JPS62226676A - Manufacture of thermoelectric generating set - Google Patents

Manufacture of thermoelectric generating set

Info

Publication number
JPS62226676A
JPS62226676A JP61070172A JP7017286A JPS62226676A JP S62226676 A JPS62226676 A JP S62226676A JP 61070172 A JP61070172 A JP 61070172A JP 7017286 A JP7017286 A JP 7017286A JP S62226676 A JPS62226676 A JP S62226676A
Authority
JP
Japan
Prior art keywords
power generation
plate
thermoelectric power
wiring pattern
generation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61070172A
Other languages
Japanese (ja)
Inventor
Tsutomu Imai
勉 今井
Akishi Kegasa
明志 毛笠
Ichiro Sugimoto
一郎 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Osaka Gas Co Ltd
YOUEI SEISAKUSHO KK
Original Assignee
Sumco Techxiv Corp
Osaka Gas Co Ltd
Komatsu Electronic Metals Co Ltd
YOUEI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Techxiv Corp, Osaka Gas Co Ltd, Komatsu Electronic Metals Co Ltd, YOUEI SEISAKUSHO KK filed Critical Sumco Techxiv Corp
Priority to JP61070172A priority Critical patent/JPS62226676A/en
Publication of JPS62226676A publication Critical patent/JPS62226676A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a tbermoelectric gencrating set, which is assembled easily and connected simply to the outside, by a method wherein a wiring pattern is formed onto a radiator plate, an end section on the low temperature side of a thermoelectric generating element is heated, pressed under a placed state, the wiring pattern is sbaped and the end section on the low temperature side is fused. CONSTITUTION:A U-shaped iron silicide thermoelectric generating element l is formed. Screw inserting holes h3 and a terminal connecting hole t2 are shaped, and a copper pattern is formed onto an alumina ceramic board cut as a wiring pattern 2 tbrough a screen printing method by using copper paste, and heated and dried. A stainless platc is cut, screw inserting holes h1 and a terminal connecting hole t1 are bored, thc stainless plate is bent to an L shape to form a lower plate and a side plate, and screw inserting holes h2 are bored and an upper plate is shaped. Screws 6a into which springs 6b are inserted are penetrated up to the holes h1 in the lower plate from tbe holes h2 in tbe upper plate 4a. Lastly, the whole is heated, and tbe pattern 2 is baked while terminals on the anode and cathode sides are welded.

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明は、熱電発電装置の製造方法に係り、特に複数個
の熱電発電素子が外部接続端子を具えた放熱ケース内に
収納された熱電発電装置の製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method of manufacturing a thermoelectric power generation device, and particularly to a thermoelectric power generation device in which a plurality of thermoelectric power generation elements are housed in a heat dissipation case provided with external connection terminals. The present invention relates to a method for manufacturing a device.

〔従来技術およびその問題点] 例えば、鉄硅化物(FeSi2)に夫々マンガン(Mn
)またはコバルト(Go)等の適性不純物を添加するこ
とによって形成したP型半導体とN型半導体とを直接粉
末成形接合することによって形成した熱電発電素子は、
温度差を与えるだけで簡単に起電力が生じるもので、優
れた耐熱性、i4酸化性を呈し安定な特性を維持できる
ことから、熱エネルギーの有効利用化への要求が高まっ
ている今日、実用化が期待されているデバイスである。
[Prior art and its problems] For example, manganese (Mn) is added to iron silicide (FeSi2).
) or by adding appropriate impurities such as cobalt (Go) to form a P-type semiconductor and an N-type semiconductor that are directly powder-molded and bonded.
It easily generates an electromotive force just by applying a temperature difference, exhibits excellent heat resistance and i4 oxidation resistance, and can maintain stable characteristics, so it has been put into practical use today as demands for effective use of thermal energy are increasing. This is a highly anticipated device.

このような熱電発電素子の起電力は、高温側であるPN
接合部と低温側である陽極側および陽極側端部との温度
差Δtによって決まる。従って効率良く電気エネルギー
を獲得するためには、llj!極側および陰極側端部の
放熱性を高めることが重要な課題となる。
The electromotive force of such a thermoelectric power generation element is PN on the high temperature side.
It is determined by the temperature difference Δt between the joint portion and the anode side, which is the low temperature side, and the anode side end portion. Therefore, in order to obtain electrical energy efficiently, llj! An important issue is to improve the heat dissipation of the pole side and cathode side ends.

そこで、実開昭58−83168号公報および実開昭5
9−98661号公報にも示されているように、熱電発
電素子の端部を金属製のケースで覆い、ケース内に接着
剤等を充填して外部接続端子を埋設したり、また起電力
を大きくしたい場合には複数個の熱電発電素子を一体的
に接続して1つのケース内に収納する等、さまざまな工
夫がなされている。
Therefore, Utility Model Application Publication No. 58-83168 and Utility Model Application No. 58-83168
As shown in Publication No. 9-98661, the end of the thermoelectric power generation element is covered with a metal case, and the case is filled with adhesive or the like to bury external connection terminals, or the electromotive force is In order to increase the size, various methods have been used, such as connecting multiple thermoelectric generating elements together and storing them in a single case.

しかしながら、いずれも組立て工程が複雑で、特に、複
数個の熱電発電素子を並設する場合には熱的あるいは傭
械的ストレスに対する耐性は依然として十分ではなく、
接触不良を生じたりすることが多く、これが信頼性を低
下させる原因となっていた。
However, the assembly process is complicated in both cases, and the resistance to thermal or mechanical stress is still insufficient, especially when multiple thermoelectric power generation elements are installed in parallel.
Poor contact often occurs, which causes a decrease in reliability.

そこで、本発明者らは複数個の熱電発電素子を容易に接
続し得組立てが容易であって電気的接触性が良好で信頼
性の高い熱電発電装置を提供すべく、次に示すような熱
電発電装置を提案している。
Therefore, the present inventors have developed a thermoelectric generator as shown below in order to provide a thermoelectric generator that can easily connect a plurality of thermoelectric generators, is easy to assemble, has good electrical contact, and is highly reliable. We are proposing a power generation device.

この熱電発電装置では、低温側端部の陽極側端子と陰極
側端子の先端を導電性被膜で液留してなる複数の熱電発
電素子と、隣接する該熱電発電素子の陽極側端子と陰極
側端子とを接続すると共に、外部接続端子を形成すべく
構成された配線パターンを表面に被着せしめた電気的絶
縁性の放熱板と、互いに熱的に接続された上板および底
板とからなる放熱ケースと、前記配線パターン上の所定
の位置に各端子が当接するように、放熱板上に各熱電′
lP、電素子を載置した状態で前記上板と底板との間に
圧着固定する圧着手段とを具備している。
This thermoelectric power generation device includes a plurality of thermoelectric power generation elements each having a conductive coating at which the tips of the anode side terminal and the cathode side terminal at the low temperature side end are liquefied, and the anode side terminal and the cathode side of the adjacent thermoelectric power generation element. A heat dissipation device consisting of an electrically insulating heat dissipation plate whose surface is coated with a wiring pattern configured to connect terminals and form external connection terminals, and a top plate and a bottom plate that are thermally connected to each other. Place each thermoelectric terminal on the heat sink so that each terminal contacts the case and a predetermined position on the wiring pattern.
1P, and crimping means for crimping and fixing the electric element mounted thereon between the top plate and the bottom plate.

すなわち、この装置では、各素子間の接続が配線パター
ン上に載置(圧着)するのみで、放熱ケースへの装着と
同時に行なわれ、また常に押圧状態にあるため、素子と
配線パターン間との電気的接触性および素子と放熱ケー
スとの熱接触性が高められる。
In other words, in this device, the connection between each element is simply placed (crimped) on the wiring pattern, which is done at the same time as mounting on the heat dissipation case, and is always in a pressed state, so there is no connection between the element and the wiring pattern. Electrical contact and thermal contact between the element and the heat dissipation case are improved.

ところで、通常この鉄硅化物熱電光雷素子は、焼結後、
低温側端部に導電性被膜を形成した後、790℃程度の
高温処理を経て形成されるが、このとき、通常の方法で
は表面に酸化膜が生成されてしまい、電気的接触性が悪
くなるため、前記高温処理を真空中で行ない酸化を防止
するか又は、実装に先立ち端部をエツチングし酸化膜を
除去し更に、導電性被膜を形成する等の注意が必要であ
った。
By the way, after sintering, this iron silicate thermoelectric lightning element usually
After forming a conductive film on the low-temperature side end, it is formed through high-temperature treatment at around 790°C, but at this time, an oxide film is generated on the surface using the normal method, resulting in poor electrical contact. Therefore, it is necessary to take precautions such as performing the high-temperature treatment in a vacuum to prevent oxidation, or etching the ends to remove the oxide film and then forming a conductive film prior to mounting.

本発明は、前記実情に鑑みてなされたもので、製造が簡
単で信頼性の高い熱電発電装置を提供することを目的と
する。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a thermoelectric power generation device that is easy to manufacture and has high reliability.

C問題点を解決するための手段〕 そこで、本発明の方法では、鉄硅化物熱電発電素子の形
成時に生成される表面の酸化膜の存在によって、基板上
に形成される厚膜配線パターンとしての導体パターンの
焼成時にこのパターン上に該素子が良好に接着せしめら
れ得ることを発見し、この点に着目してなされたもので
、少なくとも低温側端部表面に酸化膜を有する複数個の
熱電発電素子を厚膜導体ペーストを介して所定の部位に
接触ゼしめ、焼成することにより電気的接続を達成する
ようにしている。
Means for Solving Problem C] Therefore, in the method of the present invention, due to the presence of the oxide film on the surface generated during the formation of the iron silicate thermoelectric power generation element, the thick film wiring pattern formed on the substrate is It was discovered that the element could be well adhered to the conductor pattern when the conductor pattern was fired, and this idea was developed based on this point. Electrical connection is achieved by bringing the element into contact with a predetermined location via a thick film conductor paste and firing it.

すなわち、放熱板上に、厚膜導体ペーストを用いて配線
パターンを形成し、焼成に先立ち、この上に前記熱電発
電素子を載置し、該電極配線パターンの焼成と同時にこ
れらの素子と配線パターンとの接触を達成するようにし
ている。
That is, a wiring pattern is formed on a heat sink using a thick film conductor paste, and the thermoelectric generation element is placed thereon prior to firing, and at the same time as the electrode wiring pattern is fired, these elements and the wiring pattern are formed. Trying to achieve contact with.

(作用) かかる方法によれば、熱電発電素子の低温側端部に酸化
膜が生成されていても、そのまま使用することができ、
この酸化膜と、放熱板上に印刷ゼしめられた厚膜ペース
トとが、焼成時に溶着せしめられて、良好な接着状態が
極めて容易に作り出される。
(Function) According to this method, even if an oxide film is formed on the low-temperature side end of the thermoelectric power generation element, it can be used as is.
This oxide film and the thick film paste printed and gelled onto the heat sink are welded together during firing, and a good adhesion state can be created very easily.

〔実施例〕〔Example〕

以下、本発明の実施例について、図面を参照しつつ詳細
に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明実施例の方法によって形成される熱電
発電装置の斜視図、第2図は、同装置の分解説明図、第
3図は、同装置の正面図、背面図、左側面図、右側面図
、平面図および底面図の六面図を示す図である。
FIG. 1 is a perspective view of a thermoelectric power generation device formed by the method of the embodiment of the present invention, FIG. 2 is an exploded explanatory view of the device, and FIG. 3 is a front view, rear view, and left side view of the device. It is a figure which shows the hexagonal view of a figure, a right view, a top view, and a bottom view.

この熱電発電装置は、陽極側端子1aと陰極側端子1b
の少なくとも先端に酸化膜の生成された7個のU字形の
鉄珪化物熱電発電素子(以下熱電発電素子)ユと、各素
子を接続すると共に、外部接続端子を構成する銅の厚膜
パターンからなる配線パターン2を表面に形成したアル
ミナセラミック製の放熱板3と、長方形のステンレス板
からなる上板4aと断面り字状となるように折り曲げら
れた下板4bとからなる断面コの字状の放熱ケース4と
からなり該上板4aと下板4bとの間に、放熱板の配線
パターン上に7個の前記熱電発電素子を1列に並置した
状態で耐熱性のガスケット5を介して、挾み込み上板4
aと下板4bを貫通するビス5a、スプリング6bおよ
びナツト6Cによって7ケ所を圧着固定したものである
This thermoelectric power generation device has an anode side terminal 1a and a cathode side terminal 1b.
seven U-shaped iron silicide thermoelectric power generation elements (hereinafter referred to as thermoelectric power generation elements) with an oxide film formed on at least their tips, and a copper thick film pattern that connects each element and constitutes an external connection terminal. A heat dissipation plate 3 made of alumina ceramic with a wiring pattern 2 formed on its surface, an upper plate 4a made of a rectangular stainless steel plate, and a lower plate 4b bent to have an L-shaped cross section. The seven thermoelectric generating elements are arranged in a row on the wiring pattern of the heat sink between the upper plate 4a and the lower plate 4b, and a heat-resistant gasket 5 is inserted between the upper plate 4a and the lower plate 4b. , upper plate 4
It is crimped and fixed at seven locations using screws 5a, springs 6b, and nuts 6C that pass through a and the lower plate 4b.

前記放熱ケースの下板4bには所定の間隔で7個のビス
挿通孔h1が穿孔されると共に両端に端子接続孔t1が
穿孔されており、更に側板4Cが延設され、この側板が
ビス挿通孔h2が穿孔された上板に熱的に接触するよう
になっている。
Seven screw insertion holes h1 are drilled at predetermined intervals in the lower plate 4b of the heat dissipation case, and terminal connection holes t1 are drilled at both ends, and a side plate 4C is further extended, and this side plate is used for screw insertion. The hole h2 is in thermal contact with the perforated upper plate.

また、第2図に示す如く前記放熱板3は、該放熱ケース
の下板4bと全く同一の形状をなし、下板4b上に重ね
られており、更に前記下板のビス挿通孔h 1端子接続
孔t1に夫々対応して穿孔されたビス挿通孔h 1端子
接続孔t2を有している。
Further, as shown in FIG. 2, the heat dissipation plate 3 has exactly the same shape as the lower plate 4b of the heat dissipation case, and is stacked on the lower plate 4b, and furthermore, the heat dissipation plate 3 has a screw insertion hole h1 terminal in the lower plate. It has screw insertion holes h1 and terminal connection holes t2, which are bored corresponding to the connection holes t1, respectively.

更に、配線パターン2は、夫々隣接熱電発電素子の陽極
側端子と陰極側端子とが融着されるように所定の間隔で
配設された611!]の矩形パターンからなる素子間接
続パターン2aと、その両端に配され端子接続孔t2を
囲み外部接続端子を形成する外部接続パターン2bとか
ら構成されている。
Further, the wiring patterns 2 are arranged at predetermined intervals 611 so that the anode side terminal and the cathode side terminal of each adjacent thermoelectric generation element are fused together. ], and external connection patterns 2b are arranged at both ends of the inter-element connection pattern 2a and surround the terminal connection hole t2 to form an external connection terminal.

更にまた、配線パターン2と熱電発電素子の陽極側およ
び陰極側端子表面の酸化膜とは、該配線パターンの焼成
前に接触せしめられ、この状態で加熱することにより該
配線パターンの焼成と同時に、これに融着固定せしめら
れる。
Furthermore, the wiring pattern 2 and the oxide film on the anode side and cathode side terminal surfaces of the thermoelectric generation element are brought into contact with each other before the wiring pattern is fired, and by heating in this state, the wiring pattern is fired at the same time. It is fused and fixed to this.

次に、この熱電発電装置の製造方法について説明する。Next, a method of manufacturing this thermoelectric power generation device will be explained.

まず、U字形の鉄珪化物熱電発電索子ユを形成する。こ
のとき空気中で熱処理を行ない、少なくとも陽極側端子
および陰極側端子の表面には酸化膜が生成されているも
のとする。
First, a U-shaped iron silicide thermoelectric generator cable is formed. At this time, heat treatment is performed in air, and an oxide film is formed on the surfaces of at least the anode side terminal and the cathode side terminal.

また、ビス挿通孔h および端子接続孔t2を穿孔する
と共に、所望の形状に切断されたアルミナセラミック板
上に、インクとして、C0ND5513と槓杵されてい
るフェロ社製の銅ペーストを用いてスクリーン印刷法に
より配線パターン2としての銅パターンを形成し、20
0℃、10分の加熱によりパターンを乾燥させる。
In addition, screw insertion holes h and terminal connection holes t2 are drilled, and on an alumina ceramic plate cut into a desired shape, screen printing is performed using C0ND5513 and copper paste made by Ferro as ink. A copper pattern as wiring pattern 2 is formed by the method, and 20
The pattern is dried by heating at 0° C. for 10 minutes.

続いて、ステンレス板を切断し、ビス挿通孔h および
端子接続孔t1を穿孔した後、L字状に折り曲げて、下
板および側板を形成すると共に、同様にしてビス挿通孔
h2を穿孔し上板を形成する。
Next, after cutting the stainless steel plate and drilling screw insertion holes h and terminal connection holes t1, it is bent into an L shape to form a lower plate and side plates, and screw insertion holes h2 are drilled in the same manner as the upper plate. Form a board.

そして、前記下板上に順次、放熱板3、熱電発電素子1
の陽極側および陰極側端子1a、1b、耐熱性のガスケ
ット5、上板4aを重ね、スプリング6bの挿通された
10本のビス6aを夫々上板4aの挿通孔h から下板
4bの挿通孔h1まで貫通せしめ、ナツト6Cによって
締結する。
Then, the heat sink 3 and the thermoelectric power generating element 1 are sequentially placed on the lower plate.
Stack the anode and cathode terminals 1a, 1b, the heat-resistant gasket 5, and the upper plate 4a, and insert the 10 screws 6a through which the springs 6b are inserted from the insertion holes h in the upper plate 4a to the insertion holes in the lower plate 4b. Penetrate it to h1 and tighten with nut 6C.

最後に、全体を600〜800℃で10分間加熱し、配
線パターン2を焼成すると同時にこれと陽極側端子1a
および陰極側端子1bとを融着する。
Finally, the whole is heated at 600 to 800°C for 10 minutes to bake the wiring pattern 2 and at the same time connect it to the anode side terminal 1a.
and the cathode side terminal 1b are fused.

かかる方法によれば、熱電発電素子の低温側端部をメタ
ライズしたり、酸化膜を除去したりする必要がなく、逆
に表面に生成された酸化膜を積極的に利用し、これと、
電極配線パターンとしての厚膜導体パターンを焼成時に
反応せしめ、良好に接着tしめるようにしており、ビス
をとめるだけで極めて作業性良く容易に製造可能である
According to this method, there is no need to metalize the low-temperature side end of the thermoelectric power generating element or remove the oxide film, but instead actively utilizes the oxide film formed on the surface, and
The thick film conductor pattern serving as the electrode wiring pattern is reacted during firing to ensure good adhesion, and can be easily manufactured with extremely good workability just by fastening screws.

このようにして形成された熱電発電装置では、熱電発電
素子と配線パターンとは融着されており、接着剤等を使
用することなく圧着によって接続されるため、電気的接
触性および耐熱性が良好で、極めて信頼性の高いものと
なっている。
In the thermoelectric power generation device formed in this way, the thermoelectric power generation element and the wiring pattern are fused and connected by pressure bonding without using adhesives, so electrical contact and heat resistance are good. It is extremely reliable.

また、放熱ケースは放熱板に圧着されており、熱接触性
が良好で、多数の熱電発電素子を用いた場合にも放熱効
率は極めて高いものとなっている。
Furthermore, the heat dissipation case is crimped onto the heat dissipation plate, which provides good thermal contact, and the heat dissipation efficiency is extremely high even when a large number of thermoelectric power generating elements are used.

更に、外部の回路部品との接続がビス止めによって行な
われるため、装着の作業性が良い。
Furthermore, since connections to external circuit components are made using screws, installation work is easy.

このように、配線パターンの焼成とこれに対する多数の
熱電発電素子の接続と放熱ケースへの装着が同時に行な
い冑、組立てが極めて容易であり、ビスで組立てること
ができるため、作業性が極めて良好である。
In this way, the firing of the wiring pattern, the connection of many thermoelectric generating elements to the wiring pattern, and the mounting on the heat dissipation case are performed at the same time, making it extremely easy to assemble, and because it can be assembled with screws, the workability is extremely good. be.

なお、耐熱性のガスケットを介在せしめることにより、
熱電発電素子と放熱ケースの上板との絶縁および圧着効
果を高めるのに有効であるが、これに代えて、上板の内
側に絶縁性の被膜を形成したものを用いても良いが、放
熱ケースに電気的絶縁性をもつ材料を使用する場合はこ
れらは不要となる。
In addition, by interposing a heat-resistant gasket,
This is effective for increasing the insulation and crimping effect between the thermoelectric power generation element and the top plate of the heat dissipation case, but instead of this, an insulating film formed on the inside of the top plate may be used, but the heat dissipation These are not necessary if the case is made of electrically insulating material.

また、放熱ケースの形状および材質については、必ずし
も実施例に限定されることなく、適宜変更可能であり、
第4図に示す如く、放熱ケースなしに放熱板上に熱電発
電素子を被着せしめ、そのまま使用することも可能であ
る。
In addition, the shape and material of the heat dissipation case are not necessarily limited to the examples, and can be changed as appropriate.
As shown in FIG. 4, it is also possible to mount the thermoelectric power generation element on the heat sink without a heat sink and use it as is.

更に、実施例では、放熱板としてアルミナセラミック基
板を用いたが、これに限定されることなく、ホーロー基
板等、表面が無機酸化物を含む基板であればよい。
Further, in the embodiment, an alumina ceramic substrate was used as the heat sink, but the heat sink is not limited to this, and any substrate whose surface contains an inorganic oxide, such as a hollow substrate, may be used.

また、電極配線パターンとして使用するペーストとして
は、実施例に限定されることなく、酸化鉛(PbO) 
、酸化ホウ素(B2O2)、酸化シリコン(S i 0
2 )等のガラス成分を微量含有する銅(Cu)、ニッ
ケル(Ni)、銀(A9)等の他の導体ペーストでも良
いことは言うまでもない。
In addition, the paste used as the electrode wiring pattern is not limited to the examples, but lead oxide (PbO)
, boron oxide (B2O2), silicon oxide (S i 0
It goes without saying that other conductive pastes such as copper (Cu), nickel (Ni), silver (A9), etc. containing a small amount of glass components such as 2) may also be used.

(効果) 以上説明してきたように、本発明によれば、熱電発電素
子の低温側端部すなわち陽極側端子と陰極側端子を多数
個並置し、隣接する該熱電発電素子の陽極側端子と陰極
側端子とを接続すると共に外部接続端子を形成すべく構
成された配線パターンを放熱板上に形成した後、焼成に
先立ち、前記熱電発電素子の該低温側端部を載置した状
態で、加圧しつつ加熱し、該配線パターンを焼成すると
同時にこれに該低温側端部を融着せしめるようにしてい
るため、素子数が多い場合にも組立てが極めて容易であ
る上、外部の回路部品との接続が容易であって、また耐
熱性および電気的接触性が良好で信頼性の高い熱電発電
装置を得ることができる。
(Effects) As described above, according to the present invention, a large number of low-temperature side ends, that is, anode side terminals and cathode side terminals of thermoelectric generation elements are arranged side by side, and the anode side terminals and cathode side terminals of the adjacent thermoelectric generation elements are arranged side by side. After forming a wiring pattern configured to connect the side terminals and form external connection terminals on the heat sink, and prior to firing, the thermoelectric power generation element is heated with the low temperature side end placed thereon. Since the wiring pattern is heated while being pressed and the low-temperature side end is fused to it at the same time as the wiring pattern is fired, assembly is extremely easy even when there are a large number of elements, and it is easy to assemble with external circuit components. A thermoelectric power generation device that is easy to connect, has good heat resistance and electrical contact, and is highly reliable can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明実施例の熱電発電装置の全体斜視図、
第2図は、同装置の分解説明図、第3図は、同装置の正
面図、背面図、左側面図、右側面図、平面図および底面
図の大面図を示す図、第4図は本発明の他の実施例を示
す図である。 ユ・・・熱電発電素子、1a・・・陽極側端子、1b・
・・隘極側端子、1C・・・第1の側板、1d・・・第
2の側板、1e・・・第3の側板、h、h、h3・・・
ビス挿通孔、 11.12・・・端子接続孔、2・・・配線パターン、
3・・・放熱板、ユ・・・敢然ケース、4a・・・上板
、4b・・・下板、4C・・・側板、5・・・耐熱性の
ガスケット、6a・・・ビス、6b・・・スプリング、
6C・・・ナツト。 丘 第1図 第3図
FIG. 1 is an overall perspective view of a thermoelectric power generation device according to an embodiment of the present invention;
Fig. 2 is an exploded explanatory view of the device, Fig. 3 is a diagram showing a front view, a rear view, a left side view, a right side view, a top view, and a large-scale bottom view of the device; Fig. 4 FIG. 3 is a diagram showing another embodiment of the present invention. Yu...thermoelectric power generation element, 1a...anode side terminal, 1b...
...Narrow pole side terminal, 1C...First side plate, 1d...Second side plate, 1e...Third side plate, h, h, h3...
Screw insertion hole, 11.12...Terminal connection hole, 2...Wiring pattern,
3... Heat dissipation plate, Yu... Case, 4a... Upper plate, 4b... Lower plate, 4C... Side plate, 5... Heat resistant gasket, 6a... Screw, 6b ···spring,
6C...Natsuto. Hill Figure 1 Figure 3

Claims (6)

【特許請求の範囲】[Claims] (1)P型半導体とN型半導体とをその一端側でPN接
合を形成するように固着してなる熱電発電素子を、外部
接続端子を具えた放熱板上に複数個並設してなる熱電発
電装置の製造方法において、電気的絶縁性の放熱板上に
隣接する該熱電発電素子の陽極側端子と陰極側端子とを
接続すると共に外部接続端子を形成すべく、スクリーン
印刷法により厚膜導体ペーストを用いて配線パターンを
形成する第1の工程と、 前記配線パターン上の所定の位置に各端子が当接するよ
うに、放熱板上に陽極側端子および陰極側端子の少なく
とも先端に酸化膜を有する複数個の各熱電発電素子を載
置した状態で、圧着手段により加圧しつつ加熱し、前記
配線パータンを焼成すると共に、各素子を融着せしめる
第2の工程とを具えたことを特徴とする熱電発電装置の
製造方法。
(1) A thermoelectric generator consisting of a plurality of thermoelectric power generation elements, each consisting of a P-type semiconductor and an N-type semiconductor fixedly bonded to form a PN junction at one end, on a heat sink equipped with external connection terminals. In a method for manufacturing a power generation device, a thick film conductor is formed by screen printing in order to connect the anode side terminal and cathode side terminal of the thermoelectric generation element adjacent to each other on an electrically insulating heat sink and to form an external connection terminal. A first step of forming a wiring pattern using paste; and forming an oxide film on at least the tips of the anode side terminal and the cathode side terminal on the heat sink so that each terminal contacts a predetermined position on the wiring pattern. a second step of baking the wiring pattern and fusing each element by heating the plurality of thermoelectric power generation elements while applying pressure using a pressure bonding means. A method for manufacturing a thermoelectric power generation device.
(2)上記放熱板は、互いに熱的に接続せしめられた上
板と下板とからなる放熱ケース内に収納されており、前
記第2の工程は該上板と下板との間に圧着固定せしめて
加熱する工程であることを特徴とする特許請求の範囲第
(1)項記載の熱電発電装置の製造方法。
(2) The heat dissipation plate is housed in a heat dissipation case consisting of an upper plate and a lower plate that are thermally connected to each other, and the second step is crimping between the upper plate and the lower plate. A method of manufacturing a thermoelectric power generation device according to claim (1), characterized in that the step is fixing and heating.
(3)前記上板は、裏面が絶縁被覆された金属板から構
成されていることを特徴とする特許請求の範囲第(2)
項記載の熱電発電装置の製造方法。
(3) Claim (2) characterized in that the upper plate is composed of a metal plate whose back surface is coated with insulation.
A method for manufacturing a thermoelectric power generation device as described in Section 1.
(4)前記配線パターンの端部には夫々、放熱板まで貫
通する外部接続用の端子接続孔が穿孔されていることを
特徴とする特許請求の範囲第(2)項記載の熱電発電装
置の製造方法。
(4) The thermoelectric power generation device according to claim (2), characterized in that terminal connection holes for external connection that penetrate to the heat sink are formed at each end of the wiring pattern. Production method.
(5)前記圧着手段は、前記上板、放熱板および下板を
貫通する貫通孔に挿通されたビスと、これに螺合するナ
ットとから構成されていることを特徴とする特許請求の
範囲第(2)項記載の熱電発電装置の製造方法。
(5) The crimping means is comprised of a screw inserted into a through hole passing through the upper plate, heat sink, and lower plate, and a nut screwed into the screw. A method for manufacturing a thermoelectric power generation device according to item (2).
(6)前記ビスはスプリングを介してボルトに締結され
ていることを特徴とする特許請求の範囲第(5)項記載
の熱電発電装置の製造方法。
(6) The method for manufacturing a thermoelectric power generation device according to claim (5), wherein the screw is fastened to a bolt via a spring.
JP61070172A 1986-03-28 1986-03-28 Manufacture of thermoelectric generating set Pending JPS62226676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61070172A JPS62226676A (en) 1986-03-28 1986-03-28 Manufacture of thermoelectric generating set

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61070172A JPS62226676A (en) 1986-03-28 1986-03-28 Manufacture of thermoelectric generating set

Publications (1)

Publication Number Publication Date
JPS62226676A true JPS62226676A (en) 1987-10-05

Family

ID=13423843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61070172A Pending JPS62226676A (en) 1986-03-28 1986-03-28 Manufacture of thermoelectric generating set

Country Status (1)

Country Link
JP (1) JPS62226676A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2403026A2 (en) 2010-06-30 2012-01-04 Kabushiki Kaisha Toyota Jidoshokki Connection structure of elements and connection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2403026A2 (en) 2010-06-30 2012-01-04 Kabushiki Kaisha Toyota Jidoshokki Connection structure of elements and connection method

Similar Documents

Publication Publication Date Title
RU2173007C2 (en) Thermoelectric device
US8575469B2 (en) Thermoelectric conversion module and method for manufacturing the same
EA000388B1 (en) Method of fabrication of thermoelectric modules and solder for such fabrication
KR950000203B1 (en) Power semiconductor device
JP2000164780A (en) Power electronic component
KR20110077492A (en) Thermoelectric module for generation and method for manufacturing the same
JP2001160632A (en) Thermoelectric module
JP4013446B2 (en) Peltier module and optical communication module including the same
JPH0529667A (en) Thermoelectric conversion module
JPH0951126A (en) Thermoelectric conversion device
KR102323978B1 (en) Thermoelectric module
JPS62226676A (en) Manufacture of thermoelectric generating set
US8263852B2 (en) Insulating device of concentration photovoltaic heat sink
KR19980018524A (en) Method for manufacturing substrates with at least one metal-laminate and printed boards and their application
JP2018093152A (en) Thermoelectric power generation device
JP2598257B2 (en) Thermoelectric generator
JPH0333082Y2 (en)
CN113517384A (en) Stretchable flexible thermoelectric device and manufacturing method thereof
KR101388492B1 (en) Skeleton type thermoelectric module manufacture method and thermoelectric unit having skeleton type thermoelectric module and manufacture method thereof
JP2000277784A (en) Solar battery module
JPH0485973A (en) Thermoelectric generator
JPH0793459B2 (en) Thermoelectric device
JPS6230507B2 (en)
JP4719861B2 (en) Thermoelectric element and thermoelectric power generation module
KR102021664B1 (en) Multi-multi-array themoeletric generator and its manufacturing method