JPS62226805A - Treatment of hydrogen sulfide - Google Patents

Treatment of hydrogen sulfide

Info

Publication number
JPS62226805A
JPS62226805A JP61069759A JP6975986A JPS62226805A JP S62226805 A JPS62226805 A JP S62226805A JP 61069759 A JP61069759 A JP 61069759A JP 6975986 A JP6975986 A JP 6975986A JP S62226805 A JPS62226805 A JP S62226805A
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
chloride
gas
aqueous solution
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61069759A
Other languages
Japanese (ja)
Other versions
JPH0475764B2 (en
Inventor
Susumu Mizuta
水田 進
Wakichi Kondo
和吉 近藤
Shingo Isshiki
一色 眞吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Idemitsu Kosan Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP61069759A priority Critical patent/JPS62226805A/en
Publication of JPS62226805A publication Critical patent/JPS62226805A/en
Publication of JPH0475764B2 publication Critical patent/JPH0475764B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To oxidize FeCl2 to FeCl3 with high efficiency and to efficiently treat H2S by absorbing H2S in an aq. FeCl3 soln. acidified with hydrochloric acid, separating the formed S, adding an inorg. salt such as chlorides to the soln., and then blowing O2 into the soln. CONSTITUTION:An H2S-contg. gas 1 at about 50-90 deg.C is sent by a blower 14 into a gas absorption tower 2 from the lower part and brought into contact with an aq. FeCl3 soln. acidified with hydrochloric acid supplied from the upper part 15 to absorb H2S, and the gas is discharged into the atmosphere as an exhaust gas 4. The FeCl2 slurry 7 contg. formed S is then filtered by a filter 5, and S6 is separated. Meanwhile, at least one kind of inorg. salt among the chlorides of an alkali metal or an alkaline earth metal and NH4Cl is added to the filtrate 8, and O2 or an O2-contg. gas 12 is blown into an oxidation device 10. KCl, LiCl, NaCl, and NH4Cl, especially KCl, are appropriately used as the inorg. salt. The FeCl2 in the aq. soln. is efficiently oxidized to FeCl3 by the treatment, and the soln. is reused for H2S absorption.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は改良された硫化水素の処理方法に関するもので
ある。さらに詳しくいえば、本発明は、塩化鉄の酸化、
還元反応を利用した硫化水素または硫化水素含有ガスの
処理において、硫化水素の吸収により生成した塩化第一
鉄の塩化第二鉄への再生速度を速め、効率よく硫化水素
を処理する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an improved method for treating hydrogen sulfide. More specifically, the present invention provides oxidation of iron chloride,
This article relates to a method for efficiently treating hydrogen sulfide by accelerating the regeneration rate of ferrous chloride produced by absorption of hydrogen sulfide into ferric chloride in the treatment of hydrogen sulfide or hydrogen sulfide-containing gas using a reduction reaction. be.

〔従来の技術〕[Conventional technology]

硫化水素ガスは、例えば製鉄所において、高温の溶滓に
水をかけて高炉滓から水滓を製造する際に、水蒸気と共
に多量発生し、また、石油精製の際にも多量発生する。
Hydrogen sulfide gas is generated in large amounts together with steam when, for example, in steel plants, water is poured over high-temperature slag to produce slag from blast furnace slag, and large amounts of hydrogen sulfide gas are also generated during oil refining.

このような硫化水素ガスは悪臭を発生する上に、腐食性
を有し、かつ人体に対して悪影響を及ぼすなどの問題を
有し、公害防止、設備保全、労働環境衛生上からその処
理対策が要望されている。
Such hydrogen sulfide gas not only emits a foul odor, but also has corrosive properties and has a negative effect on the human body. Measures to dispose of it are necessary from the viewpoint of pollution prevention, equipment maintenance, and occupational health. It is requested.

従来、このような水素ガスを処理する方法としては、水
酸化ナトリウム、石灰、アルカリ錯塩などのアルカリに
硫化水素ガスを接触させる方法が知られているが、この
方法は、反応が遅く、かつ硫化物や多硫化物などの生成
物の処理に問題があるなど、実用的に十分に満足しうる
方法とはいえない。
Conventionally, a method known to treat such hydrogen gas is to contact hydrogen sulfide gas with an alkali such as sodium hydroxide, lime, or an alkali complex salt, but this method has a slow reaction and This method cannot be said to be fully satisfactory in practical terms, as there are problems with the treatment of products such as polysulfides and polysulfides.

ところで、硫化水素は3価の鉄イオンを含む水溶液に接
触すると、酸化されて容易に硫黄を生成することが知ら
れている。3価の鉄イオンを含む水溶液として、例えば
塩化第二鉄水溶液を用いる場合、次に示す反応式に従っ
て硫化水素から硫黄を生成する。
By the way, it is known that when hydrogen sulfide comes into contact with an aqueous solution containing trivalent iron ions, it is oxidized and easily generates sulfur. When using, for example, a ferric chloride aqueous solution as the aqueous solution containing trivalent iron ions, sulfur is produced from hydrogen sulfide according to the reaction formula shown below.

2Fe(1!i+IIzS−2FeC1z+211(1
+S ・・・(1)すなわち、硫化水素は塩化第二鉄に
より酸化されて硫黄を生成し、一方、塩化第二鉄は還元
されて塩化第一鉄となる。
2Fe(1!i+IIzS-2FeC1z+211(1
+S... (1) That is, hydrogen sulfide is oxidized by ferric chloride to produce sulfur, while ferric chloride is reduced to become ferrous chloride.

このような3価の鉄イオンと硫化水素との反応を利用し
た硫化水素処理方法としては、例えば硫酸銅と硫酸第二
鉄を含む水溶液を吸収液として用いる方法(特公昭56
−23650号公報)が提案されている。この方法は、
前記水溶液を用いて硫化水素を吸収させたのち、この液
を酸素加圧下、120℃以上の温度で加圧処理して、溶
融硫黄と硫酸銅および硫酸第二鉄を生成させ、溶融硫黄
は回収除去し、硫酸銅と硫酸第二鉄を含む処理液は吸収
液として繰り返し使用するという方法である。
As a hydrogen sulfide treatment method using such a reaction between trivalent iron ions and hydrogen sulfide, for example, a method using an aqueous solution containing copper sulfate and ferric sulfate as an absorption liquid (Japanese Patent Publication No. 56
-23650) has been proposed. This method is
After hydrogen sulfide is absorbed using the aqueous solution, this liquid is pressure-treated at a temperature of 120°C or higher under oxygen pressure to produce molten sulfur, copper sulfate, and ferric sulfate, and the molten sulfur is recovered. The treatment solution containing copper sulfate and ferric sulfate is repeatedly used as an absorption solution.

しかしながら、この方法においては、生成した硫黄の存
在下で酸化処理が行われるために、不純物が生成して、
硫黄の分離回収性が悪いなどの欠点がある。
However, in this method, since the oxidation treatment is performed in the presence of the generated sulfur, impurities are generated.
There are drawbacks such as poor separation and recovery of sulfur.

また、塩化第二鉄水溶液に硫化水素を吸収させ、生成し
た硫黄を分離したのち、この水溶液中の塩化第一鉄を酸
素酸化して塩化第二鉄に再生し、硫化水素の吸収に再使
用するという硫化水素の処理方法が提案されている(特
開昭51−103096号公報、特公昭55−1696
3号公報、米国特許第3097925号明細書)。しか
しながら、この方法は、硫化水素の吸収速度が比較的速
いものの、塩化第一鉄の酸化速度が十分に満足しうるほ
ど速くないという欠点を有している。
In addition, after hydrogen sulfide is absorbed into a ferric chloride aqueous solution and the generated sulfur is separated, the ferrous chloride in this aqueous solution is oxidized with oxygen and regenerated into ferric chloride, which is then reused to absorb hydrogen sulfide. A method for treating hydrogen sulfide has been proposed (Japanese Unexamined Patent Publication No. 103096/1983, Japanese Patent Publication No. 1696/1983).
No. 3, U.S. Pat. No. 3,097,925). However, this method has the disadvantage that although the absorption rate of hydrogen sulfide is relatively fast, the oxidation rate of ferrous chloride is not sufficiently fast.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、このような従来の硫化水素処理方法が
有する欠点を改良し、硫化水素の吸収速度が比較的速い
塩酸酸性塩化第二鉄水溶液を用いて、硫化水素または硫
化水素含有ガスを処理するとともに、生成した塩化第一
鉄の塩化第二鉄への酸化速度を速めて硫化水素の除去率
を高めるとともに、処理速度を速めた処理方法を提供す
ることにある。
The purpose of the present invention is to improve the drawbacks of such conventional hydrogen sulfide treatment methods, and to treat hydrogen sulfide or hydrogen sulfide-containing gas by using a hydrochloric acid acidified ferric chloride aqueous solution, which has a relatively fast hydrogen sulfide absorption rate. It is an object of the present invention to provide a treatment method that increases the rate of oxidation of generated ferrous chloride to ferric chloride, increases the removal rate of hydrogen sulfide, and increases the treatment speed.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、前記目的を達成するために鋭意研究を重
ねた結果、塩酸酸性塩化第二鉄水溶液に硫化水素を吸収
させ、次いで生成した硫黄を分離したのち、この水溶液
に特定の無機塩を添加して、酸素または酸素含有ガスを
吹込むことにより、その目的を達成しうろことを見出し
、この知見にもに基づいて本発明を完成するに至った。
As a result of extensive research in order to achieve the above object, the present inventors discovered that hydrogen sulfide was absorbed into a hydrochloric acid acidified ferric chloride aqueous solution, the generated sulfur was separated, and a specific inorganic salt was added to this aqueous solution. It was discovered that the objective could be achieved by adding oxygen and blowing in oxygen or an oxygen-containing gas, and based on this knowledge, the present invention was completed.

すなわち、本発明は、塩酸酸性塩化第二鉄水溶液に硫化
水素または硫化水素含有ガスを接触させて硫化水素を吸
収させ、次いで生成した硫黄を分離したのち、この水溶
液に酸素または酸素台をガスを吹込み、その中の塩化第
一鉄を塩化第二鉄に再生するにあたり、前記硫黄を分離
後の水溶液に、アルカリ金属の塩化物、アルカリ土類金
属の塩化物および塩化アンモニウムの中から選ばれた少
なくとも1種の無機塩を添加して、酸素または酸素含有
ガスを吹込むことを特徴とする硫化水素の処理方法を提
供するものである。
That is, in the present invention, hydrogen sulfide or a hydrogen sulfide-containing gas is brought into contact with a hydrochloric acid acidic ferric chloride aqueous solution to absorb hydrogen sulfide, the generated sulfur is then separated, and then oxygen or an oxygen gas is introduced into the aqueous solution. In order to regenerate the ferrous chloride in the ferrous chloride into ferric chloride, the aqueous solution after the sulfur has been separated is injected with a mixture of alkali metal chlorides, alkaline earth metal chlorides and ammonium chloride. The present invention provides a method for treating hydrogen sulfide, which is characterized by adding at least one inorganic salt and blowing oxygen or an oxygen-containing gas.

本発明方法において用いられる被処理ガスとしては、硫
化水素単独であってもよいし、硫化水素と他の気体、例
えば水素、−酸化炭素、二酸化炭素、炭化水素、アンモ
ニアなどとの混合ガスであってもよい。
The gas to be treated used in the method of the present invention may be hydrogen sulfide alone, or a mixed gas of hydrogen sulfide and other gases such as hydrogen, carbon oxide, carbon dioxide, hydrocarbons, and ammonia. It's okay.

本発明方法においては、硫化水素の吸収に塩酸酸性塩化
第二鉄水溶液が用いられる。この水溶液中の塩酸含有量
は1 kg当り0.1〜7モルの範囲が好ましく、また
塩化第二鉄の含有量は通常水L kg当り0.5〜5モ
ルの範囲で選ばれる。塩化第一鉄は含有していてもよい
し、含有していなくてもよい。 この塩酸酸性塩化第二
鉄水溶液に前記の硫化水素または硫化水素含有ガスを接
触させる方法としては、通常液体によるガス吸収におい
て慣用されている方法を用いることができる。この際の
温度としては、50〜90℃の範囲の温度が好ましく用
いられる。ガス吸収温度がこの範囲を逸脱すると、硫化
水素の吸収速度が遅くなって好ましくなく、また、低い
温度では、生成した硫黄がゴム状になりやすい。
In the method of the present invention, a hydrochloric acid acidic ferric chloride aqueous solution is used to absorb hydrogen sulfide. The hydrochloric acid content in this aqueous solution is preferably in the range of 0.1 to 7 mol per kg, and the ferric chloride content is usually selected in the range of 0.5 to 5 mol per kg of water. Ferrous chloride may or may not be contained. As a method for bringing the hydrogen sulfide or hydrogen sulfide-containing gas into contact with this hydrochloric acid acidified ferric chloride aqueous solution, a method commonly used in gas absorption by a liquid can be used. As the temperature at this time, a temperature in the range of 50 to 90°C is preferably used. If the gas absorption temperature is outside this range, the absorption rate of hydrogen sulfide will be undesirably slow, and at low temperatures, the produced sulfur tends to become rubbery.

このようにして、塩酸酸性塩化第二鉄水溶液に硫化水素
が吸収されると、該硫化水素は、前記の反応式(1)に
示されるように、酸化されて硫黄を生成し、一方塩化第
二鉄は還元されて塩化第一鉄となる。
When hydrogen sulfide is absorbed into the hydrochloric acid acidified ferric chloride aqueous solution in this way, the hydrogen sulfide is oxidized to produce sulfur as shown in the reaction formula (1) above, while ferric chloride Diiron is reduced to ferrous chloride.

本発明方法においては、硫化水素吸収液中の硫黄を分離
回収したのち、この液に酸化処理を施すが、該硫黄の分
離回収方法としては、固体状の硫黄を遠心分離やろ過な
どの手段で分離する方法を用いてもよいし、所望ならば
120〜150℃程度に加熱して、溶融状の硫黄を分液
などの手段で分離する方法を用いてもよい。
In the method of the present invention, after the sulfur in the hydrogen sulfide absorption liquid is separated and recovered, this liquid is subjected to oxidation treatment. A method of separating the sulfur may be used, or, if desired, a method of heating the sulfur to about 120 to 150° C. and separating the molten sulfur by liquid separation or the like may be used.

次にこのようにして、硫黄が分離回収された塩化第一鉄
を含む水溶液に、塩化カリウム、塩化リチウムおよび塩
化アンモニウムの中から選ばれた少なくとも1種の無機
塩を添加し、酸素または空気などの酸素含有ガスを吹込
み、次の反応式2式% で示されるように、塩化第一鉄を塩化第二鉄に酸化する
。この際、該塩化第一鉄を含む水溶液中の塩酸含有量は
水1 kg当り2モル以上が好ましく、また、酸化温度
は好ましくは50〜90℃の範囲で選ばれる。
Next, to the aqueous solution containing ferrous chloride from which sulfur has been separated and recovered, at least one inorganic salt selected from potassium chloride, lithium chloride, and ammonium chloride is added, and oxygen or air etc. of oxygen-containing gas is blown in to oxidize ferrous chloride to ferric chloride as shown in the following reaction formula 2. At this time, the hydrochloric acid content in the aqueous solution containing ferrous chloride is preferably 2 moles or more per 1 kg of water, and the oxidation temperature is preferably selected within the range of 50 to 90°C.

これらの無機塩のうちでは、塩化カリウム、塩化リチウ
ム、塩化ナトリウム、塩化アンモニウムが好ましく用い
られ、特に酸化速度の点から塩化カリウムが好ましく用
いられる。
Among these inorganic salts, potassium chloride, lithium chloride, sodium chloride, and ammonium chloride are preferably used, and potassium chloride is particularly preferably used from the viewpoint of oxidation rate.

前記無機塩の添加量は、塩化第一鉄と塩化第二鉄との合
計1モル当り、好ましくは0.1〜2モルの範囲で選ば
れる。この量が0.1モル未満では本発明の効果が十分
に発揮されず、また2モルを超えると量の割には酸化速
度が向上せず、むしろ、この酸化処理液を硫化水素の吸
収に再使用する場合、その吸収速度に悪影響を及ぼすよ
うになり好ましくない。
The amount of the inorganic salt added is preferably selected in the range of 0.1 to 2 mol per 1 mol of ferrous chloride and ferric chloride. If this amount is less than 0.1 mole, the effect of the present invention will not be fully exhibited, and if it exceeds 2 moles, the oxidation rate will not improve in proportion to the amount, but rather the oxidation treatment liquid will not be used to absorb hydrogen sulfide. If it is reused, it is not preferable because it will adversely affect its absorption rate.

前記無機塩を添加することにより、無添加の場合に比べ
て、塩化第一鉄の酸化速度は約1.5〜2倍速くなる。
By adding the inorganic salt, the oxidation rate of ferrous chloride becomes about 1.5 to 2 times faster than when no addition is made.

このようにして、酸化処理が施され、再生した塩化第二
鉄を含む水溶液は、硫化水素の吸収に循環使用され、硫
化水素が効率よく処理される。
The aqueous solution containing ferric chloride that has been oxidized and regenerated in this manner is recycled to absorb hydrogen sulfide, and the hydrogen sulfide is efficiently treated.

次に、本発明方法の好適な1例を添付図面に従って説明
する。第1図は本発明方法を実施するためのフローシー
トの1例であって、50〜90℃の温度に調整された硫
化水素または硫化水素含有ガス1は送風機14によって
ガス吸収塔2に導入され、この吸収塔の上部15より供
給される温度50〜90℃の該無機塩含有塩酸酸性塩化
第二鉄水溶液と接触したのち、排ガス4として大気へ放
出される。
Next, a preferred example of the method of the present invention will be explained with reference to the accompanying drawings. FIG. 1 is an example of a flow sheet for carrying out the method of the present invention, in which hydrogen sulfide or hydrogen sulfide-containing gas 1 adjusted to a temperature of 50 to 90°C is introduced into a gas absorption tower 2 by a blower 14. After coming into contact with the inorganic salt-containing hydrochloric acid acidic ferric chloride aqueous solution at a temperature of 50 to 90° C. supplied from the upper part 15 of this absorption tower, it is released into the atmosphere as exhaust gas 4.

一方、ガス吸収塔2の下部3から排出され硫化水素を吸
収し、スラリー状の硫黄をふくむ該無機塩含有塩化鉄水
溶液7は、ろ過装置5へ供給され、該硫黄6はろ過分離
されて排出される。ろ液8は酸化器10の上部9に供給
され、一方、この酸化器10に酸素または酸素含有ガス
12を導入して、50〜90℃の温度でろ液8中の塩化
第一鉄を塩化第二鉄に酸化する。再生された塩化鉄水溶
液11はガス吸収塔2の上部15へ供給され、酸素また
は酸素含有ガスは排ガス13として大気へ放出される。
On the other hand, the inorganic salt-containing iron chloride aqueous solution 7 that is discharged from the lower part 3 of the gas absorption tower 2, absorbs hydrogen sulfide, and contains slurry sulfur is supplied to the filtration device 5, and the sulfur 6 is filtered and separated before being discharged. be done. The filtrate 8 is fed to the upper part 9 of an oxidizer 10, while oxygen or an oxygen-containing gas 12 is introduced into the oxidizer 10 to convert the ferrous chloride in the filtrate 8 to ferrous chloride at a temperature of 50 to 90°C. Oxidizes to diiron. The regenerated iron chloride aqueous solution 11 is supplied to the upper part 15 of the gas absorption tower 2, and oxygen or oxygen-containing gas is released to the atmosphere as exhaust gas 13.

〔実施例〕〔Example〕

次に実施例により本発明をさらに詳細に説明するが、本
発明はこれらの例によってなんら限定されるものではな
い。
EXAMPLES Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to these examples in any way.

実施例1 第1図に示したフローシートに従ってHzSを31.4
vo1%含有する脱硫装置排ガス1 (石油精製におけ
る水素化脱硫装置よりの排ガス)を約60℃に加熱した
のち、送風機14により、圧力275mm水柱で吸収塔
2に導入し、その上部15から供給される60℃の塩化
第二鉄水溶液(FeCj! Z O。
Example 1 HzS was set to 31.4 according to the flow sheet shown in Figure 1.
After heating the desulfurization equipment exhaust gas 1 (exhaust gas from a hydrodesulfurization equipment in oil refining) containing VO1% to about 60°C, it is introduced into the absorption tower 2 at a pressure of 275 mm water column by the blower 14, and is supplied from the upper part 15. Ferric chloride aqueous solution (FeCj!ZO.

8モル/ kg 11□0、FeCj! 31.2モル
/ kg HzO,lIc15モル/kgH,0、+K
111.5モル/kgHアO)と接触させて、該水溶液
に硫化水素を吸収させた。
8 mol/kg 11□0, FeCj! 31.2 mol/kg HzO, lIc15 mol/kgH, 0, +K
The aqueous solution was brought into contact with 111.5 mol/kg H2O) to absorb hydrogen sulfide.

ガス吸収塔2の下部3から排出される硫化水素吸収液7
をろ過装置5に供給し、生成した硫黄をろ過分離した。
Hydrogen sulfide absorption liquid 7 discharged from the lower part 3 of the gas absorption tower 2
was supplied to the filtration device 5, and the generated sulfur was separated by filtration.

ろ過機5からは、単体硫黄6を0.01kg/時間の割
合で連続的に排出した。硫黄を分離したのち、吸収液中
の塩化第一鉄を塩化第二鉄へ酸化するため、ろ液8を酸
化塔10に供給し、一方酸素12を550m jl! 
/minの速度で吹込んだ。再生した塩化鉄水溶液11
は、ガス吸収塔2の上部15へ供給され再び硫化水素の
吸収に用いた。 このような硫化水素の処理を、連続的
に3時間行ったところ、硫化水素の除去率が99.4%
と極めて良好な結果が得られた。
Elemental sulfur 6 was continuously discharged from the filter 5 at a rate of 0.01 kg/hour. After separating the sulfur, the filtrate 8 is fed to the oxidation tower 10 in order to oxidize the ferrous chloride in the absorption liquid to ferric chloride, while the oxygen 12 is fed at 550 mjl!
It was injected at a speed of /min. Regenerated iron chloride aqueous solution 11
was supplied to the upper part 15 of the gas absorption tower 2 and used again to absorb hydrogen sulfide. When this hydrogen sulfide treatment was carried out continuously for 3 hours, the hydrogen sulfide removal rate was 99.4%.
Very good results were obtained.

実施例2 塩化第一鉄1.5モル/kgo2oおよび塩酸2モル/
kgHzoを含有する水溶液に、塩化カリウム1.5モ
ル/ kg II 20を添加した溶液6抛lに、温度
70℃、酸素分圧0.8at111で、NIIL2ガラ
スポールフィルターを用い、酸素を180m II /
winの速度で吹込み、塩化第一鉄を塩化第二鉄に酸化
した。反応時間と反応率との関係を第2図にグラフ(○
−O)で示す。なお無添加の場合も該図にグラフ(・−
・)で示す。
Example 2 Ferrous chloride 1.5 mol/kgo2o and hydrochloric acid 2 mol/
To 6 liters of a solution containing 1.5 mol/kg II 20 of potassium chloride added to an aqueous solution containing 1.5 mol/kg II 20 of potassium chloride, 180 m II/kg of oxygen was added using a NIIL2 glass pole filter at a temperature of 70°C and an oxygen partial pressure of 0.8 at 111.
ferrous chloride was oxidized to ferric chloride. The relationship between reaction time and reaction rate is shown in the graph in Figure 2 (○
-O). In addition, the graph (・-
・Indicated by ).

塩化第一鉄から塩化第二鉄への酸化速度は、無極性溶媒
添加の場合に比べて約2倍に増加した。
The oxidation rate of ferrous chloride to ferric chloride increased approximately twice compared to the case of nonpolar solvent addition.

実施例3 実施例2において、塩化カリウムの代りに、塩化アンモ
ニウムを用いる以外は、実施例2と全く同様にして塩化
第一鉄を塩化第二鉄に酸化した。
Example 3 In Example 2, ferrous chloride was oxidized to ferric chloride in exactly the same manner as in Example 2, except that ammonium chloride was used instead of potassium chloride.

反応時間と反応率との関係を第2図にグラフ(■−■)
で示す。
The relationship between reaction time and reaction rate is graphed in Figure 2 (■-■)
Indicated by

塩化第一鉄から塩化第二鉄への酸化速度は、無添加の場
合に比べて約1.5倍に増加した。
The oxidation rate of ferrous chloride to ferric chloride increased approximately 1.5 times compared to the case without the addition.

実施例4 実施例2において、塩化カリウムの代りに、塩化リチウ
ムを用いる以外は、実施例2と全く同様にして塩化第一
鉄を塩化第二鉄に酸化した。反応時間と反応率との関係
を第2図にグラフ(G−〇)で示す。
Example 4 In Example 2, ferrous chloride was oxidized to ferric chloride in exactly the same manner as in Example 2, except that lithium chloride was used instead of potassium chloride. The relationship between reaction time and reaction rate is shown in graph (G-○) in FIG.

塩化第一鉄から塩化第二鉄への酸化速度は、無添加の場
合に比べて約1.5倍に増加した。
The oxidation rate of ferrous chloride to ferric chloride increased approximately 1.5 times compared to the case without the addition.

実施例5 実施例2において、酸素吹込みの温度を70℃から90
℃に変える以外は、実施例2と全く同様にして塩化第一
鉄を塩化第二鉄に酸化した。
Example 5 In Example 2, the temperature of oxygen injection was changed from 70°C to 90°C.
Ferrous chloride was oxidized to ferric chloride in exactly the same manner as in Example 2, except that the temperature was changed to °C.

塩化第一鉄から塩化第二鉄への酸化速度は、無添加の場
合に比べて約1.8倍に増加した。
The oxidation rate of ferrous chloride to ferric chloride increased approximately 1.8 times compared to the case without the addition.

〔発明の効果〕〔Effect of the invention〕

本発明の硫化水素処理法は、塩化鉄の酸化、還元反応を
利用した硫化水素または硫化水素含有ガスの処理方法で
あって、硫化水素の吸収により生成した塩化第一鉄を十
分に速い酸化速度で塩化第二鉄に再生しうるので、硫化
水素の処理の効率化、酸化塔のコンパクト化などが可能
であり、実用的価値の高い方法といえる。
The hydrogen sulfide treatment method of the present invention is a method for treating hydrogen sulfide or hydrogen sulfide-containing gas using the oxidation and reduction reactions of iron chloride, and the ferrous chloride produced by absorption of hydrogen sulfide is oxidized at a sufficiently high rate. Since it can be regenerated into ferric chloride, it is possible to improve the efficiency of hydrogen sulfide treatment and make the oxidation tower more compact, making it a method with high practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するためのフローシ−トの1
例であって、図中符号lは硫化水素または硫化水素含有
ガス、2はガス吸収塔、5は硫黄を分離するだめのろ過
装置、10は酸化塔、11は再生された吸収液、12は
酸化または酸素含有ガスである。 第2図は、塩化第一鉄を塩化第二鉄に酸素酸化する際に
、無機塩を添加した場合の効果の1例を示すグラフであ
り、横軸は反応時間、縦軸は反応率を表わす。図におい
て、0−0は塩化カリウム、■−■は塩化アンモニウム
、L3−〇は塩化リチウムを添加した場合であり、・−
・は無添加の場合である。
Figure 1 is a flow sheet for carrying out the method of the present invention.
In the figure, reference numeral 1 indicates hydrogen sulfide or hydrogen sulfide-containing gas, 2 indicates a gas absorption tower, 5 indicates a filtration device for separating sulfur, 10 indicates an oxidation tower, 11 indicates a regenerated absorption liquid, and 12 indicates a filtration device for separating sulfur. It is an oxidizing or oxygen-containing gas. Figure 2 is a graph showing an example of the effect of adding an inorganic salt during the oxygen oxidation of ferrous chloride to ferric chloride, with the horizontal axis representing the reaction time and the vertical axis representing the reaction rate. represent. In the figure, 0-0 is potassium chloride, ■-■ is ammonium chloride, L3-0 is the case where lithium chloride is added, and...
・ is the case without additives.

Claims (1)

【特許請求の範囲】 1、塩酸酸性塩化第二鉄水溶液に、硫化水素または硫化
水素含有ガスを接触させて硫化水素を吸収させ、次いで
生成した硫黄を分離したのち、この水溶液に酸素または
酸素含有ガスを吹込み、その中の塩化第一鉄を塩化第二
鉄に再生するにあたり、前記硫黄を分離後の水溶液に、
アルカリ金属の塩化物、アルカリ土類金属の塩化物およ
び塩化アンモニウムの中から選ばれた少なくとも1種の
無機塩を添加して、酸素または酸素含有ガスを吹込むこ
とを特徴とする硫化水素の処理方法。 2、無機塩が塩化カリウム、塩化リチウム、塩化ナトリ
ウムおよび塩化アンモニウムから選ばれた少なくとも1
種である特許請求の範囲第1項記載の硫化水素の処理方
法。 3、無機塩が塩化カリウムである特許請求の範囲第2項
記載の硫化水素の処理方法。 4、無機塩の添加量が、塩化第一鉄と塩化第二鉄との合
計1モル当り0.1〜2モルである特許請求の範囲第1
項、第2項または第3項記載の硫化水素の処理方法。
[Scope of Claims] 1. Hydrochloric acid acidic ferric chloride aqueous solution is brought into contact with hydrogen sulfide or a hydrogen sulfide-containing gas to absorb hydrogen sulfide, then the generated sulfur is separated, and then oxygen or oxygen-containing aqueous solution is added to the aqueous solution. In injecting gas to regenerate the ferrous chloride in it into ferric chloride, the sulfur is separated into the aqueous solution,
Hydrogen sulfide treatment characterized by adding at least one inorganic salt selected from alkali metal chlorides, alkaline earth metal chlorides, and ammonium chloride and blowing oxygen or oxygen-containing gas Method. 2. At least one inorganic salt selected from potassium chloride, lithium chloride, sodium chloride and ammonium chloride
A method for treating hydrogen sulfide according to claim 1, which is a hydrogen sulfide. 3. The method for treating hydrogen sulfide according to claim 2, wherein the inorganic salt is potassium chloride. 4. Claim 1, wherein the amount of inorganic salt added is 0.1 to 2 moles per 1 mole of ferrous chloride and ferric chloride in total.
The method for treating hydrogen sulfide according to item 2, item 3, or item 3.
JP61069759A 1986-03-29 1986-03-29 Treatment of hydrogen sulfide Granted JPS62226805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61069759A JPS62226805A (en) 1986-03-29 1986-03-29 Treatment of hydrogen sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61069759A JPS62226805A (en) 1986-03-29 1986-03-29 Treatment of hydrogen sulfide

Publications (2)

Publication Number Publication Date
JPS62226805A true JPS62226805A (en) 1987-10-05
JPH0475764B2 JPH0475764B2 (en) 1992-12-01

Family

ID=13412048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61069759A Granted JPS62226805A (en) 1986-03-29 1986-03-29 Treatment of hydrogen sulfide

Country Status (1)

Country Link
JP (1) JPS62226805A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005762A1 (en) * 2013-07-12 2015-01-15 Geo Estratos, S.A. De C.V. Method and apparatus for sequestering hydrogen sulphide in petroleum well gas
CN107308793A (en) * 2017-06-27 2017-11-03 苏州克莱尔环保科技有限公司 A kind of device that sulphur is reclaimed from hydrogen sulfide containing industrial tail gas
CN107789960A (en) * 2016-09-02 2018-03-13 上海新禹固废处理有限公司 Iron chloride removes hydrogen sulfide technology

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005762A1 (en) * 2013-07-12 2015-01-15 Geo Estratos, S.A. De C.V. Method and apparatus for sequestering hydrogen sulphide in petroleum well gas
CN107789960A (en) * 2016-09-02 2018-03-13 上海新禹固废处理有限公司 Iron chloride removes hydrogen sulfide technology
CN107308793A (en) * 2017-06-27 2017-11-03 苏州克莱尔环保科技有限公司 A kind of device that sulphur is reclaimed from hydrogen sulfide containing industrial tail gas

Also Published As

Publication number Publication date
JPH0475764B2 (en) 1992-12-01

Similar Documents

Publication Publication Date Title
Wiȩckowska Catalytic and adsorptive desulphurization of gases
US3097925A (en) Method of recovering sulphur
CA1119387A (en) Process for the purification of industrial waste gases
US4163043A (en) Process for removing H2 S and CO2 from gases and regenerating the adsorbing solution
IE44311B1 (en) Method of extracting and recovering mercury from gases
CA2065546A1 (en) Process and apparatus for removal of h2s with separate absorber and oxidizer and a reaction chamber therebetween
US5200160A (en) Process for removing sulfur dioxide and nitrogen oxides from flue gases
US3959452A (en) Process for removing hydrogen sulfide from contaminated gas
US4664902A (en) Recovery of sulfur from a solid sulfur-containing solution of solubilized iron chelate of nitrilotriacetic acid
US4524049A (en) Process for concurrent steam generation and metal recovery
JPS63197521A (en) Method of removing gaseous mercury from gas
JPS62226805A (en) Treatment of hydrogen sulfide
US3950492A (en) Process for removal of ammonia, hydrogen sulfide and hydrogen cyanide from gases containing these substances
US5215728A (en) Method and apparatus for removal of h2s from a process gas, including thiosulfate and/or cyanide salt decomposition
US4309398A (en) Conversion of alkali metal sulfate to the carbonate
Bienstock Sulfur dioxide: its chemistry and removal from industrial waste gases
US2090828A (en) Process for purifying sulphur dioxide bearing gases
JPS6134853B2 (en)
US4364918A (en) Separation of thiosulfate from Stretford solution
US4855117A (en) Process for removing sulfur oxides from a gas by means of an absorption mass regenerable by reaction with elemental sulfur
US4230594A (en) Method of treating spent reducing gas
JPH0221854B2 (en)
US5167940A (en) Process and apparatus for removal of H2 S from a process gas including polyvalent metal removal and decomposition of salts and complexes
JPS60257822A (en) Removal of hydrogen sulfide
JP4044981B2 (en) Method for removing impurities from waste acid

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term