JPS6222647B2 - - Google Patents

Info

Publication number
JPS6222647B2
JPS6222647B2 JP53040580A JP4058078A JPS6222647B2 JP S6222647 B2 JPS6222647 B2 JP S6222647B2 JP 53040580 A JP53040580 A JP 53040580A JP 4058078 A JP4058078 A JP 4058078A JP S6222647 B2 JPS6222647 B2 JP S6222647B2
Authority
JP
Japan
Prior art keywords
ozone
activated carbon
manganese compound
remover
containing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53040580A
Other languages
Japanese (ja)
Other versions
JPS54132468A (en
Inventor
Hiroshi Nishino
Masayuki Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP4058078A priority Critical patent/JPS54132468A/en
Publication of JPS54132468A publication Critical patent/JPS54132468A/en
Priority to US06/361,488 priority patent/US4421533A/en
Publication of JPS6222647B2 publication Critical patent/JPS6222647B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はオゾン含有ガスの処理方法に関する。 強力な酸化力を有するオゾンは上水の浄化、殺
菌、工場排水の処理、下水処理、排煙脱硝、各種
の悪臭除去などに幅広く利用されている。 通常、オゾンが関与するシステムでは酸化反応
を完全におこなわせるために過剰のオゾンを使用
しなければならない。その結果、未反応のオゾン
が排出される。 周知のごとくオゾンは大気汚染、いわゆるオキ
シダント成因物質であり、人体に及ぼす悪影響は
もちろん、農作物においては葉緑素の破壊、同化
作用の抑制などによる被害も大きく、二次公害防
止の面からこの余剰オゾンを除去しなければなら
ない。このため、高性能かつ経済的な排オゾン処
理方法の早期開発が切望され、今日までに(1)活性
炭法、(2)熱分解法、(3)薬液吸収法などが提案され
ている。(2)の熱分解法は重油、軽油などのバーナ
ーによりオゾンを熱分解する方法であり、300〜
400℃の分解炉へオゾン含有ガスを導入してオゾ
ンを分解する方法である。通常、ガス中のオゾン
濃度は低く、したがつてこの方法では大量の空気
を加温しなければならず経済的ではない。 (3)の薬液吸収法は第一鉄塩、亜硫酸ソーダ、チ
オ硫酸ソーダなどの還元剤水溶液、または苛性ソ
ーダなどのアルカリ水溶液にオゾン含有ガスを導
入してオゾンを吸収する方法である。この方法で
は薬品の補充、排液処理が煩雑であること、オゾ
ンの吸収に伴う薬液組成の変化によつて吸収能が
低下すること、ガス中のオゾン濃度に対応できな
いこと(オゾン含有ガスの負荷変動に対する追従
性が悪い)などが問題である。(1)の活性炭法は粒
状活性炭層(この活性炭には何も担持していな
い)へオゾン含有ガスを導入して、活性炭表面で
酸素に分解する方法である。この方法はオゾン含
有ガスの負荷変動に対する追従性に優れ、しかも
常温において極めて低濃度のオゾンをも分解し得
るなど多くの長所を有するため、排オゾン処理に
幅広く用いられているが、活性炭とオゾンとの反
応に伴う活性炭粒子の粉化、高濃度オゾンとの接
触あるいは有機ガス混入に伴う異常発熱、着火の
懸念が改善されるべきものとして指摘されてい
る。 活性炭表面の異常発熱ならびに着火の防止に主
眼をおいたオゾン分解剤としては、シリカ・アル
ミナ質ゲルに粉粒状活性炭を配合し、これを混
合、造粒、乾燥してなるオゾン分解剤が提案され
ているが、この分解剤は熱的安定性の面ではその
目的が達成されるものの、オゾン濃度が低かつた
り、オゾンを含むガスの湿度が高い場合にはオゾ
ン除去性能が低いこと、ガスの粒内拡散速度が低
いため活性炭の利用率がよくないこと、耐水性お
よび機械的強度が不十分であることなどの欠点を
有している。 本発明者らはかかる事情に鑑み、鋭意研究した
結果、活性炭、粘土および石膏を主成分とする組
成物を焼成してなるオゾン除去剤はオゾン除去性
能、熱安定性、機械的強度ならびに耐水性などの
点ですぐれることを知見した。 一方、マンガン化合物を担持せしめた活性炭は
オゾン含有ガス中のオゾンを極めて効果的に分
解、除去するけれども、通常の何も担持していな
い活性炭と同様、高濃度オゾンとの接触あるいは
有機ガス混入によつて異常発熱や着火などの現象
がみられることがわかつた。本発明者らは更に研
究を進めたところ、前述のオゾン除去剤とマンガ
ン化合物担持活性炭とを(i)オゾン除去剤、(ii)マン
ガン化合物担持活性炭の順序でオゾン含有ガスに
接触させることによつて、安全でしかも効率よく
オゾンを除去することができ、そのうえガス中の
オゾン濃度が高い場合や臭気などの有機性ガスを
伴う場合でも極めて効果的にオゾンや有機性ガス
が除去されることを知見した。 このような知見にもとづいて本発明を完成する
に至つた。 すなわち、本発明は(i)活性炭、粘土および石膏
を主成分とする組成物を300〜750℃で焼成してな
るオゾン除去剤にオゾン含有ガスを接触させ、つ
いで(ii)マンガン化合物を担持せしめた活性炭に接
触させてオゾンを除去することを特徴とするオゾ
ン含有ガスの処理方法である。 本発明の(i)の操作で用いられるオゾン除去剤
は、活性炭、粘土および石膏を混合し、必要によ
り微粉砕化した後、焼成することにより得られ
る。 活性炭は、たとえば木炭、コークス、椰子殻な
どを原料として通常の方法により賦活されたもの
であれば如何なるものでもよいが、その比表面積
は約500〜2000m2/gのものが好ましい。その形
状は、たとえば粉末状、粒状、破砕状のいずれで
あつてもよいが、特に椰子殻を原料とした破砕状
の活性炭を約300メツシユ以下の粒度に微粉砕し
たものが好ましい。活性炭の粒径が大きくなるに
したがつてオゾン除去剤の機械的強度は低下する
ので活性炭の粒径はできる限り小さいことが好ま
しい。 活性炭の配合割合はオゾン除去剤としての寿
命、機械的強度ならびに熱安定性などにより決定
されるが、実用上、焼成前の配合割合で約5〜40
重量%、特に約10〜30重量%が好ましい。 粘土は、含水ケイ酸塩鉱物であれば如何なるも
のでもよいが、特にアロフアンを主成分とし、た
とえばカオリナイト、パイロフイライト、セリサ
イト、モンモリロナイトなどを副成分とするもの
で、アロフアンとこれら副成分の重量比がアロフ
アン/副成分=約0.5〜5、好ましくは約1〜3
のものが好ましい。アロフアンを主成分とするも
のとしては、たとえば通称、鹿沼土とよばれる粘
土があげられる。副成分は主としてオゾン除去剤
の機械的強度を増大させる目的で配合されるが、
カオリナイトを多く含有する粘土としては、たと
えば木節粘土、蛙目粘土などの耐火性粘土などが
あげられる。パイロフイライトを多量含有する粘
土としては、たとえばロウ石類などがあげられ
る。セリサイトを多量含有する粘土としては、た
とえば通称、セリサイト粘土とよばれているもの
のほかに、石英、長石などを伴つている陶石類な
どがあげられる。モンモリロナイトを多量、含有
する粘土としては、たとえば酸性白土、ベントナ
イトなどがあげられる。これらの粘土はスイヒ精
製物であれば好ましいが、約200〜300メツシユ以
下の粒度に微粉砕されたものであればスイヒ精製
物でなくても用いることができる。 粘土の配合割合は焼成前の組成物に対して約45
〜95重量%、特に約50〜75重量%が好ましい。 石膏の配合割合は、焼成前の組成物に対して約
0.1〜10重量%、特に約0.5〜5重量%が好まし
い。 前述の活性炭、粘度および石膏の3成分を混合
する際、たとえば硫酸鉄、硫酸ニツケル、硫酸コ
バルトなどの遷移金属塩や後述のマンガン化合物
などを加えてもよい。その配合割合は、焼成前の
組成物に対して約3重量%以下が好ましい。マン
ガン化合物を加えるとオゾン除去剤の寿命はさら
に伸長し、より経済的なものが得られる。 3成分を混合する場合、適当量の水を加えても
よい。水の量は用いる粘土の種類や配合割合など
によつて異なるが、乾燥原料基準で約30〜80重量
%が好ましい。水を加えた場合、十分に練合し、
得られたペースト状のものをたとえば円柱状、球
状などの形状に成型した後、予備乾燥をしてもよ
い。成型法としては、たとえば高圧による打錠成
型や低圧による押し出し成型があげられるが、高
圧による打錠成型によつて成型した場合、オゾン
除去剤の表面剥離などが起ることもあるので低圧
の押し出し成型が好ましい。円柱状、球状などに
成型したものを適宜の大きさに破砕してもよい。 焼成は、たとえば窒素、炭酸ガスなどの不活性
ガス雰囲気下、300〜750℃の温度で約30分〜3時
間おこなわれる。温度が240℃以下の場合、組成
物は焼成されないのでオゾン除去剤の耐水性や機
械的強度が著しく劣り、高湿度ガスとの接触によ
つて機械的強度を失つたり、過剰の水が存在する
とオゾン除去剤は崩壊する。 本発明の(ii)の操作で用いられるマンガン化合物
担持活性炭としては、たとえば木炭、コークス、
ヤシガラなどを原料として通常の方法によつて賦
活された活性炭にマンガン化合物を担持させたも
のがあげられる。その比表面積は約700〜2000
m2/gが好ましい。形状は粒状、破砕状など如何
なるものでもよい。特にヤシガラを原料とした破
砕状の活性炭が好ましい。 活性炭に担持させるマンガン化合物としては、
たとえばマンガンの塩化物、硝酸塩、酢酸塩、チ
オシアン酸塩、硫化物、リン酸塩、炭酸塩などが
あげられる。マンガン化合物を活性炭に担持させ
た後、たとえば窒素、炭酸ガス、ヘリウムなどの
不活性ガス気流下で約100〜500℃、好ましくは約
150〜250℃で熱処理をおこなうことによつてマン
ガン化合物担持活性炭が得られる。 マンガン化合物の担持量は、Mnとして約0.1〜
10重量%、特に約0.5〜5重量%が好ましい。 マンガン化合物を担持させる手段は、如何なる
ものでもよく、たとえば(1)水溶性のマンガン化合
物を用いる場合は水に溶解した後、この溶液を活
性炭に含浸せしめ、乾燥焼成する手段、(2)水に難
溶性のマンガン化合物を用いる場合は活性炭の製
造工程において活性炭の原料中にマンガン化合物
を適宜量配合する手段などがあげられる。前述の
活性炭には、マンガン化合物以外に、アルカリ金
属および/またはアルカリ土類金属の一種または
二種以上を担持させてもよい。アルカリ金属を担
持させる場合は、たとえばナトリウム、カリウム
などの水酸化物や炭酸塩などを水に溶解した後、
この溶液を活性炭に含浸せしめ、乾燥、焼成すれ
ばよい。アルカリ土類金属を担持させる場合は、
たとえばカルシウム、ストロンチウム、バリウ
ム、ラジウムなどの塩化物、臭化物、沃化物もし
くは硝酸塩を水溶液にした後、前記(1)の手段によ
つて活性炭に担持させる。前記元素の炭酸塩、硫
酸塩、弗化物または燐酸塩を用いる場合は、前記
(2)の手段にしたがつて活性炭原料中にこれらの化
合物を適宜量配合することによつて担持される。
担持量は、アルカリ金属および/またはアルカリ
土類金属元素の量をMとし、マンガン化合物の量
をMnとすると、MnとMの和が約10重量%をこえ
ないようにすることが好ましい。 本発明においては、オゾン含有ガスを、(i)ま
ず、活性炭、粘土および石膏を主成分とする組成
物を焼成してなるオゾン除去剤に接触させる。こ
の操作によつてオゾン含有ガス中のオゾンは安全
かつ確実に低濃度化される。このように低濃度化
されたオゾン含有ガスを、(ii)つぎにマンガン化合
物担持活性炭に接触させる。この操作によつてオ
ゾンは完全に除去される。 オゾン含有ガス中のオゾン含有量は如何なる濃
度でもよいが、特に約10ppm〜10000ppmが好ま
しい。オゾン含有ガス中にはオゾン以外に、たと
えば硫化水素、メルカプタン類、スルフイド類、
アミン類、アルデヒド類、ケトン類などの臭気成
分が含まれていてもよい。 オゾン含有ガスをオゾン除去剤ならびにマンガ
ン化合物担持活性炭に接触させる場合、その温度
はできるだけ低いことが好ましい。処理ガスのオ
ゾン濃度や接触条件などによつて異なるが、通常
の場合、オゾン除去剤には約150℃以下、マンガ
ン化合物担持活性炭には約60℃以下の温度で接触
させる。 本発明で用いられるオゾン除去剤ならびにマン
ガン化合物担持活性炭はともにオゾン除去活性が
高いので接触時間は通常よりもかなり短くてすむ
が、層全体として通常約0.01〜5秒、特に約0.1
〜2秒程度が好ましい。 また、処理ガス中のオゾン濃度に応じ、オゾン
除去剤とマンガン化合物担持活性炭とのオゾン除
去速度の差を利用し、それぞれの接触時間を変え
るとさらに有効にオゾンなどが除去できる。 オゾン含有ガスを接触させる具体的な手段とし
ては、たとえば固定床、移動床、流動床などの公
知の手段があげられるが、特に固定床が好まし
い。 本発明の方法によれば、従来の方法に比べて安
全でしかも効率よくオゾンが除去できるので、装
置が小型化でき、装置の建設費の低減と運転経費
の節減が図れるなどの利点がある。また、本発明
の方法によればオゾン以外に、たとえば臭気成分
などがガス中に含まれていてもオゾンとともに完
全に除去することができる。 以下に実施例ならびに比較例をあげ、本発明を
具体的に説明する。 実施例 1 乾燥重量基準で鹿沼土(スイヒ精製物)250
g、木節粘土760g、ベントナイト760g、石膏25
gおよび300メツシユ以下に微粉砕されたBET表
面積1025m2/gの椰子殻活性炭100gの混合物に
350gの水を加え充分に練合して4mmφの円柱状
に押出し成型した。この成型物を100〜120℃の温
度で予備乾燥したのち500℃の温度で窒素気流
中、1/2時間の熱処理を施してオゾン除去剤を
製造した。 BET表面積1050m2/g、粒度9〜14メツシユ
の破砕状椰子殻活性炭に3重量%の硝酸マンガン
水溶液を散布して200℃の窒素気流中で約1時間
の熱処理を施してMnとして1重量%を含む活性
炭を製造した。 このようにして製造したオゾン除去剤とマンガ
ン化合物担持活性炭とを(1)オゾン除去剤、(2)マン
ガン化合物担持活性炭の順序で充填して次の条件
でオゾン除去性能を調べるとともにJIS法に基づ
いてオゾン除去剤の着火温度を測定して熱安定性
を調べた。 試験条件 ガス組成:オゾン800ppmを含有する相対湿度85
%の空気 空間速度:40000H-1;オゾン除去剤80000H-1
マンガン化合物担持活性炭 接触温度:30℃ オゾン除去性能の結果は表−1のとうりであ
り、安定して高い除去効率が得られた。着火温度
は表−2のとうりであり、オゾン除去剤の良好な
熱安性が確認された。 実施例 2 実施例1で製造したオゾン除去剤とマンガン化
合物担持活性炭とを(1)オゾン除去剤、(2)マンガン
化合物担持活性炭の順序で充填して次の条件でオ
ゾン除去性能および脱臭性能を調べた。 試験条件 ガス組成:オゾン100ppm、硫化水素30ppmを含
有する相対湿度85%の空気 空間速度:9000H-1;オゾン除去剤20000H-1;マ
ンガン化合物担持活性炭 接触温度:45℃ オゾン除去性能および硫化水素の脱臭状況は表
−3のとうりであつた。 比較例 1 BET表面積1046m2/g、粒度4〜8メツシユ
の市販の椰子殻活性炭を破砕、篩別し9〜14メツ
シユに整粒して実施例1の試験条件に準じて(空
間速度:20000H-1)オゾン除去性能を調べた。そ
の結果は表−1のとうりであつた。該活性炭の着
火温度を測定した結果は表−2のとうりであつ
た。 比較例 2 市販のオゾン除去剤(分析したところ、粘土と
活性炭とからなり、活性炭の割合は約30重量%で
あつた)と市販の椰子殻活性炭とを(1)オゾン除去
剤、(2)活性炭の順序で充填して実施例2と同一の
試験条件でオゾン除去性能および脱臭性能を調べ
た。 オゾン除去性能および硫化水素の脱臭状況は表
−3のとうりであつた。
The present invention relates to a method for treating ozone-containing gas. Ozone, which has strong oxidizing power, is widely used for water purification and sterilization, industrial wastewater treatment, sewage treatment, flue gas denitrification, and removal of various bad odors. Typically, in systems involving ozone, excess ozone must be used to complete the oxidation reaction. As a result, unreacted ozone is discharged. As is well known, ozone is a substance that causes air pollution and is a so-called oxidant.It not only has negative effects on the human body, but also causes great damage to agricultural crops by destroying chlorophyll and suppressing assimilation.In order to prevent secondary pollution, it is important to remove excess ozone. must be removed. For this reason, there is a strong desire for the early development of a high-performance and economical exhaust ozone treatment method, and to date, methods such as (1) activated carbon method, (2) thermal decomposition method, and (3) chemical absorption method have been proposed. The thermal decomposition method (2) is a method of thermally decomposing ozone using a burner such as heavy oil or light oil.
This is a method to decompose ozone by introducing ozone-containing gas into a decomposition furnace at 400°C. Usually, the ozone concentration in the gas is low, so this method requires heating a large amount of air and is not economical. The chemical absorption method (3) is a method of absorbing ozone by introducing an ozone-containing gas into an aqueous solution of a reducing agent such as ferrous salt, sodium sulfite, or sodium thiosulfate, or an aqueous alkaline solution such as caustic soda. With this method, replenishment of chemicals and drainage treatment are complicated, the absorption capacity decreases due to changes in the chemical composition due to ozone absorption, and it cannot cope with the ozone concentration in the gas (load of ozone-containing gas The problem is that the ability to follow fluctuations is poor. The activated carbon method (1) is a method in which ozone-containing gas is introduced into a granular activated carbon layer (this activated carbon does not carry anything) and is decomposed into oxygen on the surface of the activated carbon. This method is widely used for waste ozone treatment because it has many advantages, such as excellent ability to follow changes in the load of ozone-containing gas and the ability to decompose even extremely low concentrations of ozone at room temperature. It has been pointed out that concerns about powdering of activated carbon particles due to reactions with ozone, abnormal heat generation and ignition due to contact with high concentration ozone or mixing with organic gases need to be improved. As an ozone decomposer that focuses on preventing abnormal heat generation and ignition on the surface of activated carbon, an ozone decomposer that is made by blending powdered activated carbon with silica/alumina gel, mixing it, granulating it, and drying it has been proposed. Although this decomposer achieves its purpose in terms of thermal stability, it has low ozone removal performance when the ozone concentration is low or the humidity of the ozone-containing gas is high; It has drawbacks such as poor utilization of activated carbon due to low intragranular diffusion rate, and insufficient water resistance and mechanical strength. In view of the above circumstances, the present inventors conducted extensive research and found that an ozone remover made by firing a composition containing activated carbon, clay, and gypsum as main components has excellent ozone removal performance, thermal stability, mechanical strength, and water resistance. We found that it is superior in such points. On the other hand, although activated carbon loaded with manganese compounds decomposes and removes ozone in ozone-containing gases extremely effectively, it is susceptible to contact with high concentrations of ozone or contamination with organic gases, just like regular activated carbon that does not support anything. It was discovered that phenomena such as abnormal heat generation and ignition were observed. The present inventors conducted further research and found that by bringing the above-mentioned ozone remover and manganese compound-supported activated carbon into contact with an ozone-containing gas in the order of (i) the ozone remover and (ii) the manganese compound-supported activated carbon. As a result, ozone can be removed safely and efficiently, and ozone and organic gases can be removed extremely effectively even when the ozone concentration in the gas is high or when organic gases such as odors are present. I found out. Based on this knowledge, we have completed the present invention. That is, the present invention involves (i) bringing an ozone-containing gas into contact with an ozone-removing agent prepared by firing a composition mainly composed of activated carbon, clay, and gypsum at 300 to 750°C, and then (ii) supporting a manganese compound thereon. This is a method for treating ozone-containing gas, which is characterized by removing ozone by bringing it into contact with activated carbon. The ozone remover used in the operation (i) of the present invention is obtained by mixing activated carbon, clay, and gypsum, pulverizing the mixture if necessary, and then firing the mixture. The activated carbon may be of any type as long as it is made of charcoal, coke, coconut shell, or the like as a raw material and activated by a conventional method, but it preferably has a specific surface area of about 500 to 2000 m 2 /g. The shape thereof may be, for example, powder, granule, or crushed, but it is particularly preferable to use crushed activated carbon made from coconut shells, which is finely pulverized to a particle size of about 300 mesh or less. Since the mechanical strength of the ozone remover decreases as the particle size of activated carbon increases, it is preferable that the particle size of activated carbon is as small as possible. The blending ratio of activated carbon is determined by its lifespan as an ozone remover, mechanical strength, thermal stability, etc., but in practice, the blending ratio before firing is approximately 5 to 40%.
% by weight, especially about 10-30% by weight is preferred. The clay may be any hydrated silicate mineral, but it is particularly clay that has allohuan as its main component and subcomponents such as kaolinite, pyrophyllite, sericite, montmorillonite, etc. The weight ratio of allofan/subcomponent=about 0.5 to 5, preferably about 1 to 3
Preferably. An example of a clay whose main component is Arohuan is the clay commonly known as Kanuma clay. Subcomponents are mainly blended for the purpose of increasing the mechanical strength of the ozone remover, but
Examples of clays containing a large amount of kaolinite include refractory clays such as Kibushi clay and Frogme clay. Clays containing a large amount of pyrophyllite include, for example, pyrophyllites. Clays containing a large amount of sericite include, for example, what is commonly called sericite clay, as well as pottery stones containing quartz, feldspar, and the like. Examples of clays containing a large amount of montmorillonite include acid clay and bentonite. It is preferable that these clays are refined products of Suihi, but they can be used even if they are finely pulverized to a particle size of about 200 to 300 mesh or less. The mixing ratio of clay is approximately 45% of the composition before firing.
~95% by weight, especially about 50-75% by weight is preferred. The mixing ratio of gypsum is approximately
0.1 to 10% by weight, especially about 0.5 to 5% by weight are preferred. When mixing the three components of activated carbon, viscosity, and gypsum described above, transition metal salts such as iron sulfate, nickel sulfate, and cobalt sulfate, and manganese compounds described below may be added. The blending ratio thereof is preferably about 3% by weight or less based on the composition before firing. Adding manganese compounds further extends the life of the ozone remover and makes it more economical. When mixing the three components, an appropriate amount of water may be added. The amount of water varies depending on the type of clay used and the mixing ratio, but is preferably about 30 to 80% by weight based on dry raw materials. If water is added, mix thoroughly,
The obtained paste may be formed into a cylindrical or spherical shape, and then pre-dried. Molding methods include, for example, high-pressure tablet molding and low-pressure extrusion molding. However, if high-pressure tablet molding is used, surface peeling of the ozone remover may occur, so low-pressure extrusion is recommended. Molding is preferred. It may be molded into a cylindrical or spherical shape and then crushed into an appropriate size. Firing is performed at a temperature of 300 to 750° C. for about 30 minutes to 3 hours in an atmosphere of an inert gas such as nitrogen or carbon dioxide. If the temperature is below 240℃, the composition will not be fired, so the water resistance and mechanical strength of the ozone remover will be significantly inferior, and the mechanical strength will be lost due to contact with high humidity gas or the presence of excess water. The ozone remover then disintegrates. Examples of the manganese compound-supported activated carbon used in the operation (ii) of the present invention include charcoal, coke,
Examples include activated carbon made from coconut shells or the like and activated by a conventional method to support a manganese compound. Its specific surface area is about 700-2000
m 2 /g is preferred. The shape may be any shape, such as granular or crushed. Particularly preferred is crushed activated carbon made from coconut shell. Manganese compounds supported on activated carbon include:
Examples include manganese chloride, nitrate, acetate, thiocyanate, sulfide, phosphate, and carbonate. After the manganese compound is supported on activated carbon, the temperature is heated at about 100 to 500°C, preferably about
Manganese compound-supported activated carbon can be obtained by heat treatment at 150 to 250°C. The amount of manganese compound supported is approximately 0.1 to 0.1 as Mn.
10% by weight is preferred, especially about 0.5-5% by weight. Any means may be used to support the manganese compound, such as (1) when using a water-soluble manganese compound, dissolving it in water, impregnating activated carbon with this solution, and drying and baking; When using a sparingly soluble manganese compound, a suitable amount of the manganese compound may be added to the activated carbon raw material in the activated carbon manufacturing process. The above-mentioned activated carbon may support one or more alkali metals and/or alkaline earth metals in addition to the manganese compound. When supporting an alkali metal, for example, after dissolving hydroxides or carbonates such as sodium and potassium in water,
Activated carbon may be impregnated with this solution, dried and fired. When supporting alkaline earth metals,
For example, a chloride, bromide, iodide or nitrate of calcium, strontium, barium, radium, etc. is made into an aqueous solution and then supported on activated carbon by the method described in (1) above. When carbonates, sulfates, fluorides or phosphates of the above elements are used, the above
It is supported by blending appropriate amounts of these compounds into the activated carbon raw material according to the method (2).
The supported amount is preferably such that the sum of Mn and M does not exceed about 10% by weight, where M is the amount of the alkali metal and/or alkaline earth metal element and Mn is the amount of the manganese compound. In the present invention, ozone-containing gas is first brought into contact with (i) an ozone remover prepared by firing a composition containing activated carbon, clay, and gypsum as main components. By this operation, the concentration of ozone in the ozone-containing gas is reduced safely and reliably. (ii) Next, the ozone-containing gas reduced in concentration is brought into contact with activated carbon supporting a manganese compound. Ozone is completely removed by this operation. The ozone content in the ozone-containing gas may be at any concentration, but is preferably about 10 ppm to 10,000 ppm. In addition to ozone, ozone-containing gas contains hydrogen sulfide, mercaptans, sulfides,
Odor components such as amines, aldehydes, and ketones may be included. When bringing the ozone-containing gas into contact with the ozone remover and the manganese compound-supported activated carbon, the temperature is preferably as low as possible. Although it varies depending on the ozone concentration of the processing gas and the contact conditions, normally the ozone remover is contacted at a temperature of about 150°C or lower, and the manganese compound-supported activated carbon is contacted at a temperature of about 60°C or lower. Both the ozone remover and activated carbon supporting a manganese compound used in the present invention have high ozone removal activity, so the contact time can be much shorter than usual, but the entire layer is usually about 0.01 to 5 seconds, especially about 0.1 seconds.
About 2 seconds is preferable. Further, depending on the ozone concentration in the processing gas, ozone and the like can be removed more effectively by utilizing the difference in ozone removal rate between the ozone remover and the manganese compound-supported activated carbon and changing the contact time of each. Specific means for bringing the ozone-containing gas into contact include known means such as fixed beds, moving beds, and fluidized beds, with fixed beds being particularly preferred. According to the method of the present invention, ozone can be removed more safely and efficiently than conventional methods, so the device can be made smaller, and there are advantages such as reduction in construction costs and operating costs of the device. Further, according to the method of the present invention, even if other odor components are contained in the gas, they can be completely removed together with the ozone. EXAMPLES The present invention will be specifically explained below with reference to Examples and Comparative Examples. Example 1 Kanuma soil (purified water lily) 250% on a dry weight basis
g, Kibushi clay 760g, bentonite 760g, plaster 25
g and 100 g of coconut shell activated carbon with a BET surface area of 1025 m 2 /g finely ground to less than 300 mesh.
350 g of water was added, thoroughly kneaded, and extruded into a cylindrical shape with a diameter of 4 mm. This molded product was preliminarily dried at a temperature of 100 to 120°C, and then heat treated at a temperature of 500°C in a nitrogen stream for 1/2 hour to produce an ozone remover. A 3% by weight manganese nitrate aqueous solution was sprayed on crushed coconut shell activated carbon with a BET surface area of 1050 m 2 /g and a particle size of 9 to 14 mesh, and then heat treated in a nitrogen stream at 200°C for about 1 hour to produce 1% by weight of Mn. Activated carbon containing the following was produced. The ozone remover and manganese compound-supported activated carbon thus produced were filled in the order of (1) ozone remover and (2) manganese compound-supported activated carbon, and the ozone removal performance was examined under the following conditions, and based on the JIS method. The ignition temperature of the ozone remover was measured to investigate the thermal stability. Test conditions Gas composition: Relative humidity 85 containing 800 ppm ozone
% air space velocity: 40000H -1 ; Ozone remover 80000H -1 ;
Contact temperature of activated carbon supporting manganese compound: 30°C The results of ozone removal performance are shown in Table 1, and stable and high removal efficiency was obtained. The ignition temperature was as shown in Table 2, confirming the good thermal stability of the ozone remover. Example 2 The ozone remover and manganese compound-supported activated carbon produced in Example 1 were filled in the order of (1) ozone remover and (2) manganese compound-supported activated carbon, and the ozone removal performance and deodorization performance were evaluated under the following conditions. Examined. Test conditions Gas composition: Air space velocity at 85% relative humidity containing ozone 100ppm and hydrogen sulfide 30ppm: 9000H -1 ; Ozone remover 20000H -1 ; Manganese compound-supported activated carbon contact temperature: 45℃ Ozone removal performance and hydrogen sulfide The deodorization status was as shown in Table 3. Comparative Example 1 Commercially available coconut shell activated carbon with a BET surface area of 1046 m 2 /g and a particle size of 4 to 8 meshes was crushed, sieved and sized to 9 to 14 meshes, and the particles were sized according to the test conditions of Example 1 (space velocity: 20000H). -1 ) Ozone removal performance was investigated. The results were as shown in Table-1. The results of measuring the ignition temperature of the activated carbon are shown in Table 2. Comparative Example 2 A commercially available ozone remover (according to analysis, it consisted of clay and activated carbon, and the ratio of activated carbon was approximately 30% by weight) and commercially available coconut shell activated carbon were mixed into (1) an ozone remover, (2) The ozone removal performance and deodorization performance were examined under the same test conditions as in Example 2 by filling the activated carbon in this order. The ozone removal performance and hydrogen sulfide deodorization status were as shown in Table 3.

【表】【table】

【表】 法による測定において着火せず。
[Table] No ignition occurred when measured according to the method.

【表】【table】

Claims (1)

【特許請求の範囲】 1 (i) 活性炭、粘土および石膏を主成分とする
組成物を300〜750℃で焼成してなるオゾン除去
剤にオゾン含有ガスを接触させ、ついで (ii) マンガン化合物を担持せしめた活性炭に接触
させてオゾンを除去することを特徴とするオゾ
ン含有ガスの処理方法 2 (i)の組成物に更にマンガン化合物を含有する
特許請求の範囲第1項記載のオゾン含有ガスの処
理方法。
[Claims] 1. (i) an ozone-containing gas is brought into contact with an ozone removing agent prepared by firing a composition mainly composed of activated carbon, clay and gypsum at 300 to 750°C, and then (ii) a manganese compound is A method for treating an ozone-containing gas, characterized in that the ozone-containing gas is removed by bringing it into contact with supported activated carbon. Processing method.
JP4058078A 1978-03-27 1978-04-05 Treating method for gas containing ozone Granted JPS54132468A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4058078A JPS54132468A (en) 1978-04-05 1978-04-05 Treating method for gas containing ozone
US06/361,488 US4421533A (en) 1978-03-27 1982-03-24 Method of removing ozone and composition therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4058078A JPS54132468A (en) 1978-04-05 1978-04-05 Treating method for gas containing ozone

Publications (2)

Publication Number Publication Date
JPS54132468A JPS54132468A (en) 1979-10-15
JPS6222647B2 true JPS6222647B2 (en) 1987-05-19

Family

ID=12584420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4058078A Granted JPS54132468A (en) 1978-03-27 1978-04-05 Treating method for gas containing ozone

Country Status (1)

Country Link
JP (1) JPS54132468A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279864A (en) * 1988-09-16 1990-03-20 Konica Corp Electrophotographic image recorder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4425913A1 (en) * 1994-07-21 1996-01-25 Hoechst Ag Methods and filters for removing organic matter and ozone from gases

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040464A (en) * 1973-08-16 1975-04-14
JPS5040494A (en) * 1973-08-16 1975-04-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040464A (en) * 1973-08-16 1975-04-14
JPS5040494A (en) * 1973-08-16 1975-04-14

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279864A (en) * 1988-09-16 1990-03-20 Konica Corp Electrophotographic image recorder

Also Published As

Publication number Publication date
JPS54132468A (en) 1979-10-15

Similar Documents

Publication Publication Date Title
CN1064861C (en) Sorbent compositions
JPH07308538A (en) Cleaner for harmful gas
US4421533A (en) Method of removing ozone and composition therefor
US6503471B1 (en) Process for malodorous gas treatment
JP2012091167A (en) Method for treating water containing nutrient salts and oxidizing substance
JP4913271B2 (en) Halogen gas treatment agent
CN102179234B (en) Production method of special active carbon for removing mercuric chloride
JPS5933410B2 (en) How to remove ozone
JPS6222647B2 (en)
CN111821942A (en) High-efficiency dioxin adsorbent for waste incineration and preparation method and application thereof
JPS6229092B2 (en)
JPS6120329B2 (en)
JP2021517859A (en) How to remove heavy metals from liquids
JP2003024744A (en) Formation inhibitor for chlorinated aromatic compound and method for suppressing formation of chlorinated aromatic compound
JP3269565B2 (en) Treatment method for exhaust gas containing nitrogen trifluoride
JP5478991B2 (en) Desulfurization agent and method for producing the same
CN111773919B (en) Fine purification agent for NOx-containing gas flow and application thereof
JPH07275646A (en) Harmful gas purifying agent
KR100338322B1 (en) Method for purifying hf gas produced from semiconductor manufacturing process
JP5024654B2 (en) Wastewater treatment method
JPH05154376A (en) Air cleaning agent and production thereof
JPH0615033B2 (en) Exhaust gas purification agent
JP2001137701A (en) Adsorbent and deodorization method
JP2004181300A (en) Treating agent for oxidative gas and acidic gas, and detoxifying method using the treating agent
JPS605340B2 (en) Method for manufacturing ozone decomposition catalyst