JPS62226023A - Emissivity measuring system - Google Patents

Emissivity measuring system

Info

Publication number
JPS62226023A
JPS62226023A JP7039286A JP7039286A JPS62226023A JP S62226023 A JPS62226023 A JP S62226023A JP 7039286 A JP7039286 A JP 7039286A JP 7039286 A JP7039286 A JP 7039286A JP S62226023 A JPS62226023 A JP S62226023A
Authority
JP
Japan
Prior art keywords
measured
emissivity
detector
optical system
light beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7039286A
Other languages
Japanese (ja)
Inventor
Tetsuo Tamura
哲雄 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENKI SANEI KK
NEC Avio Infrared Technologies Co Ltd
Original Assignee
NIPPON DENKI SANEI KK
NEC Avio Infrared Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENKI SANEI KK, NEC Avio Infrared Technologies Co Ltd filed Critical NIPPON DENKI SANEI KK
Priority to JP7039286A priority Critical patent/JPS62226023A/en
Publication of JPS62226023A publication Critical patent/JPS62226023A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To make it unnecessary to heat an object to be measured, by applying radiant light beams to the object to be measured, measuring a reflected light beams, and a radiation energy from the object to be measured, by a detector, and calculating an emissivity from its measured quantity. CONSTITUTION:An optical system (1) is added coaxially to an optical system (2) in order to measure an emissivity. As for light beams which have been applied to an object 1 to be measured, reflection and absorption are executed in a ratio which is determined by the emissivity. The light beams which have been reflected pass through a scanner 2 and the optical system (2) and made incident on a detector 3, and converted to an electric signal. Also, energy radiated from the object 1 and other energy are made incident on the detector 3. In this way, first of all, the substance which has an emissivity '0' such as a mirror is placed on the object 1, and subsequently, that which has an emissivity '1' such as a black body (paint) is placed, the light beams are led to the detector 3, respectively, and its emissivity is derived by a prescribed expression. Accordingly, it is unnecessary to heat the black body to a temperature being equal to the object, and to heat object points to a uniform temperature in case of a multipoint measurement, and even in case of an object which cannot be heated, the emissivity can be measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、物質固有の定数である放射率を測定する方式
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring emissivity, which is a constant specific to a substance.

〔発明の概要〕[Summary of the invention]

本発明は、被測定対象物に赤外線を照射し、その反射光
と被測定対象物からの放射エネルギーとを検出してこの
検出量より放射率を算出することにより、被測定対象物
を加熱することなく放射率の測定ができるようにしたも
のである。
The present invention heats the measured object by irradiating the measured object with infrared rays, detecting the reflected light and radiant energy from the measured object, and calculating the emissivity from the detected amount. This makes it possible to measure emissivity without having to worry about it.

〔従来の技術〕[Conventional technology]

放射率の測定は、放射温度計で物質の温度を測定する場
合に必要であるが、従来は次のような手順で行なってい
た。
Measurement of emissivity is necessary when measuring the temperature of a substance with a radiation thermometer, and conventionally this has been done using the following procedure.

(al  まず、被測定対象物を成る温度に加熱する。(al) First, the object to be measured is heated to a certain temperature.

(b)  上記温度における黒体がらの放射エネルギー
を検出器により測定する。
(b) Measure the radiant energy of the black body at the above temperature using a detector.

(C1被測定対象物からの放射エネルギーを検出器によ
り測定する。
(C1 Radiant energy from the object to be measured is measured by a detector.

((1)次式により放射率を計算する。((1) Calculate the emissivity using the following formula.

(cl  多点について測定を行なう場合、上記fa1
項の加熱は対象点すべてを均一の温度として行なう。
(cl When measuring multiple points, the above fa1
The term heating is performed with all target points at a uniform temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の従来方法には、次のような欠点がある。 The conventional method described above has the following drawbacks.

(イ)被測定対象物を加熱しなければならず、等温の魚
体を必要とする。
(b) The object to be measured must be heated, and an isothermal fish body is required.

(ロ)多点測定の場合、対象点を均一温度に加熱する必
要がある。
(b) In the case of multi-point measurement, it is necessary to heat the target points to a uniform temperature.

(ハ)上記(イ)、(ロ)の加熱は容易でない。(c) Heating in (a) and (b) above is not easy.

(ニ)したがって、加熱が不可能な物体では、放射率の
測定が困難である。
(d) Therefore, it is difficult to measure the emissivity of objects that cannot be heated.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、輝度が一定の赤外線光源からの放射光を被測
定対象物に照射し、その反射光と被測定対象物からの放
射エネルギーとを検出器により測定し、その測定量より
放射率を算定するようにした。
The present invention irradiates an object to be measured with radiation light from an infrared light source with constant brightness, measures the reflected light and radiant energy from the object with a detector, and calculates the emissivity from the measured quantity. I tried to calculate it.

〔作用〕[Effect]

」一連の構成により、被測定対象物を加熱することなく
放射率を測定することが可能となる。
This series of configurations makes it possible to measure emissivity without heating the object to be measured.

〔実施例〕〔Example〕

第1図は、本発明の実施例における光学系構成図である
。同図において、光学系■に従来のlik射温度計にお
いて放射エネルギーを集束するだめの光学系と同一のも
のであり、光学系■は本発明による放射率測定のために
光学系■にこれと同軸に付加した光学系である。これら
の光学系において、スキャナーは被測定対象物を照射光
で走査するもので回転鏡などより成り、検出器は入射す
るエネルギーを電気信号に変換するものである。本実施
例により放射率を測定するためには、輝度が一定にされ
た赤外線光源から放射される光を光学系■。
FIG. 1 is a diagram showing the configuration of an optical system in an embodiment of the present invention. In the figure, the optical system (2) is the same as the optical system for focusing the radiant energy in the conventional LIKE radiation thermometer, and the optical system (2) is connected to the optical system (2) for emissivity measurement according to the present invention. This is an optical system added to the coaxial system. In these optical systems, the scanner scans the object to be measured with irradiated light and consists of a rotating mirror, and the detector converts incident energy into an electrical signal. In order to measure the emissivity according to this embodiment, light emitted from an infrared light source with constant brightness is used in the optical system (2).

■及びスキャナーを経て被測定対象物に照射する。(2) Irradiate the object to be measured via a scanner.

被測定対象物は、放射率がεで温度がToであるとする
。被測定対象物に照射された光は、放射率εによって決
まる割合で反射と吸収が行なわれる。
It is assumed that the object to be measured has an emissivity of ε and a temperature of To. The light irradiated onto the object to be measured is reflected and absorbed at a rate determined by the emissivity ε.

反射された光は、再びスキャナー及び光学系■を通っ°
ζ検出器に入射する。この検出器には、この反射光のみ
ならず、被測定対象物から放射されるエネルギーその他
のエネルギーが入射する。検出器に入射する赤外線エネ
ルギーWεは、キルヒホッフの法則を利用して書くと下
式のようになる。
The reflected light passes through the scanner and optical system again.
ζ enters the detector. Not only this reflected light but also energy emitted from the object to be measured and other energies are incident on this detector. The infrared energy Wε incident on the detector can be written using Kirchhoff's law as shown in the following equation.

Wr −εW (To)+ <1−ε) W (TLP
)+(1−ε) W (Ta ) +A   ・−(1
)ただし、W (To ) 、 W (TLP)及びW
(Ta)は、それぞれ被測定対象物(温度To)、赤外
線光源(温度TLP)及び外部(温度Ta)によるエネ
ルギーを表わし、Aはその他の外乱分を表わす。
Wr −εW (To)+ <1−ε) W (TLP
)+(1-ε) W (Ta) +A ・-(1
) However, W (To), W (TLP) and W
(Ta) represents the energy from the object to be measured (temperature To), the infrared light source (temperature TLP), and the outside (temperature Ta), respectively, and A represents other disturbance components.

(1)式の第1項は放射率εの被測定対象物からの放射
エネルギーであり、また、同氏の第2項は赤外線光源か
ら照射された赤外線の反射光のエネルギー、第3項は外
部から被測定対象物に放射された赤外線の反射光のエネ
ルギーを表わす。(11式を整理すると、 WE−ε(W (’T’o ) −W (TLP)  
W (Ta ) 1+W  (TLP)  +W  (
Ta )  +A     ・−−−−・  [2)こ
こで、W (To ) −W (TLP) −W (T
a )−α。
The first term in equation (1) is the radiant energy from the object to be measured with emissivity ε, his second term is the energy of the reflected infrared light emitted from the infrared light source, and the third term is the energy from the external It represents the energy of reflected infrared light emitted from the object to the measured object. (When formula 11 is rearranged, WE-ε(W ('T'o) -W (TLP)
W (Ta) 1+W (TLP) +W (
Ta ) +A ・------・ [2) Here, W (To ) −W (TLP) −W (T
a) −α.

W (TLP) +W (Ta ) +A=βとお(。W (TLP) + W (Ta) + A = β and (.

いま、K・し測定対象物に鏡のようなε″−,0のもの
を置くと、WE−βとなるので、βが求まる。次いで被
測定対象物に黒体(塗料)のようなε−1のものを置く
と、 Wt−β=W (To )  W (TLp)  W 
(Ta )ミαとなり、αが求まる。したがって、 ε −(WE  −β ) / α         
      ・・ ・・   (テ()よりεが求めら
れる。
Now, if we put a mirror-like ε''-,0 object on the object to be measured, we get WE-β, so β can be found. -1, Wt-β=W (To) W (TLp) W
(Ta) becomes α, and α is found. Therefore, ε − (WE − β ) / α
... (ε is calculated from Te().

第2図は、上述の原理により検出器の出力からεを求め
る本発明実施例における電気系構成図である。同図にお
いて、検出器は第1図の検出器である。検出器は赤外線
入射エネルギーWεを電気信号に変換し、プリアンプ(
前置増幅器)はこれを増幅する。プリアンプの出力信号
はD/へ変換器の出力信号と加算され、加算された信号
は、^/D変換器に供給されると共にコンパレータの一
方の入力に印加される。コンパレータの他方の入力には
0ボルトの基′準電位が接続され、コンパレータは内入
力の電位が等しくなるまで出力を発してカウンタを作動
させる。カウンタには図示しないクロック信号源よりク
ロック信号が供給され、カウンタはコンパレータより出
力を受けている間クロツタ信号を計数する。カウンタの
計数値はD/A変換器に印加され、D/A変換器は計数
値に対応する°rアナログ信号逆極性で出力する。なお
、この口/^変換器は、カウンタが1ヒまっても、その
時の計数値に対応するアナログ信号を出し続け、その状
態を保持できるようになっている。
FIG. 2 is an electrical system configuration diagram in an embodiment of the present invention in which ε is determined from the output of the detector according to the above-mentioned principle. In the figure, the detector is the detector of FIG. The detector converts the infrared incident energy Wε into an electrical signal and sends it to the preamplifier (
A preamplifier) amplifies this. The output signal of the preamplifier is summed with the output signal of the D/to converter, and the summed signal is supplied to the ^/D converter and applied to one input of the comparator. A reference potential of 0 volts is connected to the other input of the comparator, and the comparator operates the counter by producing an output until the potentials of the inner inputs become equal. A clock signal is supplied to the counter from a clock signal source (not shown), and the counter counts the clock signal while receiving the output from the comparator. The count value of the counter is applied to a D/A converter, and the D/A converter outputs a °r analog signal of opposite polarity corresponding to the count value. This converter is designed so that even if the counter is down by one, it continues to output an analog signal corresponding to the count value at that time and maintains its state.

A/D変換器には演算器が接続され、演算器はデータ記
憶用のレジスタを含んでいる。
A computing unit is connected to the A/D converter, and the computing unit includes a register for data storage.

次に、上記電気系の動作及び操作について説明する。Next, the operation and operation of the above electrical system will be explained.

まず、被測定対象物にε均0のものを置くと、Wε=β
となるがD/^変換器の出力が0の場合は0点の電位も
βである。  D/A変換器の出力が急速に増して一β
に等しくなると、0点の電位が0になるのでカウンタは
計数を止め、D/^変換器は−βを出力する状態に保持
される。したがって、あとで被測定対象物にε1−fO
でないものを置いたとき、0点にはWε−βが現われる
ことになる。次に被測定対象物にε=1のものを置くと
、0点にはWε−β−αが現われるがD/^変換器の出
力は変化しない。このαをA/D変換して演算器内のレ
ジスタに記憶させる。そこで、被測定対象物にεが未知
のものを置くと、演算器が^/口変喚器の出力を先に記
憶したαで割算して(Wε−β)/α=εを出力する。
First, if we place an object to be measured with an ε average of 0, then Wε=β
However, when the output of the D/^ converter is 0, the potential at the 0 point is also β. The output of the D/A converter increases rapidly to -β
When it becomes equal to , the potential at the 0 point becomes 0, so the counter stops counting and the D/^ converter is kept in the state of outputting -β. Therefore, ε1−fO is later applied to the object to be measured.
If you place something that is not, Wε-β will appear at the 0 point. Next, when an object to be measured with ε=1 is placed, Wε-β-α appears at the 0 point, but the output of the D/^ converter does not change. This α is A/D converted and stored in a register within the arithmetic unit. Therefore, when an object to be measured with an unknown ε is placed, the calculator divides the output of the ^/mouth converter by the previously stored α and outputs (Wε-β)/α=ε. .

なお、第1図の光学系構成におい′ζ、光学系■は赤外
線光源の放射光を光学系■と同軸に甫ねるものであれば
、図ボ以外の光学系を使用してもよい。また、第1図の
例ではスキャナーが付いているが、スキャナーは必ずし
も必要ではない。スキャナーの代わりに、被測定対象物
の方を動かしてもよい。
In the optical system configuration shown in FIG. 1, optical system 'ζ and optical system (2) may be any other optical system than the one shown in the figure, as long as the optical system (2) and the optical system (2) can coaxially receive radiation from an infrared light source. Further, although a scanner is included in the example shown in FIG. 1, the scanner is not necessarily required. Instead of the scanner, the object to be measured may be moved.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、本発明によれば、放射率の測定に
際し被測定対象物を加熱する必要がないので、加熱器が
不要となるばか従来の問題点がすべて解決される。すな
わち、黒体を被測定対象物と等温に加熱したり、多点測
定の場合に対象点を均一温度に加熱したりしなくてもよ
い。また、加熱が不r11能な物体でも放射率の測定が
可能となる。
As explained above, according to the present invention, there is no need to heat the object to be measured when measuring emissivity, so all problems of the conventional method are solved, since no heater is required. That is, it is not necessary to heat the black body to the same temperature as the object to be measured, or to heat the object points to a uniform temperature in the case of multi-point measurement. Furthermore, it is possible to measure the emissivity of objects that cannot be heated.

更に、多点測定の場合、スキャーを使用することにより
赤外線光源の放射光がスキャンされるので測定が容易と
なる。
Furthermore, in the case of multi-point measurement, the use of a scanner scans the emitted light from the infrared light source, making the measurement easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における光学系構成図、第2図
は本発明の実施例における電気系構成図である。
FIG. 1 is a block diagram of an optical system in an embodiment of the present invention, and FIG. 2 is a block diagram of an electrical system in an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 輝度が一定の赤外線光源からの放射光を被測定対象物に
照射する第1の光学手段と、 上記被測定対象物に照射された光の反射光エネルギー及
び上記被測定対象物より放射されるエネルギーを検出器
に入射する第2の光学手段と、上記検出器に入射され電
気信号に変換された入射エネルギーより上記被測定対象
物の放射率を算出する演算手段とを有する放射率測定方
式。
[Scope of Claims] A first optical means for irradiating an object to be measured with radiation light from an infrared light source having a constant brightness; reflected light energy of the light irradiated to the object to be measured; and the object to be measured. It has a second optical means for inputting energy radiated from the object into the detector, and a calculation means for calculating the emissivity of the object to be measured from the incident energy input to the detector and converted into an electric signal. Emissivity measurement method.
JP7039286A 1986-03-28 1986-03-28 Emissivity measuring system Pending JPS62226023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7039286A JPS62226023A (en) 1986-03-28 1986-03-28 Emissivity measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7039286A JPS62226023A (en) 1986-03-28 1986-03-28 Emissivity measuring system

Publications (1)

Publication Number Publication Date
JPS62226023A true JPS62226023A (en) 1987-10-05

Family

ID=13430125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7039286A Pending JPS62226023A (en) 1986-03-28 1986-03-28 Emissivity measuring system

Country Status (1)

Country Link
JP (1) JPS62226023A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049246A (en) * 1983-08-30 1985-03-18 Japan Spectroscopic Co Two-stage flame type flame analysis device
JPS621202A (en) * 1985-06-27 1987-01-07 株式会社東芝 Voltage non-linear resistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049246A (en) * 1983-08-30 1985-03-18 Japan Spectroscopic Co Two-stage flame type flame analysis device
JPS621202A (en) * 1985-06-27 1987-01-07 株式会社東芝 Voltage non-linear resistor

Similar Documents

Publication Publication Date Title
US20060232675A1 (en) Thermal imaging system and method
GB1401778A (en) Method for measuring the surface temperature of a metal object
CN103675019A (en) Method for measuring material surface emissivity by virtue of thermal infrared imager rapidly
Coppa et al. Normal emissivity of samples surrounded by surfaces at diverse temperatures
JPS62226023A (en) Emissivity measuring system
US4884896A (en) Production line emissivity measurement system
US20040008753A1 (en) Emissivity distribution measuring method and apparatus
JPH0663848B2 (en) How to measure the surface temperature of an object
JPS61210921A (en) Instrument for measuring emissivity and temperature of subject
JPH08122155A (en) Radiation temperature measurement method for temperature object surface
JPS62140036A (en) Radiation thermometer
JPS58196430A (en) Radiation thermometer
JP2703326B2 (en) How to measure the transmittance of a substance
JPH06137953A (en) Method and apparatus for measuring temperature through infrared sensor and method and equipment for measuring emissivity
JPH0521491B2 (en)
Midyk et al. Methods of measuring and controlling temperature and the possibility of their involvement for the formation of temperature subsystems
JPH01245125A (en) Method and device for measuring simultaneously emissivity and temperature
JPS58113823A (en) Emissivity measuring method
JPH09166494A (en) Method and device for measuring emissivity and temperature of object
JPH0112188Y2 (en)
RU2211446C2 (en) Method of contact-free nondestructive test of thermophysical properties of materials and facility for its embodiment
JPS6014192Y2 (en) Surface temperature measuring device for objects inside the furnace
CN111238661A (en) Non-contact temperature measuring method and device based on fluorescent afterglow
JPS60146125A (en) Temperature measuring apparatus
JP2004157009A (en) Balanced type radiation temperature / emissivity measuring apparatus and method