酸化アルミニウム
を種子結晶とし、これにアルミニウム塩と中和剤を交互
に添加することによシベーマイトゲルの結晶成長を促進
する方法が明らかにされている。この方法はアルミニウ
ム塩と中和剤を交互に添加する回数を変えることで、ベ
ーマイトゲル粒子サイズを制御し且つ粒子サイズの揃っ
たベーマイトゲルが得られることが特徴である。従って
この方法で得られたベーマイトゲルを公知の方法で成型
、焼成すれば任意の値の平均細孔径で、且つ鋭い細孔分
布を持つアルミナ担体が得られる。しかし、アルミナ担
体として安価で工業的に有用な硫酸アルミニウムを使用
した場合にこの方法では硫酸根が媒介するベーマイトゲ
ル粒子の疎凝集作用によると推定される粒子成長の不均
一性がしばしば現われる。
Japanese Patent Publication No. 57-44605 discloses a method of promoting the crystal growth of sibemite gel by using aluminum hydroxide as a seed crystal and alternately adding an aluminum salt and a neutralizing agent to the seed crystal. This method is characterized in that the boehmite gel particle size can be controlled and boehmite gel with uniform particle size can be obtained by changing the number of times the aluminum salt and the neutralizing agent are added alternately. Therefore, if the boehmite gel obtained by this method is molded and fired by a known method, an alumina carrier having an arbitrary average pore diameter and a sharp pore distribution can be obtained. However, when aluminum sulfate, which is inexpensive and industrially useful, is used as an alumina carrier, this method often exhibits nonuniformity in particle growth, which is presumed to be due to the loose aggregation effect of boehmite gel particles mediated by sulfate groups.

この硫酸根の影響を除去するためには、加水分解の途中
で一旦スラリーを濾過・洗浄し、硫酸根を除去した固形
分を再び加水分解工程に戻し、加水分解を続けるという
煩雑な操作が必要となる。そこで本発明者らは上記のベ
ーマイトゲル粒子の疎凝集作用によると推定される粒子
成長の不均一性はヒドロキシカルボン酸を反応系に存在
させることKより改良できることを見出して特願昭61
−16,857号として先に提案した。
In order to remove the effects of these sulfate groups, it is necessary to first filter and wash the slurry during hydrolysis, then return the solids from which the sulfate groups have been removed to the hydrolysis process to continue hydrolysis. becomes. Therefore, the present inventors discovered that the non-uniformity of particle growth, which is presumed to be due to the loose agglomeration effect of the boehmite gel particles mentioned above, can be improved by the presence of hydroxycarboxylic acid in the reaction system.
It was previously proposed as No.-16,857.

(発明が解決しようとする問題点) しかし力から、前記%願昭61−16,857号の方法
は硫酸アルミニウムとアルミン酸ソーダを用いた時に生
ずるベーマイトゲル粒子のl1Jlii集作用によると
思われる粒子の不均一性が改良でき、かつ操作の煩雑性
も少なくなったもののなお数工程を要する。この工程数
の減少化を意図し、ヒドロキシカルボン酸の特異な作用
効果に注目してさらに研究を重ねた結果粒子成長の不均
一性が改良でき、鋭い細孔分布をもつアルミナ担体を得
るために必要である均一な粒子サイズ分布のベーマイト
ゲルを得ることに成功し、て本発明に到った。
(Problem to be Solved by the Invention) However, due to the force, the method of the above-mentioned Application No. 16,857/1985 is a particle that is thought to be due to the l1Jlii aggregation effect of boehmite gel particles generated when aluminum sulfate and sodium aluminate are used. Although the non-uniformity of the process can be improved and the complexity of the operation has been reduced, several steps are still required. With the intention of reducing the number of steps, we conducted further research focusing on the unique effects of hydroxycarboxylic acids. As a result, we were able to improve the non-uniformity of particle growth and obtain an alumina support with a sharp pore distribution. We succeeded in obtaining a boehmite gel with the necessary uniform particle size distribution, leading to the present invention.

(問題を解決するための手段) 即ち、本発明はヒドロキシカルボン酸の存在下でアルミ
ニウム鉱酸塩溶液にpHが7〜10になるようにアルミ
ン酸アルカリ金属塩溶液を添加して水酸化アルミニウム
スラリーを得る工程と、該スラリーにpH7〜10を保
持しながらアルミニウム鉱酸塩溶液とアルミン酸アルカ
リ金属塩溶液を同時に添加する工程とからなるアルミナ
担体の製造方法に係る。
(Means for Solving the Problem) That is, the present invention prepares an aluminum hydroxide slurry by adding an alkali metal aluminate solution to an aluminum mineral salt solution in the presence of a hydroxycarboxylic acid so that the pH thereof becomes 7 to 10. and a step of simultaneously adding an aluminum mineral salt solution and an alkali metal aluminate solution to the slurry while maintaining the pH of 7 to 10.

本発明においては、第1の工程の反応としてヒドロキシ
カルボン酸の存在下で、アルミニウム鉱酸塩好ましくは
硫酸アルミニウムの水溶液に声が7〜10好ましくはp
!(8〜95になるようにアルミン酸アルカリ金属塩の
水溶液を添加して水酸化アルミニウムのスラリーを得る
。次に第2の工程の反応として該スラリーに−17〜1
0好ましくはpH13〜95を保持しながらアルミニウ
ム鉱酸塩好ましくは硫酸アルミニウムの水溶液とアルミ
ン酸アルカリ金属塩の水溶液を同時に添加して最終的な
水酸化アルミニウムのスラリーを得る。反応の両段階に
おいて、50℃以上、好ましくは50〜70℃に加温す
るのが望ましい。
In the present invention, as a reaction in the first step, in the presence of a hydroxycarboxylic acid, an aqueous solution of an aluminum mineral salt, preferably aluminum sulfate, has a concentration of 7 to 10 p.p.
! (A slurry of aluminum hydroxide is obtained by adding an aqueous solution of an alkali metal salt of aluminate so as to give a concentration of -17 to 95.
A final slurry of aluminum hydroxide is obtained by simultaneously adding an aqueous solution of an aluminum mineral salt, preferably aluminum sulfate, and an aqueous solution of an alkali metal aluminate, preferably while maintaining the pH of 13 to 95. In both stages of the reaction, it is desirable to heat the reaction mixture to 50°C or higher, preferably 50 to 70°C.

前記ヒドロキシカルボン酸は、通常凝集防止剤として用
いられるものであり、グルコン酸、酒石酸あるいはクエ
ン酸等がある。ヒドロキシカルボン酸は酸の形あるいは
アルカリ金属塩またはアンモニウム塩のような形で用い
てもよい。
The hydroxycarboxylic acid is usually used as an anti-aggregation agent, and includes gluconic acid, tartaric acid, citric acid, and the like. Hydroxycarboxylic acids may be used in acid form or in forms such as alkali metal or ammonium salts.

したがって本発明でヒドロキシカルボン酸というのはそ
の塩の形を含めた意味である。これらの酸は単独でもま
た混合物としても使用できるが、最も好ましい酸はグル
コン酸である。
Therefore, in the present invention, hydroxycarboxylic acid includes its salt form. Although these acids can be used alone or in mixtures, the most preferred acid is gluconic acid.

ヒドロキシカルボン酸の添加量は水酸化アルミニウムス
ラリー中のAx2o51モル当!70.01〜0.15
モルである。添加量が過度に少量になれば所期の効果が
達成されず、また前記範囲より多散に使用しても格別の
効果は期待できない。これらの酸は第1の工程の反応前
に全量アルミニウム鉱酸塩に添加しておくことが便利だ
が、反応の両工程で添加すべきアルミニウム鉱酸塩およ
び/またはアルミン酸アルカリ金属塩の水溶液に添加し
ておいてもよい。重要なことは反応系に前記量のヒドロ
キシカルボン酸が存在することである。
The amount of hydroxycarboxylic acid added is equivalent to 1 mole of Ax2o5 in the aluminum hydroxide slurry! 70.01~0.15
It is a mole. If the amount added is too small, the desired effect will not be achieved, and even if it is used more widely than the above range, no particular effect can be expected. It is convenient to add all of these acids to the aluminum mineral salt before the reaction in the first step. It may be added. What is important is that the above amount of hydroxycarboxylic acid is present in the reaction system.

反応の両工程で用いるアルミニウム鉱酸塩としては塩酸
塩、”硝酸塩等の強酸塩ならばいかなる塩でもよいが、
硫酸塩が安価であるため最も好ましい。しかもヒドロキ
シカルボン酸ヲ添加することなく硫酸アルミニウムとア
ルミ/酸アルカリ金属塩を用いて前記の反応を行えばt
Jil述した硫酸根の存在に基づくと解される粒子の成
長の不均一性が現われるけれども本発明によればそれが
解消される。アルミニウム鉱酸塩と共に用いるアルミン
酸アルカリ金属塩としてはソーダ塩が安価であり好まし
い。
The aluminum mineral salt used in both steps of the reaction may be any strong salt such as hydrochloride or nitrate;
Sulfates are most preferred because they are inexpensive. Moreover, if the above reaction is carried out using aluminum sulfate and aluminum/acid alkali metal salt without adding hydroxycarboxylic acid, t
Although non-uniformity in particle growth appears, which is thought to be due to the presence of sulfate groups as described above, this is eliminated according to the present invention. As the alkali metal aluminate salt used together with the aluminum mineral salt, soda salt is preferred because it is inexpensive.

本発明では、第1の工程の反応としてヒドロキシカルボ
ン酸の存在下でアルミニウム鉱酸塩溶液に−1が7〜1
0好ましくは−8〜9.5になるようにアルミン酸アル
カリ金属塩浴液を添加して水酸化アルミニウムスラリー
金得る。アルミン酸アルカリ金属塩は5〜15分好まし
くは5〜10分で添加するのが望ましく、添加時間が余
り長くなると、ベーマイトゲル粒子の均一性が損われる
6第1の工程の反応によって得た水酸化アルミニウムス
ラリーに、pH7〜10を保持しながらアルミニウム鉱
酸塩溶液とアルミ/酸アルカリ金属塩を同時に添加して
第2の工程の反応を行う。第1の工程の反応で得た水酸
化アルミニウムスラリーを5〜120分好ましくは10
〜60分熟成した後に第2の工程の反応を行うのが、ベ
ーマイトゲル粒子の均一性を向上させるのに一層効果的
である。第2の工程の反応でのアルミニウム鉱酸塩溶液
とアルミン酸アルカリ金属塩溶液の同時添加は5〜30
分好ましくは5〜10分で添加するのがベーマイトゲル
粒子の均一成長のためには効果的でちる。第2の工程の
反応終了後に、更に5〜120分熟成を行うのがよい。
In the present invention, as a reaction in the first step, -1 is added to an aluminum mineral salt solution in the presence of a hydroxycarboxylic acid in a range of 7 to 1.
An aluminum hydroxide slurry gold is obtained by adding an alkali metal aluminate salt bath solution so that the aluminum hydroxide slurry is preferably -8 to 9.5. It is desirable to add the alkali metal aluminate in 5 to 15 minutes, preferably 5 to 10 minutes; if the addition time is too long, the uniformity of the boehmite gel particles will be impaired. The reaction of the second step is carried out by simultaneously adding an aluminum mineral acid salt solution and an aluminum/acid alkali metal salt to the aluminum oxide slurry while maintaining the pH of 7 to 10. The aluminum hydroxide slurry obtained in the reaction of the first step is heated for 5 to 120 minutes, preferably for 10 minutes.
It is more effective to perform the second step reaction after aging for ~60 minutes to improve the uniformity of the boehmite gel particles. Simultaneous addition of aluminum mineral salt solution and alkali metal aluminate solution in the reaction of the second step is 5 to 30%
Adding for 5 to 10 minutes is effective for uniform growth of boehmite gel particles. After completion of the reaction in the second step, it is preferable to further ripen for 5 to 120 minutes.

第1の工程の反応と第2の工程の反応で生成させる水酸
化アルミニウムの物量比に特に限定はないが、Aλ20
5換算重量比で1;9〜9;1好ましくは2;8〜8:
2の範囲で両反応を行わせるのが便利で、第2の工程の
反応で生成させる水酸化アルミニウムの物量比を高くす
れば平均細孔径の大きなアルミナ担体を製造することが
可能である。
There is no particular limitation on the quantitative ratio of aluminum hydroxide produced in the reaction of the first step and the reaction of the second step, but Aλ20
5 conversion weight ratio: 1; 9 to 9; 1 preferably 2; 8 to 8:
It is convenient to carry out both reactions in the range of 2, and it is possible to produce an alumina support with a large average pore diameter by increasing the proportion of aluminum hydroxide produced in the reaction of the second step.

本発明では、前に述べたように、水酸化アルミニウムス
之り−の製造をヒドロキシカルボン酸の存在下で反応を
2工程に分けて実施することが特徴的である。ヒドロキ
シカルボン酸の存在下であれば、アルミニウム鉱酸塩溶
液にアルミン酸アルカリ金属塩溶液を添加する方法(前
記の第1の工程の反応)或いは、アルミニウム鉱酸塩溶
液とアルミン酸アルカリ金属塩溶液とを同時に添加する
方法(前記の第2の工程の反応)をそれぞれ単独に実施
しても、細孔分布の鋭いアルミナ担体を得ることはでき
る。しかし、本発明のように2つの反応を組み合わせる
と、単独の反応から得たアルミナ担体よシ更に細孔分布
の鋭さが改善されたアルミナ担体が得られる。また、単
独の反応からは、アルミナ担体の平均細孔直径を変化さ
せることは困難だが、本発明では第1の工程の反応と第
2の工程の反応で生成させる水酸化アルミニウムの物量
比を変化させることでそれも可能になる。
As mentioned above, the present invention is characterized in that the production of aluminum hydroxide is carried out in two steps in the presence of a hydroxycarboxylic acid. In the presence of hydroxycarboxylic acid, a method of adding an alkali metal aluminate salt solution to an aluminum mineral salt solution (reaction in the first step) or a method of adding an aluminum mineral salt solution and an alkali metal aluminate solution An alumina support with a sharp pore distribution can be obtained even if the method of simultaneously adding (reaction in the second step) is carried out individually. However, when the two reactions are combined as in the present invention, an alumina support with a sharper pore distribution can be obtained than the alumina support obtained from the single reaction. Furthermore, it is difficult to change the average pore diameter of the alumina support from a single reaction, but in the present invention, the ratio of the amounts of aluminum hydroxide produced in the reaction in the first step and the reaction in the second step is changed. This is also possible by doing so.

(実施例) 以下本発明の具体的実施例及び比較例を示す。(Example) Specific examples and comparative examples of the present invention will be shown below.

実施例 1 内容積130λの攪拌機付きステンレス反応槽に水54
2とAl2O3濃度としてa1重i%の硫酸アルミニウ
ム溶液51BOfおよび濃度50重量%のグルコン酸溶
液50Fを添加し70℃まで加温保持した。次にこの溶
液に第1の工程の反応としてAj&20g a度1a4
重量%のアルミン酸ソーダ溶液3760gを5分間で添
加し、更に30分間熟成してp!(9,5の水酸化アル
ミニウムスラリーを得た。次に第2の工程の反応として
該スラリーに、前記グルコン酸浴V[s o yを加え
た前記硫酸アルミニウム溶液5180Fと前記アルミン
識ソーダ溶液37609とを+)Ha2〜&8を保持し
ながら5分間で同時に添加し、ついで30分間熟成した
。この間スラリーの温度は70℃に保持した。この場合
のグルコン酸の使用量は、使用した全アルミナ原料中に
含まれるAQ20! 1モル当!70.013モルであ
り、第1の工程の反応と第2の工程の反応で生成させる
水酸化アルミニウムの物量比は5;5であった。得られ
たスラリーを濾過・洗浄した後、加温機構付きのニーグ
ー中で加熱捏和しs  11205m度として40重量
%のに一ストを得た。このペーストを1■φのダイスを
有する押出し成型機によシ成型した後、110℃で18
時間乾燥し、更に電気炉で700℃で2時間焼成した。
Example 1 54 ml of water was placed in a stainless steel reaction tank with an internal volume of 130λ and equipped with a stirrer.
2, an aluminum sulfate solution 51BOf with an Al2O3 concentration of a1% by weight, and a gluconic acid solution 50F with a concentration of 50% by weight were added and kept heated to 70°C. Next, add Aj & 20g to this solution as a reaction in the first step.
3760 g of sodium aluminate solution (wt%) was added over 5 minutes, and aged for an additional 30 minutes, p! (An aluminum hydroxide slurry of 9,5 was obtained.Next, as a reaction in the second step, the aluminum sulfate solution 5180F to which the gluconic acid bath V[s o y was added and the aluminum hydroxide solution 37609 and +) were simultaneously added for 5 minutes while maintaining Ha2 to &8, and then aged for 30 minutes. During this time, the temperature of the slurry was maintained at 70°C. The amount of gluconic acid used in this case is AQ20 contained in all the alumina raw materials used! 1 mole win! The amount was 70.013 mol, and the physical ratio of aluminum hydroxide produced in the reaction of the first step and the reaction of the second step was 5:5. The obtained slurry was filtered and washed, and then heated and kneaded in a negoo machine equipped with a heating mechanism to obtain a 40% by weight slurry having a temperature of 11,205 m degrees. This paste was molded using an extrusion molding machine with a die of 1 mm diameter, and then heated to 18° C.
It was dried for an hour and then fired in an electric furnace at 700°C for 2 hours.

得られたアルミナ担体をAとし、その性状を表に示す。The obtained alumina carrier is designated as A, and its properties are shown in the table.

グルコン酸の使用量を、使用した全アルミナ原料中に含
まれるAQ20= 1モル当りそれぞれ0.032モル
、0.078モル、0.15モルと変化させ上記の方法
でアルミナ担体B、 C,Dを得た。その性状を表に示
す。
The amount of gluconic acid used was changed to 0.032 mol, 0.078 mol, and 0.15 mol per mol of AQ20 contained in the total alumina raw material used, respectively, and the alumina carriers B, C, and D were prepared by the above method. I got it. Its properties are shown in the table.

表で細孔分布の鋭さは、平均細孔直径±10Xの細孔が
占める細孔容積の全細孔容積に対する割合@−)で表わ
される。この表からグルコ/酸添加量を増加すると、細
孔分布の鋭さが増していくことがわかる。また、グルコ
ン酸の添加量を使用した全アルミナ原料中に含まれるA
l2O51モル当り0.15モルよシ多くしてもより以
上の効果は期待できない。
In the table, the sharpness of the pore distribution is expressed as the ratio of the pore volume occupied by pores having an average pore diameter of ±10X to the total pore volume @-). It can be seen from this table that as the amount of gluco/acid added increases, the sharpness of the pore distribution increases. In addition, the amount of A contained in the total alumina raw material using the added amount of gluconic acid
Even if the amount is increased by 0.15 mol per 1 mol of l2O5, no better effect can be expected.

実施例 2 凝集防止剤として酒石酸アンモニウムを使用する全アル
ミナ原料中に含まれるAR20s 1モル”)0.03
3モル添加したこと以外は実施例1に記載される方法と
全く同じ方法でアルミナ担体Zを得た。その性状を表に
示す。
Example 2 0.03 mol of AR20s contained in total alumina feedstock using ammonium tartrate as anti-agglomeration agent
Alumina carrier Z was obtained in exactly the same manner as described in Example 1, except that 3 mol was added. Its properties are shown in the table.

酒石酸アンモニウムはグルコン酸とほぼ同一の細孔分布
の鋭さに対する改善効果を示す。
Ammonium tartrate shows almost the same improvement effect on pore distribution sharpness as gluconic acid.

比較例 1 凝集防止剤を用いなかったこと以外は実施例1に記載さ
れる方法と全く同じ方法でアルミナ担体?を得た。その
性状を表に示す。
Comparative Example 1 An alumina carrier was prepared in exactly the same manner as described in Example 1 except that no anti-aggregation agent was used. I got it. Its properties are shown in the table.

凝集防止剤を添加した場合に得られるアルミナ担体に比
べて細孔分布の鋭さは著しく低い値を示す。
The sharpness of the pore distribution is significantly lower than that of an alumina support obtained when an anti-aggregation agent is added.

比較例 2 硫酸アルミニウム溶液にアルミン酸ソーダ溶液を添加す
る第1の工程の反応で、アルミン酸ソーダ溶液の添加時
間を15分とした他は実施例1に記載される方法と全く
同じ方法で担体Gを得た。また、硫酸アルミニウム溶液
とアルミン酸ソーダ溶液を同時に添加する第2の工程の
反応で、両アルミナ原料の添加時間を30分とした他は
実施例1に記載される方法と全く同じ方法で担体■を得
た。どちらの場合もグルコン酸の添加fFi、使用した
全アルミナ原料中に含まれるAx2o!1モル当、9 
G、032モルとした。担体G、Hの性状を表に示す。
Comparative Example 2 A carrier was prepared in exactly the same manner as described in Example 1, except that in the first step reaction of adding a sodium aluminate solution to an aluminum sulfate solution, the addition time of the sodium aluminate solution was changed to 15 minutes. I got a G. In addition, in the reaction of the second step in which the aluminum sulfate solution and the sodium aluminate solution were added simultaneously, the carrier I got it. In both cases, the addition fFi of gluconic acid, Ax2o contained in the total alumina raw material used! per mole, 9
G, 032 mol. The properties of carriers G and H are shown in the table.

どちらの場合も、同じグルコン酸添加量で第1の工程お
工び第2の工程共に添加時間5分とした場合に得られる
アルミナ担体に比べて細孔分布の鋭さの値が低い。
In either case, the value of the sharpness of the pore distribution is lower than that of the alumina support obtained when the same amount of gluconic acid is added and the addition time is 5 minutes in both the first and second steps.

実施例 3 凝集防止剤としてグルコン酸を使用する全アルミナ原料
に含まれるA℃2031モル当F)0.052モル用い
、第1の工程の反応と第2の工程の反応で生成させる水
酸化アルミニウムの物量比をそれぞれ8:2.5ニア、
2:8と変化させたこと以外は実施例1に記載される方
法と同様の方法で担体工、J、 Kを得た。尚、第1の
工程の反応と第2の工程の反応で生成させる水酸化アル
ミニウムの総量は実施例1と同じになるように各アルミ
ナ原料を設定した比率で分割し、グルコン酸も同じ比率
に分割して反応の各工程で用いる硫酸アルミニウム溶液
に添加した。担体工、Jlにの性状を表に示す。
Example 3 Using gluconic acid as an anti-agglomeration agent, using 0.052 mol of F) per 2031 mol of A°C contained in the total alumina raw material, aluminum hydroxide produced by the reaction in the first step and the reaction in the second step. The physical ratio of 8:2.5, respectively.
Carriers J and K were obtained in the same manner as described in Example 1 except that the ratio was changed to 2:8. In addition, each alumina raw material was divided at a set ratio so that the total amount of aluminum hydroxide produced by the reaction in the first step and the reaction in the second step was the same as in Example 1, and gluconic acid was also divided at the same ratio. It was added in portions to the aluminum sulfate solution used in each step of the reaction. The properties of the carrier and Jl are shown in the table.

第2の工程の反応の比率を増加するに伴ない、アルミナ
担体の平均細孔直径は大きくなるが、細孔分布の鋭さも
高い値に保たれることが理解できるであろう。
It can be seen that as the reaction rate of the second step increases, the average pore diameter of the alumina support increases, but the sharpness of the pore distribution also remains at a high value.

比較例 3 凝集防止剤としてグルコン教を使用する全アルミナ原料
中に含まれるAfi20g 1モル当υ0D32モル用
い、硫酸アルミニウム溶液にアルミン酸ソーダ溶液を添
加する第1の工程の反応だけを実施して担体りを得た。
Comparative Example 3 Using gluconate as an anti-agglomeration agent, using 20 g of Afi contained in the total alumina raw material and 32 moles of υ0D per 1 mole, only the reaction of the first step of adding a sodium aluminate solution to an aluminum sulfate solution was carried out to form a carrier. I got it.

また、同じグルコン酸添加量で、#L酸アルミニウム溶
液とアルミン酸ソーダ溶液を同時に添加する第2の工程
の反応だけを実施して担体Mを得た。担体L%Mの性状
を表に示す。
Further, with the same amount of gluconic acid added, a carrier M was obtained by carrying out only the reaction of the second step in which the aluminum #L acid solution and the sodium aluminate solution were added at the same time. The properties of carrier L%M are shown in the table.

第1の工程の反応および第2の工程の反応を単独に実施
しても細孔分布の鋭さに関しては。
Regarding the sharpness of the pore distribution, even if the reaction in the first step and the reaction in the second step are carried out independently.

比較的高い値を持つアルミナ担体が得られるが、両反応
を組み合わせだものの中で平均細孔直径がほぼ等しいア
ルミナ担体と比較すると細孔分布の鋭さの値が低いこと
が分る。また、第1の工程の反応のみで得たアルミナ担
体りは細孔容積も小さい。
Although an alumina support with a relatively high value is obtained, it is found that the value of the sharpness of the pore distribution is low when compared with an alumina support that has approximately the same average pore diameter even though both reactions are combined. Further, the alumina carrier obtained only by the reaction in the first step has a small pore volume.

(効 果) 本発明により、安価で工業的に有用なアルミナ原料であ
るtf t*アルミニウムとアルミン酸ソーダを使用し
て均一な粒子サイズ分布を持つベーマイトゲルを得るこ
とができる。また、本発明によれば、硫酸アルミニウム
溶液にアルミン酸ソーダを添加する第1の工程の反応と
硫酸アルミニウム溶液とアルミン酸ソーダとを同時に添
加する第2の工程の反応との比率を変化することで、分
布の均一性を損なうことなくベーマイトゲル粒子の大き
さを変化させることができる。
(Effects) According to the present invention, boehmite gel having a uniform particle size distribution can be obtained using TFT* aluminum and sodium aluminate, which are inexpensive and industrially useful alumina raw materials. Further, according to the present invention, the ratio between the reaction in the first step of adding sodium aluminate to the aluminum sulfate solution and the reaction in the second step of adding the aluminum sulfate solution and sodium aluminate simultaneously is changed. This allows the size of the boehmite gel particles to be changed without impairing the uniformity of the distribution.

このようにして得られる(−マイトゲルからは公知の方
法で成型、焼成することにより、任意の平均細孔直径と
鋭い細孔分布を持つアルミナ担体が製造できる。
An alumina carrier having an arbitrary average pore diameter and a sharp pore distribution can be produced from the Mitogel thus obtained by molding and firing by a known method.

特許出願人 住友金属鉱山株式会社 代 理 人  弁理士 佐  藤  辰  男゛′ ・
外2名
Patent applicant Sumitomo Metal Mining Co., Ltd. Representative Patent attorney Tatsuo Sato
2 people outside

Claims (1)

【特許請求の範囲】 1)ヒドロキシカルボン酸の存在下でアルミニウム鉱酸
塩溶液にpHが7〜10になるようにアルミン酸アルカ
リ金属塩溶液を添加して水酸化アルミニウムスラリーを
得る工程と、該スラリーにpH7〜10を保持しながら
アルミニウム鉱酸塩溶液とアルミン酸アルカリ金属塩溶
液を同時に添加する工程とからなるアルミナ担体の製造
方法。 2)ヒドロキシカルボン酸を使用する全アルミナ原料中
に含まれるAl_2O_31モル当り0.01〜0.1
5モル反応系に存在せしめる特許請求の範囲第1項記載
の方法。 3)ヒドロキシカルボン酸がグルコン酸である特許請求
の範囲第1項記載の方法。 4)アルミニウム鉱酸塩が硫酸アルミニウムであり、ア
ルミン酸アルカリ金属塩がアルミン酸ソーダである特許
請求の範囲第1項記載の方法。
[Claims] 1) A step of adding an alkali metal aluminate solution to an aluminum mineral salt solution in the presence of a hydroxycarboxylic acid so that the pH becomes 7 to 10 to obtain an aluminum hydroxide slurry; A method for producing an alumina carrier comprising the step of simultaneously adding an aluminum mineral salt solution and an alkali metal aluminate solution to a slurry while maintaining the pH of 7 to 10. 2) 0.01 to 0.1 per mole of Al_2O_3 contained in the total alumina raw material using hydroxycarboxylic acid
2. The method according to claim 1, wherein the compound is present in a 5 molar reaction system. 3) The method according to claim 1, wherein the hydroxycarboxylic acid is gluconic acid. 4) The method according to claim 1, wherein the aluminum mineral salt is aluminum sulfate and the alkali metal aluminate salt is sodium aluminate.
JP61067258A 1986-03-27 1986-03-27 Method for producing alumina carrier Expired - Lifetime JPH068174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61067258A JPH068174B2 (en) 1986-03-27 1986-03-27 Method for producing alumina carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61067258A JPH068174B2 (en) 1986-03-27 1986-03-27 Method for producing alumina carrier

Publications (2)

Publication Number Publication Date
JPS62226811A true JPS62226811A (en) 1987-10-05
JPH068174B2 JPH068174B2 (en) 1994-02-02

Family

ID=13339744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61067258A Expired - Lifetime JPH068174B2 (en) 1986-03-27 1986-03-27 Method for producing alumina carrier

Country Status (1)

Country Link
JP (1) JPH068174B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017321A (en) * 1996-06-27 1998-01-20 Catalysts & Chem Ind Co Ltd Small alumna sphere and its production
CN103787387A (en) * 2012-10-29 2014-05-14 中国石油化工股份有限公司 Stabilization method of sodium metaaluminate solution and preparation method of pseudo-boehmite
JP2017523109A (en) * 2014-06-13 2017-08-17 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Amorphous mesoporous alumina with optimized pore distribution and method for its preparation
CN112678853A (en) * 2019-10-18 2021-04-20 中国石油化工股份有限公司 Flaky grain boehmite and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE211947T1 (en) * 1996-09-05 2002-02-15 Japan Energy Corp ACIDIC CATALYST IN SOLID FORM AND METHOD FOR PRODUCING THE SAME
JP4916157B2 (en) * 2005-10-28 2012-04-11 日揮触媒化成株式会社 Alumina support for hydrodemetallation catalyst, production method thereof, and hydrodemetallation catalyst using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2996460A (en) * 1957-02-20 1961-08-15 Nalco Chemical Co Compositions containing alumina and method for the preparation thereof
JPS5259094A (en) * 1975-11-10 1977-05-16 Nalco Chemical Co Process for preparing alumina
JPS58190823A (en) * 1982-04-26 1983-11-07 Chiyoda Chem Eng & Constr Co Ltd Manufacture of alumina carrier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2996460A (en) * 1957-02-20 1961-08-15 Nalco Chemical Co Compositions containing alumina and method for the preparation thereof
JPS5259094A (en) * 1975-11-10 1977-05-16 Nalco Chemical Co Process for preparing alumina
JPS58190823A (en) * 1982-04-26 1983-11-07 Chiyoda Chem Eng & Constr Co Ltd Manufacture of alumina carrier

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017321A (en) * 1996-06-27 1998-01-20 Catalysts & Chem Ind Co Ltd Small alumna sphere and its production
CN103787387A (en) * 2012-10-29 2014-05-14 中国石油化工股份有限公司 Stabilization method of sodium metaaluminate solution and preparation method of pseudo-boehmite
CN103787387B (en) * 2012-10-29 2015-03-25 中国石油化工股份有限公司 Preparation method of pseudo-boehmite
JP2017523109A (en) * 2014-06-13 2017-08-17 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Amorphous mesoporous alumina with optimized pore distribution and method for its preparation
CN112678853A (en) * 2019-10-18 2021-04-20 中国石油化工股份有限公司 Flaky grain boehmite and preparation method thereof
CN112678853B (en) * 2019-10-18 2023-04-18 中国石油化工股份有限公司 Flaky grain boehmite and preparation method thereof

Also Published As

Publication number Publication date
JPH068174B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
KR100516408B1 (en) Monoclinic Zirconium Dioxide having a Large Surface Area
TWI353882B (en) In-situ zsm-5 synthesis
JP3205778B2 (en) Production of silica catalyst with enhanced performance
JPS62275022A (en) Ceric oxide with novel morphologic characteristics and manufacture
JPH0634920B2 (en) Process for producing catalyst composition containing nickel, aluminum oxide and zirconium dioxide for hydrogenating nitrile, aromatic hydrocarbon, nitro compound, catalyst composition and hydrogenating nitrile, aromatic hydrocarbon, nitro compound Method
KR20020026563A (en) Process for the preparation of quasi-crystalline boehmites
KR20020026564A (en) Process for the preparation of quasi-crystalline boehmites from inexpensive precursors
KR100279170B1 (en) Method and apparatus for manufacturing alumina
JPH0254142B2 (en)
US4935574A (en) Preparation of para-xylene by toluene methylation
JPS62226811A (en) Production of alumina carrier
US4120942A (en) Staged rehydration of alumina
CN115341050B (en) Lactulose preparation method
JPS58190823A (en) Manufacture of alumina carrier
CN110586187B (en) Supported phosphotungstic acid catalyst, and preparation method and application thereof
EP3778485B1 (en) Method for preparing zsm-5 zeolite
JP4054183B2 (en) Alumina production equipment
JPH021767B2 (en)
RU2100069C1 (en) Method of preparing catalyst
CN114433174B (en) Silicon-aluminum carrier and preparation method and application thereof
CN118637637A (en) ZSM-5 nanorod directionally grown along [001] crystal face and preparation method and application thereof
SU1763369A1 (en) Method of aluminium hydroxide preparation
JPH06287015A (en) Production of zeolite beta
JPS6245168B2 (en)
SU1747145A1 (en) Method for producing catalyst for claus process

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term