JP4044981B2 - Method for removing impurities from waste acid - Google Patents

Method for removing impurities from waste acid Download PDF

Info

Publication number
JP4044981B2
JP4044981B2 JP30033896A JP30033896A JP4044981B2 JP 4044981 B2 JP4044981 B2 JP 4044981B2 JP 30033896 A JP30033896 A JP 30033896A JP 30033896 A JP30033896 A JP 30033896A JP 4044981 B2 JP4044981 B2 JP 4044981B2
Authority
JP
Japan
Prior art keywords
acid
waste acid
waste
impurities
removing impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30033896A
Other languages
Japanese (ja)
Other versions
JPH10137768A (en
Inventor
敏文 石井
一博 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP30033896A priority Critical patent/JP4044981B2/en
Publication of JPH10137768A publication Critical patent/JPH10137768A/en
Application granted granted Critical
Publication of JP4044981B2 publication Critical patent/JP4044981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、非鉄製錬所硫酸工程から産出する廃酸からの不純物除去方法に関して、特に硫酸工程の廃酸から回収除去される不純物の回収効率を改善する方法である。
【0002】
【従来技術】
銅、亜鉛等の非鉄製錬では焙焼炉、焼結炉、自溶炉等は通常空気を送入して製錬を行うので、多量の排ガスをだす。この排ガスは窒素(N2 )、水分(H2 O)、一酸化炭素(CO),亜硫酸ガス(SO2 )等の他、有価金属や有害元素を含むので、製錬所では有価金属や有害元素の回収を兼ねて、排煙処理が不可欠になっている。この場合、排ガスを水その他の液滴等と衝突あるいは接触させ洗浄液中に捕捉したり、触媒等により酸化して硫酸を製造する湿式法が用いられることが多い。また、湿式精錬において、特に、電解精製工程では目的金属より貴な不純物金属は電解時に析出するので除去する必要があり、また、不純物によっては電流効率を低下させたり、製品純度を害することがある。このために電解精製工程に悪い影響を及ぼす不純物を溶液から除去することが必要になる。
【0003】
さらに、硫酸工程では処理されて硫酸として製品化されるが、硫酸の一部は亜硫酸ガス洗浄液等の形で工程内で繰り返し処理され、いわゆる廃酸として砒素等の不純物を濃縮含有するにいたる場合もある。従って、目的金属以外の不純物金属であるこれら有価金属、有害元素を回収、除去する必要がある。
【0004】
不純物金属としては、通常は砒素、ビスマス、アンチモン、テルル、スズ、鉛、亜鉛等が挙げられる。
【0005】
この廃酸中に含まれる砒素等の不純物を回収、除去する方法としては、一般には水硫化ソーダ(NaSH)等の硫化剤の添加による硫化法が採用されており、この方法は砒素等の不純物は硫化物の形でいわゆる廃酸硫化物の中に含ませて系外へカットする方法である。
【0006】
また、砒素を含む硫化物から硫酸銅含有水溶液中にエアレーション後、弱還元剤を添加して無水亜砒酸を回収する方法がある(特開昭57−160914号公報)。
【0007】
その他に、排酸にアミンを添加してアミン塩を生成して、これを加水分解して亜砒酸を析出分離し、さらにアミン塩を処理してアミンを再生して循環使用する排酸の処理方法がある(特開平8−89940号公報等)。
【0008】
【発明が解決しようとする課題】
しかしながら、廃酸中には亜硫酸ガス(SO2 )洗浄時に飽和溶解した亜硫酸ガスが含まれており、高価な硫化剤を消費するとともに、硫黄を生成して硫化物の不純物の含有率を低下させてしまうという問題が生ずることになる。
【0009】
また、上記特開昭57−160914号公報は、砒素回収のために亜砒酸を還元剤と反応の速い砒酸に酸化することを眼目とするものであるが、工程が複雑になり、その他の不純物に考慮していないため製品純度を向上させる効果が小さい等の問題がある。
【0010】
さらに、アミン処理する排酸の処理方法では、砒素の回収を目的としており、かつ、砒素との化合物を処理するために工程が複雑になるという問題点がある。本発明は上記欠点を解決したもので、本発明の目的は製品純度を向上させるために廃酸から効率的に不純物を除去する方法を提供することにある。
【0011】
また、本発明は、不純物除去のために使用される硫化剤の使用を減らして処理時間の効率化を向上させる廃酸からの不純物を除去する方法を提供することにある。
【0012】
さらに、本発明は、新たに処理するための工程を付加することなく既存の工程の中で、容易に不純物の除去を可能にする廃酸の不純物を除去する方法を提供することにある。
【0013】
【課題を解決するための手段】
以上の課題を解決するために、請求項1に記載の発明は、不純物を含む非鉄製錬における硫酸工程の廃酸に硫化剤を添加して不純物を硫化物として除去する方法において、硫化に先立ち廃酸中に含まれる亜硫酸ガスを、30〜60℃の廃酸に、加温下で廃酸1m 当り0.1〜3m /分の量で空気を吹き込むことによって除去する、廃酸からの不純物除去方法である。これによって、砒素等の不純物を含む廃酸に硫化剤を添加して砒素等の不純物を硫化物として回収除去する場合に、亜硫酸ガスによる高価な硫化剤の消費を低減することができ、且つ生成する硫化物の不純物含有率も向上させることを可能にした。
【0014】
また、請求項に記載の発明は、加温下で空気を吹き込むことによって廃酸から亜硫酸ガスを除去する廃酸からの不純物除去方法である。廃酸の顕熱を利用するか、または加温下において空気を吹き込むことによって同様の効果を達成することができる。これによって、不純物除去工程を複雑にすることなく、亜硫酸ガスを容易に除去し硫化剤の消費を低減することが可能になった。
【0015】
さらに、請求項に記載の発明は、亜硫酸ガス除去時の廃酸の温度は30〜60℃であり、空気吹き込み量は廃酸1m当たり0.1〜3m/分とした廃酸からの不純物除去方法である。温度が低すぎると上記反応が遅くなるためであり、温度が高すぎると加熱にエネルギーを要するためである。
【0016】
さらに、請求項記載の発明は、廃酸の温度は45〜60℃であり、空気吹き込み量は廃酸1m当たり0.3〜1.0m/分とすることが好ましい。硫化剤の消費を一層低く抑えることができるからである。
【0017】
これによって、亜硫酸ガスの除去をさらに短時間に促進することができ、作業の効率化、短時間化を図ることができる。
【0018】
【発明の実施の形態】
以下、本発明の実施例に基づいて具体的に説明する。
【0019】
銅、亜鉛、鉛、ニッケル等の非鉄製錬では、乾式製錬、湿式製錬、乾式精製、湿式精製の精練過程で煙灰、ろ液、溢流、電解液等が生ずる。
【0020】
銅の乾式製錬では、自溶炉、転炉、反射炉等を用いる。自溶炉には、鉱石、フラックス、燃料をいれて溶錬するが、融体はセットラーに入ってマット、スラグに分離される。排ガスは硫酸工程に送られ、硫酸の製造に供される。マットは、さらに転炉で粗銅まで製錬する。転炉から生ずる排ガスにも亜硫酸ガスが含まれるために硫酸の製造に使用される。この硫酸製造の際のガス洗浄においても廃酸が産出され、この廃酸中にも有価金属、その他の不純物が含まれている。
【0021】
これらの廃酸に含まれることがある不純物は、砒素、ビスマス、アンチモン、スズ、鉛、亜鉛、テルル等を挙げることができる。特に量の多いものとしては砒素、ビスマス、アンチモンがある。使用する硫化剤は水硫化ソーダ(NaSH)、硫化水素(H2 S)等を挙げることができる。これらの中で、特に、水硫化ソーダが好ましい。安価で、かつ取り扱いが容易だからである。
【0022】
このときの、砒素、ビスマス、アンチモン等の硫化物の反応式は以下のように考えられる。
【0023】
【数1】
2HAsO2 +3NaSH=As2 3 +3NaOH+H2
2Bi3++3S2-=Bi2 3
2Sb3++3S2-=Sb2 3
廃酸中に吹き込むのは、空気の他に酸素、窒素、アルゴンガス等を挙げることができる。この中で、特に空気が好ましい。安価で、入手が容易だからである。
この場合、空気を吹き込むことによって物理的に亜硫酸ガス(SO2)が置換除去されていると考えられる。
【0024】
空気を使用した場合は、その吹き込み量は廃酸1m3 当たり0.1〜3m3 /分がよい。ここで0.1m3 /分以下では、反応が遅く効率的ではない。一方、3m3 /分以上ではブロワーの動力費が大きくなり、経済的ではない。さらに、廃酸1m3 当たり0.3〜1m 3 /分が好ましい。反応速度、経済性を考慮したものである。
【0025】
処理する場合の廃酸の温度は30〜60℃がよい。温度が30以下では反応速度が遅く効率的ではないからである。60℃以上では、特に加熱のコストがアップするので好ましくない。さらに、廃酸の温度は45〜60℃が好ましい。反応速度、ガス溶解度の双方を考慮して経済性、効率性を適正にすることができるからである。
【0026】
本発明に使用する装置としては、オートクレーブ、ドル攪拌装置、パチョカ攪拌装置を使用することができるが、散気管付の反応槽でもよい。また、加熱装置は外部加熱方式を採用したが、蒸気による直接加熱方式でもよい。
【0027】
また、処理後に固液分離するのは分級器を使用することができる。さらに、分離した固形分を濃密槽を使用して圧縮することができる。
【0028】
(実施例)
硫化鉱石を原料とした銅製錬で、自溶炉の排ガスを硫酸工程で処理して得られた廃酸を使用した。
【0029】
4m3 の廃酸を反応槽中に送入して50℃に保持した。この廃酸に、散気管を通し、1.2m3 /分の圧搾空気を吹き込んだ。これによって脱SO2 処理を施し、発生した亜硫酸ガス(SO2 )を硫酸工程に戻した。
【0030】
このときの処理前後の廃酸の組成を以下に示す。
【0031】
【表1】

Figure 0004044981
明らかに廃酸中の亜硫酸ガス(SO2 )濃度が低くなっているのがわかる。
【0032】
その後、脱SO2 廃酸が入っている反応槽に水硫化ソーダ(NaSH)16kgを添加した。水硫化ソーダは装置内に設けられた攪拌装置と吹き込んだ空気によって装置内に一様に供給される。
【0033】
反応終了後、装置内に沈殿した硫化物は排出口から回収した。回収した硫化物の量は28kgであった。また、回収した硫化物の組成を表2に示す。
【0034】
【表2】
Figure 0004044981
(比較例)
本発明によらない場合の生成硫化物の組成を表3に示す。
【0035】
なお、硫化物の生成は、空気を吹き込むことなく、又廃酸の温度を室温の25℃の条件にした他は実施例と同様の条件で行った。
【0036】
使用した水硫化ソーダの量は多く、20.5kgであった。
【0037】
【表3】
Figure 0004044981
本発明による実施例の結果と比較例を比較すると、生成した廃酸硫化物の有効なS成分が増加した上に、As,Biの不純物含有率が向上している。
【0038】
【発明の効果】
以上説明したように、本発明による硫化剤添加により廃酸から砒素等の不純物を硫化物として回収除去する方法によって、高価な硫化剤の消費を抑制でき、かつ生成する硫化物中の不純物含有率を向上できることから、非常に高効率であり短時間に廃酸からの不純物除去が可能になった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing impurities from waste acid produced from a non-ferrous smelter sulfuric acid process, and in particular, is a method for improving the recovery efficiency of impurities recovered and removed from waste acid in a sulfuric acid process.
[0002]
[Prior art]
In non-ferrous smelting of copper, zinc, etc., roasting furnaces, sintering furnaces, flash smelting furnaces, etc. usually carry out smelting by sending in air, so a large amount of exhaust gas is emitted. This exhaust gas contains valuable metals and harmful elements in addition to nitrogen (N 2 ), moisture (H 2 O), carbon monoxide (CO), sulfurous acid gas (SO 2 ), etc. In order to collect elements, smoke treatment is indispensable. In this case, a wet method is often used in which the exhaust gas collides with or comes into contact with water or other droplets and is trapped in the cleaning liquid, or is oxidized with a catalyst or the like to produce sulfuric acid. In wet refining, especially in the electrolytic refining process, impurity metals that are noble than the target metal are deposited during electrolysis and must be removed. Depending on the impurities, current efficiency may be reduced and product purity may be impaired. . For this reason, it is necessary to remove impurities from the solution that adversely affect the electrolytic purification process.
[0003]
Furthermore, in the sulfuric acid process, it is processed into a product as sulfuric acid, but a part of the sulfuric acid is repeatedly processed in the process in the form of a sulfurous acid gas cleaning solution, etc., resulting in concentration of impurities such as arsenic as so-called waste acid There is also. Therefore, it is necessary to recover and remove these valuable metals and harmful elements which are impurity metals other than the target metal.
[0004]
Examples of the impurity metal usually include arsenic, bismuth, antimony, tellurium, tin, lead, and zinc.
[0005]
As a method for recovering and removing impurities such as arsenic contained in the waste acid, a sulfiding method by adding a sulfiding agent such as sodium hydrosulfide (NaSH) is generally employed. This method uses impurities such as arsenic. Is a method of cutting out of the system by containing it in the so-called waste oxysulfide in the form of sulfide.
[0006]
Also, there is a method of recovering arsenous anhydride by adding a weak reducing agent after aeration from sulfide containing arsenic into an aqueous solution containing copper sulfate (Japanese Patent Laid-Open No. 57-160914).
[0007]
In addition, an amine is added to waste acid to form an amine salt, which is hydrolyzed to precipitate and separate arsenous acid, and further, the amine salt is treated to regenerate and recycle the amine to be used as a waste acid treatment method. (JP-A-8-89940, etc.).
[0008]
[Problems to be solved by the invention]
However, the waste acid contains sulfurous acid gas that is saturated and dissolved during sulfur dioxide gas (SO 2 ) cleaning, which consumes expensive sulfurizing agents and generates sulfur to reduce the content of sulfide impurities. This will cause a problem.
[0009]
Japanese Patent Laid-Open No. 57-160914 aims to oxidize arsenous acid to arsenic acid which has a fast reaction with a reducing agent for arsenic recovery. Since this is not taken into consideration, there is a problem that the effect of improving the product purity is small.
[0010]
Further, the waste acid treatment method for amine treatment has a problem that the purpose is to recover arsenic and the process becomes complicated to treat the compound with arsenic. The present invention solves the above-mentioned drawbacks, and an object of the present invention is to provide a method for efficiently removing impurities from waste acid in order to improve product purity.
[0011]
Another object of the present invention is to provide a method for removing impurities from waste acid, which reduces the use of a sulfurizing agent used for removing impurities and improves the efficiency of treatment time.
[0012]
It is another object of the present invention to provide a method for removing impurities of waste acid that can easily remove impurities in an existing process without adding a new process.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention described in claim 1 is a method for removing impurities as sulfides by adding a sulfiding agent to a waste acid in a sulfuric acid process in non-ferrous smelting containing impurities. From the waste acid, the sulfurous acid gas contained in the waste acid is removed by injecting air into the waste acid at 30 to 60 ° C. in an amount of 0.1 to 3 m 3 / min per 1 m 3 of the waste acid under heating. This is a method for removing impurities. As a result, when a sulfiding agent is added to a waste acid containing impurities such as arsenic and impurities such as arsenic are recovered and removed as sulfides, consumption of expensive sulfiding agent by sulfurous acid gas can be reduced and generated. Impurity content of sulfides can be improved.
[0014]
The invention described in claim 1 is a method for removing impurities from waste acid by removing sulfurous acid gas from waste acid by blowing air under heating. Similar effects can be achieved by utilizing the sensible heat of the spent acid or by blowing air under warming. This makes it possible to easily remove sulfurous acid gas and reduce the consumption of the sulfurizing agent without complicating the impurity removal process.
[0015]
Further, an invention according to claim 1, the temperature of the waste acid at the sulfite gas removal is 30 to 60 ° C., the amount of blowing air was spent acid 1 m 3 per 0.1~3m 3 / min Waste acid This is a method for removing impurities from the substrate. This is because if the temperature is too low, the above reaction is delayed, and if the temperature is too high, energy is required for heating.
[0016]
Further, in the invention described in claim 2, it is preferable that the temperature of the waste acid is 45 to 60 ° C., and the air blowing rate is 0.3 to 1.0 m 3 / min per 1 m 3 of the waste acid. This is because the consumption of the sulfurizing agent can be further reduced.
[0017]
As a result, the removal of sulfurous acid gas can be promoted in a shorter time, and work efficiency and time can be reduced.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific description will be made based on examples of the present invention.
[0019]
In non-ferrous smelting of copper, zinc, lead, nickel, etc., smoke ash, filtrate, overflow, electrolyte, etc. are generated in the smelting process of dry smelting, wet smelting, dry refining, and wet refining.
[0020]
In the dry smelting of copper, a flash smelting furnace, a converter, a reflection furnace or the like is used. The flash furnace is smelted with ore, flux and fuel, but the melt enters the setler and is separated into mat and slag. The exhaust gas is sent to the sulfuric acid process and used for the production of sulfuric acid. The mat is further smelted to crude copper in a converter. Since the sulfur gas is also contained in the exhaust gas generated from the converter, it is used for the production of sulfuric acid. Waste acid is also produced in the gas cleaning in the production of sulfuric acid, and valuable metals and other impurities are contained in the waste acid.
[0021]
Examples of impurities that may be contained in these waste acids include arsenic, bismuth, antimony, tin, lead, zinc, and tellurium. Particularly large quantities are arsenic, bismuth and antimony. Examples of the sulfurizing agent used include sodium hydrosulfide (NaSH) and hydrogen sulfide (H 2 S). Among these, sodium hydrosulfide is particularly preferable. It is cheap and easy to handle.
[0022]
The reaction formula of sulfides such as arsenic, bismuth and antimony at this time can be considered as follows.
[0023]
[Expression 1]
2HAsO 2 + 3NaSH = As 2 S 3 + 3NaOH + H 2 O
2Bi 3+ + 3S 2− = Bi 2 S 3
2Sb 3+ + 3S 2− = Sb 2 S 3
In addition to air, oxygen, nitrogen, argon gas and the like can be blown into the waste acid. Of these, air is particularly preferable. It is cheap and easy to obtain.
In this case, it is considered that the sulfurous acid gas (SO 2 ) is physically removed by blowing air.
[0024]
When air is used, the amount of blowing is preferably 0.1 to 3 m 3 / min per 1 m 3 of waste acid. Here, at 0.1 m 3 / min or less, the reaction is slow and not efficient. On the other hand, at 3 m 3 / min or more, the power cost of the blower increases, which is not economical. Furthermore, waste acids 1 m 3 per 0.3~1m 3 / min is preferred. This takes into account the reaction speed and economy.
[0025]
The temperature of the waste acid in the case of processing is preferably 30 to 60 ° C. This is because when the temperature is 30 or less, the reaction rate is slow and not efficient. If it is 60 ° C. or higher, the heating cost increases, which is not preferable. Furthermore, the temperature of the waste acid is preferably 45 to 60 ° C. This is because economic efficiency and efficiency can be made appropriate in consideration of both reaction rate and gas solubility.
[0026]
As an apparatus used in the present invention, an autoclave, a dollar stirring apparatus, and a pachoca stirring apparatus can be used, but a reaction vessel with a diffuser tube may be used. Moreover, although the heating apparatus employ | adopted the external heating system, the direct heating system by a vapor | steam may be used.
[0027]
Moreover, a classifier can be used for solid-liquid separation after the treatment. Furthermore, the separated solid can be compressed using a dense tank.
[0028]
(Example)
Waste copper obtained by treating the exhaust gas from the flash smelting furnace in the sulfuric acid process in copper smelting using sulfide ore as a raw material was used.
[0029]
4 m 3 of waste acid was fed into the reaction vessel and maintained at 50 ° C. The waste acid was blown with 1.2 m 3 / min of compressed air through an air diffuser. Thus, the SO 2 treatment was performed, and the generated sulfurous acid gas (SO 2 ) was returned to the sulfuric acid process.
[0030]
The composition of the waste acid before and after the treatment is shown below.
[0031]
[Table 1]
Figure 0004044981
Obviously, the concentration of sulfurous acid gas (SO 2 ) in the waste acid is low.
[0032]
Thereafter, 16 kg of sodium hydrosulfide (NaSH) was added to the reaction vessel containing the de-SO 2 waste acid. Sodium hydrosulfide is uniformly supplied into the apparatus by a stirrer provided in the apparatus and blown air.
[0033]
After completion of the reaction, the sulfide precipitated in the apparatus was recovered from the outlet. The amount of sulfide recovered was 28 kg. Table 2 shows the composition of the recovered sulfide.
[0034]
[Table 2]
Figure 0004044981
(Comparative example)
Table 3 shows the composition of the product sulfide when not according to the present invention.
[0035]
The sulfide was produced under the same conditions as in the Examples, except that air was not blown in and the temperature of the waste acid was set at 25 ° C., which is room temperature.
[0036]
The amount of sodium hydrosulfide used was 20.5 kg.
[0037]
[Table 3]
Figure 0004044981
Comparing the results of the examples according to the present invention and the comparative example, the effective S component of the generated waste oxysulfide is increased and the impurity content of As and Bi is improved.
[0038]
【The invention's effect】
As described above, by the method of recovering and removing impurities such as arsenic from waste acid as sulfides by adding a sulfurizing agent according to the present invention, consumption of expensive sulfurizing agents can be suppressed and the content of impurities in the generated sulfides Therefore, impurities can be removed from waste acid in a short time with extremely high efficiency.

Claims (2)

不純物として、砒素、ビスマス、アンチモン、スズ、鉛、亜鉛、およびテルルを含む非鉄製錬における硫酸工程の廃酸に硫化剤を添加して不純物を硫化物として除去する方法において、硫化剤添加に先立ち廃酸中に含まれる亜硫酸ガスを除去する、廃酸からの不純物除去方法であって、亜硫酸ガスの除去が、30〜60℃の廃酸に、加温下で廃酸1m当り0.1〜3m/分の量で空気を吹き込むことによるものである、廃酸からの不純物除去方法。Prior to the addition of the sulfiding agent, in the method of removing the impurity as a sulfide by adding a sulfiding agent to the waste acid of the sulfuric acid process in non-ferrous smelting containing arsenic, bismuth, antimony, tin, lead, zinc, and tellurium as impurities. A method for removing impurities from spent acid, which removes sulfurous acid gas contained in the spent acid, wherein the removal of sulfurous acid gas is performed at a temperature of 30 to 60 ° C. to 0.1% per 1 m 3 of spent acid under heating. A method for removing impurities from spent acid, which is by blowing air in an amount of ~ 3 m 3 / min. 亜硫酸ガス除去時の廃酸の温度が45〜60℃であり、空気吹き込み量は廃酸1m当り0.3〜1m/分である、請求項1に記載の廃酸からの不純物除去方法。Temperature of the waste acid at the time of sulfurous acid gas removal is 45 to 60 ° C., the amount of blowing air is 0.3~1m 3 / min per waste acid 1 m 3, method of removing impurities from the waste acid according to claim 1 .
JP30033896A 1996-11-12 1996-11-12 Method for removing impurities from waste acid Expired - Fee Related JP4044981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30033896A JP4044981B2 (en) 1996-11-12 1996-11-12 Method for removing impurities from waste acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30033896A JP4044981B2 (en) 1996-11-12 1996-11-12 Method for removing impurities from waste acid

Publications (2)

Publication Number Publication Date
JPH10137768A JPH10137768A (en) 1998-05-26
JP4044981B2 true JP4044981B2 (en) 2008-02-06

Family

ID=17883577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30033896A Expired - Fee Related JP4044981B2 (en) 1996-11-12 1996-11-12 Method for removing impurities from waste acid

Country Status (1)

Country Link
JP (1) JP4044981B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7751385B2 (en) * 2004-08-25 2010-07-06 Jds Uniphase Corporation Systems and methods for collecting and disbursing participant identifying data
JP5187199B2 (en) * 2009-01-09 2013-04-24 住友金属鉱山株式会社 Fluorine separation method from fluorine-containing wastewater
JP5138737B2 (en) * 2010-06-29 2013-02-06 パンパシフィック・カッパー株式会社 Method for producing waste acid gypsum

Also Published As

Publication number Publication date
JPH10137768A (en) 1998-05-26

Similar Documents

Publication Publication Date Title
US4229271A (en) Method of recovering lead values from battery sludge
PL213990B1 (en) Method for refining copper concentrate
WO1998036102A1 (en) Refining zinc sulphide ores
US4072503A (en) Thermal treatment of leaching residue from hydrometallurgical zinc production
EP0038366B1 (en) Methods of recovering lead values from battery sludge
JP4505843B2 (en) Copper dry refining method
JP3403289B2 (en) Method for separating arsenic contained in smelting intermediate and method for recovering arsenic
EA006620B1 (en) Method for refining concentrate containing precious metals
CA1310837C (en) Hydrometallurgic process for recovering in the metal form the lead contained in the paste of the exhausted batteries
JP3212875B2 (en) Arsenic recovery method
CA1057506A (en) Method of producing metallic lead and silver from their sulfides
JP3069520B2 (en) Method for separating arsenic from smelting intermediates containing arsenic sulfide
JP4044981B2 (en) Method for removing impurities from waste acid
CN101403041A (en) Method for removing arsenic sulphur elements in golden ore concentrate hard to treat
US5356455A (en) Process for recovering lead from lead-containing raw materials
JPH11235515A (en) Method of thermally regenerating spent acid
CN1353202A (en) Process for treating metal sulfide ore
JP4264519B2 (en) Method for reducing metal impurities
JP2001279344A (en) Method for recovering tin
CN1664133A (en) Process for removing chloride from zinc dross
JP3762047B2 (en) Method for treating and recovering liquid containing cadmium and zinc
JP6386578B2 (en) Processing method for lead anode slime
CN114941078B (en) Method for inhibiting gold leaching during alkaline leaching of antimony-containing gold concentrate
JP3762060B2 (en) Method for recovering antimony from sulfides
JPS60228623A (en) Treatment for residue containing nickel and vanadium

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees