JPS6222572B2 - - Google Patents

Info

Publication number
JPS6222572B2
JPS6222572B2 JP3399078A JP3399078A JPS6222572B2 JP S6222572 B2 JPS6222572 B2 JP S6222572B2 JP 3399078 A JP3399078 A JP 3399078A JP 3399078 A JP3399078 A JP 3399078A JP S6222572 B2 JPS6222572 B2 JP S6222572B2
Authority
JP
Japan
Prior art keywords
pipe
distribution
water supply
water
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3399078A
Other languages
Japanese (ja)
Other versions
JPS54128133A (en
Inventor
Jooji Roido Henrii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUEADEIOORU INTERN AG
Original Assignee
FUEADEIOORU INTERN AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUEADEIOORU INTERN AG filed Critical FUEADEIOORU INTERN AG
Priority to JP3399078A priority Critical patent/JPS54128133A/en
Publication of JPS54128133A publication Critical patent/JPS54128133A/en
Publication of JPS6222572B2 publication Critical patent/JPS6222572B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

周知の土壌潅漑法、例えば噴霧潅漑、冠水潅
漑、畦間潅漑および頭上潅漑等のなかで地下潅漑
は植物が成育する耕地を潅漑するものとしては歴
史的には最も古い型に属する。植物はその栄養分
を水溶性化合物からのみ吸収できる。しかし過剰
の水分は多くの植物を損傷させ腐食をひきおこす
ということに注意しなければならない。従つて、
規則的に調節可能な水分の供給と必然的な排水は
最も重要である。 散水潅漑は気候の温和な地帯における園芸およ
び集約園芸(intensive horticulture)には適し
ているが、暑い国々または土壌または水中の塩分
の高い地域の場合は不適である。散水中の蒸発に
よる水の損失は相当なものである。 冠水潅漑には非常に多量の水が必要なので、こ
の型の潅漑は多量の水が得られるところでのみ利
用できる。畦間潅漑は非常に大きな技術的経費を
必要とせずにおこなえるので農業においてしばし
ば利用される。しかしこの方法の場合も蒸発およ
び浸透による水の損失が大きいので多量の水が必
要となる。頭上潅漑法は広範な地域においてかつ
てはほとんど利用されていなかつた植物の給水を
目的とするものである。 周知の半潅漑法(method of subirrigation)
は単一の流動径路を有する地下配設管と吸入およ
び排出弁を区切る構造を提案し、これによつて排
出弁は配設管系の水圧が実質上静圧よりも高くな
るまで開放しないように圧力調整される。吸入弁
は排水を目的とするもので、土壌が過剰の水を含
むと開く。しかしながら、このような潅漑系は弁
のシート(seat)がよごれていないときのみ十分
に作動するということが実験により示された。最
小量の泥、例えば砂粒または土壌粒等でさえこの
ような潅漑系の所望の作動を妨げるので申し分の
ない潅漑または排水を妨げる。 本発明の目的は、潅漑および排水用弁なしで作
動し、実際上維持を必要とせず操作上の経費を最
小にする潅漑用装置を提供することである。この
ような要求は水がほとんど得られない砂漠または
大草原(prairie)のような乾燥地帯の開発およ
び都会化のための潅漑用装置として特に開発され
た。これらの要求は水が次第に少なくなりつつあ
る温和な地方での潅漑に対して増加しつつある。
しかし給水問題は頭上潅漑が不可能なスポーツ・
センターや公園等においても生じる。何故ならば
このようなところでは芝生は常に公衆によつて利
用されており、また給水に非常に長時間を要する
からである。 本発明潅漑装置はこれらの目的を達成するため
のものであつて給水源1から潅漑領域に配置され
た多数の分配点3,33,34への供給水の流れ
を調整するための装置2,8,8′,12〜1
4,19,25,31,32および該領域に実質
上均等な水の分配を行うための装置(4,5,
9,15〜17,20,27,第8a図、同b
図、第9図,第10図)を備えた地下潅漑用装置
において、各分配点(distribution point)が給
水管および分枝部材からプラグ連結方式で延長さ
れかつ該給水管に関して実質上直角に配設された
分配管に連結された少なくとも1つの分枝部材を
含み、該分配管が少なくとも1つの流路を有する
管状横断面および土壌表面に面した凹部を有する
管であり、該凹部が分配管の全長にわたつて延
び、凹部の底部は管横断面を形成するに不可欠の
被覆板の外面であり、該底部は流路領域に到る多
数の開口部を有し、該凹部は相互に向い合つたバ
ツク・テーパーを有する一対のカムによつて横方
向を限定され、少なくとも部分的に被覆板上およ
びカムのバツク・テーパーの側部に配設されたフ
イルター・エレメントを該流路領域から流れ出る
水の制御ならびに該開口部への土砂の侵入を避け
るために該凹部に配設してある潅漑用装置に関す
る。 本発明は添付図を参照した以下の記述により十
分に理解される。 第1〜5図は本発明による潅漑系の可能な変形
の略図を示す。 第6aおよび6b図はそれぞれ分配管給合用の
1および2個の横方向分枝連結エレメントを有す
る給水管セクシヨンの一態様を示す。 第7a〜7c図は第6aおよび6b図に示した
給水管分枝部の拡大した正面図、側面図および断
面図を示す。 第8aおよび8b図は分配管の第一の態様の断
面図および上からの展望図を示す。 第9aおよび9b図は任意の長さの分配管を形
成する隣接分配管連結用の結合点配置断面図を示
す。 第10a〜10f図は第8図に示した分配管の
種々の断面形態を示す。 本発明による土壌潅漑用装置の5種の配置例を
第1〜5図に示す。1はポンピング場所または一
般的には潅漑装置への水供給源を示す。第1図に
おいては単一給水管2が備わつており、該給水管
には分枝部材3によつて分配管4が連結されてい
る。給水管2に関する詳細は第6a,6bおよび
7a〜7c図の記述のところで、また分配管4に
関する詳細は第8a,8b,9a,9bおよび1
0a〜10f図の記述のところでそれぞれ示す。
流水開口部5は第9図に関して後述するようにし
て分配管4に沿つて配設される。 各分配管4の末端には脱気装置(deaerating
fittings)6を配置させ、エアー・ポケツト(air
―pockets)を避ける。給水管2および分配管4
は実質的に水平または地中で連結点の方に幾分傾
けて配設させる。給水管および分配管の圧力は一
方では各流水開口部に実質上同量の水が供給さ
れ、他方では地上の冠水がおこらないように選択
される。プローブ(probe:図示されていない)
を潅漑地域全体にわたつて配備させ、地中の含水
量を決定する。 第2図は2個の好ましい給水管分路8および
8′を有する潅漑系を示すもので、該分路は分配
管の両端に給水する。脱気装置10は給水管8お
よび8′を分配管9に連結する点またはその付近
に配設させる。このような管系の分配管はその長
さの中央に向つて傾けて正しく作動するようにし
なければならない。 第3図は離れた潅漑領域A,BおよびCが単一
のポンピング場所またはポンピング源1により分
離給水管12,13および14を通して給水され
る態様の略図である。潅漑領域A〜Cは例えば、
相互にかなり離れて位置する高低差のある台地ま
たは水要求度の異なる田畑または圃場等であつて
もよい。多数の分配管15,16,17を第3図
に示すように各給水管12,13,14に連結す
る。脱気装置12′,13′,14′および15′,
16′,17′を各給水管ならびに各分配管15,
16,17の端にそれぞれ配設する。給水管1
2,13,14の出口での圧力は潅漑領域A,B
およびCの高さまたはポンピング場所またはポン
ピング源1からの距離によつて常に変化させる。
これは、各分配管の各流水開口部に実質上同量の
水を供給するためである。 排水手段(図示されていない)を第1および2
図による潅漑装置において作動させて冠水を避け
てもよい。これらの排水手段は潅漑装置の任意の
場所に水除去用器材を具備している。 第4図は耕地への給水手段の他に排水手段を有
する潅漑装置を示す。分配管20を給水管19へ
連結する。排水流路21は分配管に平行に配設さ
せる。排水流路は離して配設し、集水管22に連
結してもよく、または第10b図および第10e
図に関して後述するような分配管の一部であつて
もよい。集水管22の一端には排水ピツト23が
配設されており、ここで排水を集める。もちろ
ん、この集められた水は特に水が不足の場合は潅
漑装置にもどしてもよい。第4図に示す潅漑装置
の場合には、分配管20を給水管19の方に傾斜
させ、その末端に脱気装置24を配設するのが適
当である。 第5図は本発明による潅漑装置のさらに別の態
様を示すもので、給水管25はその外端に脱気装
置26を有する。給水管25の両側には分配管2
7が連結されており、排水管を備える。分配管2
7および排水管28は給水管25から外側に向つ
てゆるやかに傾斜しているので排水は集水管29
の方へ流れる。ここから排水は排水ピツト30へ
流れてゆき、該ピツトは第4図について述べたよ
うにポンピング場所1に連結してもよい。 第6aおよび6b図は給水管に沿つて相互に80
〜120cm離して配設された1個および2個の横方
向に位置した連結部材33,34を有する給水管
31,32を示す。結合スリーブ(sleeve)35
を給水管31,32の一端に配設させて任意の長
さの給水管を形成させる。 第7a,7b,7cは分配管を第6a図による
管31に接続するための結合部および連結点の詳
細を一部横からの部分断面図で示す。第6a図お
よび第7a〜7c図において同じ部分は同一の番
号で示す。 特に第7a図において明らかなように、結合ス
リーブ35は隣接管(図示されていない)の一端
またはT字形または十字形の分枝部材(図示され
ていない)が挿入できるプラグとして配設されて
いる。連結部材33は給水管31の上で横方向へ
立上つていて、該連結部材の形態は第8図に示し
た形態の分配管が直接挿入できるように選択す
る。連結部材33はその安定性を良くするための
補強部材36を有する。分配管37の一端はこの
型の連結部材に押し込む。連結部材は分配管の各
端部が該連結部材の外側になるように押し進める
ことのできるような形態にしてもよい。分枝部材
3は他の断面形態をとつてもよく例えば第10a
図に示す分配管の連結に適したレンズ状断面のも
の等である。 横断面が三日月状の分配管流路39を有する分
配管の輪郭を第8aおよび8b図において断面図
および立面図で示す。支持壁40の重要な一部で
ある凹面被覆板42を該支持壁40の端41に連
結させる。被覆板42は直径2.5〜3.5mmの多数の
開口部43を有しており、該開口部は横にa、縦
にbの規則的間隔で配設されていて、ここを通し
て分配管流路39から分配管を囲む土壌へ水が流
れる。保持カム44は支持壁40と被覆板42と
の間の連結点41に配設されていて、これらのカ
ムは被覆板42の表面と共に凹部50を限定して
いる。該凹部には多孔性(porous)で毛細状
(capillary)の被覆層45(点線で示す)が配設
されている。被覆層45の材料は好ましくは耐腐
食性のノンウーブンガラス繊維またはプラスチツ
クである。被覆層の厚さは使用材料に左右され、
ノンウーブンガラス繊維の場合には0.5〜2.5mm、
好ましくは1mmであり、開放細孔(open―
pored)を有する発泡プラスチツクの場合は約5
〜6mmである。被覆層の役目は開口部43および
分配管流路39の中へ砂粒または土壌粒が入るの
を阻止することである。被覆層は水の自由な流出
量も抑制するので水は給水管に最も近い開口部4
3を通してばかりでなく、さらに離れた開口部も
通つて流れ出る。所望により分配管は非常に長く
することができる一方、取扱いやすさおよび使用
する場所への輸送のしやすさのために単一管の長
さは4〜6m以上にすべきではない。同時に連結
スリーブ38は管端に確実に接続させなければな
らない。この型のスリーブは第9aおよび9b図
に示してあり、このスリーブの形状は第9a図に
よる使用分配管の断面に適合するようにする。ス
リーブ38はバツク・テーパー(back taper)
46を有していて、このバツク・テーパーはスリ
ーブの長さの少なくとも1/3にわたつて延びて
おり、隣接分配管の端部になるように作られてい
る。ストツプ・シヨルダー(stop shoulder)4
7は管の内端にあるエレベーシヨン
(elevation)48の両側に配設されていて、スリ
ーブ38の中央の場所を2つの分配管端間の緩衝
点(buffer point)にする。エレベーシヨン48
の縦中央には補強部材49が配設されており、該
部材は各スリーブ38を補強し、一般に分配管連
結部を強化する。第8および9図は三日月状断面
および単一通路を有する分配管のみを示すだけで
あるが、第10a,10c,10dおよび10f
は単一通路を有する他の断面形態を示す。第10
a図においては、半円状壁51を有する分配管の
断面が示されており、該壁の内側は弓形被覆板5
2と結合する。壁51の内側と被覆板52はレン
ズ形の導入流路53を形成し、ここから2個の開
口部54が被覆板52の外側に通じる。内側に向
けたカム55を壁51の各上端に作る。これらの
カムは被覆板52の外表面と共に凹部56を形成
し、第8図に関して既述したように被覆層57を
保持する。第10a図の場合、該層は屈曲性の開
細孔材で作られた側面体として示される。既述の
ように、被覆層は平坦な素材(flatmaterial)で
あつてもよく、その中央部は被覆板52の上側に
位置し、その縁は第8図に示すようにカム55に
よつて内側で支持される。 第10c図は上述したものと同様にして作られ
た一分配管の断面図を示す。その断面が半円形の
壁60の内側には平たい被覆板61があり、この
被覆板はその下の壁60と共に流路62を形成
し、この流路は開口部63を介して分配管の外側
と連結している。カム64は壁60の端に作ら
れ、これらのカムは被覆板61の上面と共に凹部
65を形成している。被覆層(図示されていな
い)はこの凹部に入れて保持する。 第10dおよび10f図は本発明による分配管
のさらに外の態様の断面図を示すもので、輪郭を
決める外壁70は3部分から成る。第10dおよ
び10f図においては対応する部分は同じ番号で
示す。外側でかつ上側に傾斜した側壁72は水平
な基底部71上に作られる。側壁72はその上端
で内側を向くカムを含む。側壁72の内側には被
覆板74が設けられており、この被覆板は基底板
71および側壁72の一部と共に導入流路75を
形成する。被覆板74は流路75を分配管の周囲
と連絡する開口部76を有する。カム73と被覆
板74の上側は被覆層(図示されていない)を入
れる凹部77を形成する。 第10bおよび10eは分配管の断面を示すも
ので、輪郭外部壁80および81は第8a,10
a,10c図および第10d,10f図で述べた
ものと同様に作られている。しかしながら、上述
の態様の場合、単一流路の側面空洞は3つの空
間、即ち流路82,83および84に区分され各
流路はそれぞれ連続被覆板85によつて頂上で分
画されている。第10bおよび10e図による2
つの分配管断面において同じ作用をする部分は同
じ番号で示す。 流路82および84は各流路を分配管の周囲と
接続する上部に開いた開口部86および87を備
えている。流路82および84は給水管からの潅
漑用水を開口部86,87上に供給するように設
定されている。 中央流路83は排水流路としてのものであり、
吸入開口部88および89上の過剰水が該流路内
を流通する。底部に開口部を有する該流路83
は、流路82〜84を連通させることによつて潅
漑の目的にも利用できる。 第10bおよび10c図による分配管は例えば
第4および5図のように配設された潅漑用装置に
利用できる。過剰水(雨、過剰の潅漑水等)の排
水路は、給水管を適当に連結できるならば上部に
開いた開口部上にもちろん配設できる。一般に第
1〜3図による潅漑用装置にも第10bおよび1
0e図に示すような分配管を配設できる。 上述の給水管、分配管、脱気装置、連結スリー
ブ、末端部材等は種々の理由からプラスチツクが
好ましい。ポリプロピレン、ポリエチレンおよび
ポリ塩化ビニルは特に適している。これらのプラ
スチツクの性質は表―1に示す。表―1は個々の
系に対してどのプラスチツクが最も有利であるか
を示す。
Among the well-known soil irrigation methods, such as spray irrigation, submergence irrigation, furrow irrigation, and overhead irrigation, subsurface irrigation is historically the oldest type of irrigation for arable land on which plants grow. Plants can only absorb their nutrients from water-soluble compounds. However, it must be noted that excess water can damage many plants and cause rot. Therefore,
Regularly adjustable moisture supply and necessary drainage are of paramount importance. Sprinkle irrigation is suitable for horticulture and intensive horticulture in areas with a mild climate, but is not suitable for hot countries or areas with high salinity in the soil or water. Water losses due to evaporation during watering are substantial. Since submergence irrigation requires very large amounts of water, this type of irrigation can only be used where large amounts of water are available. Furrow irrigation is often used in agriculture because it can be carried out without requiring very large technical outlays. However, this method also requires a large amount of water because of the large loss of water due to evaporation and osmosis. Overhead irrigation is intended to water previously underutilized plants in large areas. Well-known method of subirrigation
proposed a structure that separates the suction and discharge valves from underground pipes with a single flow path, such that the discharge valves do not open until the water pressure in the pipe system is substantially higher than the static pressure. The pressure is adjusted to The suction valve is for drainage purposes and opens when the soil contains excess water. However, experiments have shown that such irrigation systems operate satisfactorily only when the valve seats are clean. Even the smallest amount of mud, such as sand grains or soil particles, interferes with the desired operation of such irrigation systems and thus prevents satisfactory irrigation or drainage. It is an object of the invention to provide an irrigation device which operates without irrigation and drainage valves, requires virtually no maintenance and minimizes operational costs. Such requirements have been developed especially as irrigation systems for the development and urbanization of arid areas such as deserts or prairie where little water is available. These demands are increasing for irrigation in temperate regions where water is becoming increasingly scarce.
However, the water supply problem is particularly important for sports where overhead irrigation is not possible.
It also occurs at centers and parks. This is because the lawns in such areas are constantly used by the public and require a very long time to be watered. The irrigation system of the present invention is intended to achieve these objectives and comprises a device 2 for regulating the flow of water from a water supply source 1 to a number of distribution points 3, 33, 34 arranged in an irrigation area; 8, 8', 12~1
4, 19, 25, 31, 32 and a device for substantially even distribution of water in said area (4, 5,
9, 15-17, 20, 27, Figures 8a and 8b
9 and 10), each distribution point extending from the water supply pipe and the branch member in a plug connection manner and arranged substantially at right angles with respect to the water supply pipe. at least one branch member connected to a distributing pipe installed, the distributing pipe being a pipe having a tubular cross section with at least one flow path and a recess facing the soil surface, the recess being connected to the distributing pipe. extending over the entire length of the recess, the bottom of the recess being the outer surface of the covering plate essential for forming the pipe cross-section, the bottom having a number of openings leading to the channel area, the recesses facing each other. flowing out of the flow path region through a filter element laterally bounded by a pair of cams having mating back tapers and disposed at least partially on the cover plate and on the sides of the back tapers of the cams; The present invention relates to an irrigation device arranged in the recess to control water and to avoid the ingress of earth and sand into the opening. The present invention will be better understood from the following description with reference to the accompanying drawings. Figures 1 to 5 show schematic diagrams of possible variants of the irrigation system according to the invention. Figures 6a and 6b show an embodiment of a water pipe section with one and two lateral branch connection elements for distribution pipe fitting, respectively. Figures 7a-7c show enlarged front, side and cross-sectional views of the water pipe branch shown in Figures 6a and 6b. Figures 8a and 8b show a cross-sectional view and a top perspective view of the first embodiment of the distribution tube. Figures 9a and 9b show cross-sectional views of the connection point layout for connecting adjacent distribution pipes to form distribution pipes of arbitrary length. Figures 10a-10f show various cross-sectional configurations of the distribution pipe shown in Figure 8. Five examples of the arrangement of soil irrigation devices according to the invention are shown in FIGS. 1-5. 1 indicates a pumping location or generally a source of water supply to an irrigation system. In FIG. 1, a single water supply pipe 2 is provided, to which a distribution pipe 4 is connected by a branch member 3. In FIG. Details regarding the water supply pipe 2 are given in the descriptions of figures 6a, 6b and 7a to 7c, and details regarding the distribution pipe 4 are given in the description of figures 8a, 8b, 9a, 9b and 1.
They are shown in the descriptions of figures 0a to 10f, respectively.
The water openings 5 are arranged along the distribution pipe 4 in a manner described below with respect to FIG. A deaerating device is installed at the end of each distribution pipe 4.
fittings) 6 and air pockets (air pockets).
-avoid pockets). Water supply pipe 2 and distribution pipe 4
may be disposed substantially horizontally or at a slight angle toward the connection point in the ground. The pressures of the water supply pipes and distribution pipes are selected such that, on the one hand, substantially the same amount of water is supplied to each water flow opening, and on the other hand, flooding of the ground does not occur. probe (not shown)
are deployed throughout the irrigated area to determine the water content in the ground. FIG. 2 shows an irrigation system having two preferred water pipe branches 8 and 8', which supply water to both ends of the pipe. The deaerator 10 is disposed at or near the point where the water supply pipes 8 and 8' connect to the distribution pipe 9. The distribution pipes of such tubing systems must be angled towards the center of their length to ensure proper operation. FIG. 3 is a schematic representation of the manner in which separate irrigation areas A, B and C are watered by a single pumping station or pumping source 1 through separate water supply pipes 12, 13 and 14. Irrigation areas A to C are, for example,
It may be a plateau with a difference in height that is located quite far from each other, or a field or field with different water requirements. A large number of distribution pipes 15, 16, 17 are connected to each water supply pipe 12, 13, 14 as shown in FIG. deaerators 12', 13', 14' and 15',
16', 17' to each water supply pipe and each distribution pipe 15,
16 and 17, respectively. Water supply pipe 1
The pressure at the outlet of 2, 13, 14 is irrigated area A, B
and C constantly vary depending on the height or pumping location or distance from the pumping source 1.
This is to provide substantially the same amount of water to each flow opening of each distribution pipe. Drainage means (not shown) are connected to the first and second
It may be operated in an irrigation system as shown to avoid flooding. These drainage means include water removal equipment at any location of the irrigation system. FIG. 4 shows an irrigation system having drainage means in addition to means for supplying water to cultivated land. The distribution pipe 20 is connected to the water supply pipe 19. The drainage channel 21 is arranged parallel to the distribution pipe. The drainage channel may be spaced apart and connected to the collection pipe 22, or as shown in Figures 10b and 10e.
It may also be part of a distribution pipe as described below with respect to the figures. A drainage pit 23 is provided at one end of the water collection pipe 22 to collect wastewater. Of course, this collected water may be returned to the irrigation system, especially in times of water shortage. In the case of the irrigation system shown in FIG. 4, it is suitable to have the distribution pipe 20 inclined towards the water supply pipe 19 and to arrange a deaeration device 24 at its end. FIG. 5 shows a further embodiment of the irrigation system according to the invention, in which the water supply pipe 25 has a degassing device 26 at its outer end. There are distribution pipes 2 on both sides of the water supply pipe 25.
7 are connected and equipped with a drain pipe. Distribution pipe 2
7 and the drain pipe 28 are gently inclined outward from the water supply pipe 25, so that the water is drained from the water collection pipe 29.
flows towards. From here the wastewater flows to a drainage pit 30 which may be connected to the pumping station 1 as described with respect to FIG. Figures 6a and 6b are 80
Water supply pipes 31, 32 are shown with one and two laterally located connecting members 33, 34 arranged ~120 cm apart. Connection sleeve 35
is arranged at one end of the water supply pipes 31 and 32 to form a water supply pipe of arbitrary length. Figures 7a, 7b, 7c show details of the connections and connection points for connecting the distribution pipe to the pipe 31 according to Figure 6a, in partial cross-sectional view from the side. Identical parts in FIGS. 6a and 7a-7c are designated by the same numbers. As can be seen in particular in FIG. 7a, the coupling sleeve 35 is arranged as a plug into which one end of an adjacent tube (not shown) or a T-shaped or cross-shaped branch (not shown) can be inserted. . A connecting member 33 rises laterally above the water supply pipe 31, the form of which is selected in such a way that a distribution pipe of the form shown in FIG. 8 can be inserted directly. The connecting member 33 has a reinforcing member 36 to improve its stability. One end of the distribution tube 37 is pushed into a connecting member of this type. The connecting member may be configured such that each end of the distribution pipe can be pushed to the outside of the connecting member. The branch member 3 may have other cross-sectional forms, for example
These include those with a lens-shaped cross section suitable for connecting the distribution pipes shown in the figure. The profile of a distribution pipe with a distribution pipe channel 39 having a crescent-shaped cross section is shown in cross-section and elevation in FIGS. 8a and 8b. A concave cover plate 42, which is an integral part of the support wall 40, is connected to the end 41 of the support wall 40. The cover plate 42 has a large number of openings 43 with a diameter of 2.5 to 3.5 mm, and the openings are arranged at regular intervals of a horizontally and vertically b, through which the distribution pipe flow path 39 is connected. water flows from the pipe to the soil surrounding the distribution pipe. Retaining cams 44 are arranged at the connection point 41 between the support wall 40 and the cover plate 42, these cams defining a recess 50 together with the surface of the cover plate 42. A porous and capillary covering layer 45 (indicated by dotted lines) is disposed in the recess. The material of the covering layer 45 is preferably a corrosion-resistant non-woven glass fiber or plastic. The thickness of the coating layer depends on the material used,
0.5-2.5mm for non-woven glass fiber;
Preferably 1 mm, with open pores (open-
5 for foamed plastics with pored)
~6mm. The role of the covering layer is to prevent sand or soil particles from entering the opening 43 and the distribution channel 39. The coating layer also restricts the free flow of water, so that the water is routed to the opening 4 closest to the water supply pipe.
3, but also flows out through further apertures. While the distribution pipe can be very long if desired, the length of a single pipe should not be more than 4-6 m for ease of handling and transportation to the site of use. At the same time, the connecting sleeve 38 must be securely connected to the tube end. A sleeve of this type is shown in Figures 9a and 9b, the shape of which is adapted to the cross section of the distribution pipe used according to Figure 9a. Sleeve 38 is a back taper
46, the back taper extending over at least one-third of the length of the sleeve and configured to terminate the adjacent distribution tube. stop shoulder 4
7 are placed on either side of the elevation 48 at the inner end of the tube, making the central location of the sleeve 38 a buffer point between the two ends of the distribution tube. elevation 48
A reinforcing member 49 is arranged in the longitudinal center of the sleeve 38, which stiffens each sleeve 38 and generally strengthens the distribution pipe connection. 10a, 10c, 10d and 10f, although FIGS. 8 and 9 only show distribution pipes with crescent-shaped cross-sections and single passages.
shows another cross-sectional configuration with a single passage. 10th
In FIG.
Combine with 2. The inside of the wall 51 and the cover plate 52 form a lens-shaped inlet channel 53 from which two openings 54 lead to the outside of the cover plate 52 . An inwardly directed cam 55 is made at each upper end of the wall 51. These cams form recesses 56 with the outer surface of the cover plate 52 and retain the cover layer 57 as previously described with respect to FIG. In FIG. 10a, the layer is shown as a side body made of flexible open-pore material. As already mentioned, the covering layer may be a flat material, the central part of which is located above the covering plate 52 and the edges of which are inwardly closed by cams 55 as shown in FIG. Supported by Figure 10c shows a cross-sectional view of a one-piece pipe made in a manner similar to that described above. Inside the wall 60 of semicircular cross-section there is a flat cover plate 61 which, together with the wall 60 below it, forms a flow channel 62 which is connected via an opening 63 to the outside of the distribution pipe. It is connected with. Cams 64 are made at the ends of the wall 60 and these cams form a recess 65 with the top surface of the cover plate 61. A covering layer (not shown) is held in this recess. Figures 10d and 10f show cross-sectional views of a further embodiment of the distribution pipe according to the invention, in which the outer defining wall 70 consists of three parts. Corresponding parts in Figures 10d and 10f are designated by the same numbers. The outer and upwardly sloping side walls 72 are built on the horizontal base 71 . Sidewall 72 includes an inwardly facing cam at its upper end. A cover plate 74 is provided inside the side wall 72, and the cover plate forms an introduction channel 75 together with the base plate 71 and a part of the side wall 72. Covering plate 74 has an opening 76 communicating channel 75 with the surroundings of the distribution tube. The upper side of the cam 73 and the cover plate 74 form a recess 77 into which a cover layer (not shown) is placed. Nos. 10b and 10e show cross-sections of the distribution pipe, and contour external walls 80 and 81 represent Nos. 8a and 10e.
It is constructed in the same manner as described in Figures a and 10c and Figures 10d and 10f. However, in the embodiment described above, the single channel side cavity is divided into three spaces, channels 82, 83 and 84, each separated at the top by a respective continuous cover plate 85. 2 according to Figures 10b and 10e
Parts that have the same function in two distribution pipe cross sections are designated by the same number. Channels 82 and 84 have top openings 86 and 87 connecting each channel with the circumference of the distribution tube. Channels 82 and 84 are configured to supply irrigation water from a water supply pipe onto openings 86,87. The central channel 83 serves as a drainage channel,
Excess water on suction openings 88 and 89 flows within the channel. The channel 83 has an opening at the bottom.
can also be used for irrigation purposes by connecting the channels 82-84. The distribution pipes according to FIGS. 10b and 10c can be used, for example, in irrigation installations arranged as in FIGS. 4 and 5. Drainage channels for excess water (rain, excess irrigation water, etc.) can of course be arranged over the openings at the top, provided that water pipes can be connected appropriately. Irrigation devices according to Figures 1 to 3 are also generally
A distribution pipe as shown in Figure 0e can be installed. The water supply pipes, distribution pipes, deaerators, connecting sleeves, end members, etc. mentioned above are preferably made of plastic for various reasons. Polypropylene, polyethylene and polyvinyl chloride are particularly suitable. The properties of these plastics are shown in Table 1. Table 1 shows which plastics are most advantageous for individual systems.

【表】 本発明によつて得られる耕地潅漑に対する利点
は、就中、植物の根領域へ正確に給水できる、蒸
発または浸透による水の損失は最小である、土壌
への給水量は耕作に応じて容易かつ正確に調節で
きる、土壌の過剰水は水を導入した管と同一の管
を通して排水できる、栄養分を給水中に添加でき
る、伝導度、温度およびPH値に関する水質を連続
的に制御できる、土壌中の水分を比較的容易に決
定して潅漑することができ、適用できるならば自
動的に制御できる、および管系の排気および換気
が容易にできる、等である。
[Table] The advantages obtained by the invention for cultivated land irrigation are, inter alia, that the root zone of the plants can be watered precisely, that water losses through evaporation or infiltration are minimal, and that the amount of water supplied to the soil depends on the cultivation. Excess water in the soil can be drained out through the same pipe that introduced the water, nutrients can be added into the water supply, water quality in terms of conductivity, temperature and pH value can be continuously controlled. Moisture in the soil can be determined and irrigated relatively easily and, if applicable, automatically controlled, and pipe systems can be easily evacuated and ventilated, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜5図は本発明により潅漑装置の略図、第
6aおよび6b図は分配管結合用分枝連結エレメ
ントを有する給水管断面、第7a〜7c図は第6
aおよび6b図に示した給水管分枝部の拡大した
正面図、側面図および断面図、第8aおよび8b
図は分配管の断面図および上からの展望図、第9
aおよび9b図は隣接分配管連結用結合点配置断
面図、第10a〜10f図は種々の分配管断面図
を示す。 1は給水源、2は給水管、3は分枝部材、4は
分配管、5は流水開口部、6は脱気装置、8およ
び8′は給水管分路、9は分配管、10は脱気装
置、A〜Cは潅漑領域、12〜14は給水管、1
5〜17は分配管、12′〜17′は脱気装置、1
9は給水管、20は分配管、21は排水流路、2
2は集水管、23は排水ピツト、24は脱気装
置、25は給水管、26は脱気装置、27は分配
管、28は排水管、29は集水管、30は排水ピ
ツト、31および32は給水管、33および34
は連結部材、35は結合スリーブ、36は補強部
材、37は分配管、38はスリーブ、39は分配
管流路、40は支持壁、41は支持壁端部、42
は凹面被覆板、43は流水開口部、44はカム、
45は被覆層、46はバツク・テーパー、47は
ストツプ・シヨルダー、48はエレベーシヨン、
49は補強部材、50は凹部、51は分配管の半
円状壁、52は被覆板、53は分配管流路、54
は開口部、55はカム、56は凹部、57は被覆
層、60は分配管の半円状壁、61は被覆板、6
2は分配管流路、63は開口部、64カム、65
は凹部、70は分配管の外壁、71は基底部、7
2は側壁、73はカム、74は被覆板、75は分
配管流路、76は開口部、77は凹部、80およ
び81は分配管外壁、82〜84は分配管流路、
85は被覆板、86〜89は開口部および90は
カムを示す。
1 to 5 are schematic illustrations of an irrigation system according to the invention; FIGS. 6a and 6b are cross-sections of a water supply pipe with branch connection elements for connecting the distribution pipes; FIGS.
Enlarged front, side and cross-sectional views of the water pipe branches shown in figures a and 6b, numbers 8a and 8b
The figure shows a cross-sectional view of the distribution pipe and a perspective view from above.
Figures a and 9b are cross-sectional views of the arrangement of connection points for connecting adjacent distribution pipes, and Figures 10a to 10f are cross-sectional views of various distribution pipes. 1 is a water supply source, 2 is a water supply pipe, 3 is a branch member, 4 is a distribution pipe, 5 is a running water opening, 6 is a deaerator, 8 and 8' are water supply pipe branches, 9 is a distribution pipe, 10 is Deaerator, A to C are irrigation areas, 12 to 14 are water supply pipes, 1
5 to 17 are distribution pipes, 12' to 17' are deaerators, 1
9 is a water supply pipe, 20 is a distribution pipe, 21 is a drainage channel, 2
2 is a water collection pipe, 23 is a drain pit, 24 is a deaerator, 25 is a water supply pipe, 26 is a deaerator, 27 is a distribution pipe, 28 is a drain pipe, 29 is a water collection pipe, 30 is a drain pit, 31 and 32 are water supply pipes, 33 and 34
35 is a connecting member, 35 is a coupling sleeve, 36 is a reinforcing member, 37 is a distribution pipe, 38 is a sleeve, 39 is a distribution pipe channel, 40 is a support wall, 41 is a support wall end, 42
is a concave cover plate, 43 is a water flow opening, 44 is a cam,
45 is a covering layer, 46 is a back taper, 47 is a stop shoulder, 48 is an elevation,
49 is a reinforcing member, 50 is a recess, 51 is a semicircular wall of the distribution pipe, 52 is a covering plate, 53 is a distribution pipe channel, 54
55 is an opening, 55 is a cam, 56 is a recess, 57 is a covering layer, 60 is a semicircular wall of the distribution pipe, 61 is a covering plate, 6
2 is a distribution pipe flow path, 63 is an opening, 64 is a cam, and 65 is
is the recess, 70 is the outer wall of the distribution pipe, 71 is the base, 7
2 is a side wall, 73 is a cam, 74 is a cover plate, 75 is a distribution pipe passage, 76 is an opening, 77 is a recess, 80 and 81 are distribution pipe outer walls, 82 to 84 are distribution pipe passages,
85 is a cover plate, 86 to 89 are openings, and 90 is a cam.

Claims (1)

【特許請求の範囲】 1 給水管およびこれに連結する分配管を有し、
該分配管が少くとも一つの流路、該流路の上面を
形成しかつ該流路を流れる流水を外部に漏出させ
るための多数の開口部を有する被覆板、分配管側
部に設けられた一対のカム、少くとも上記被覆板
とカムから形成される凹部および流路からの流水
量を制御しかつ開口部の閉塞を防止するための該
凹部に配設された被覆層を擁する地下潅漑用装
置。 2 給水管と分配管を実質上直角に連結した第1
項記載の装置。 3 分配管がプラグ連結方式で連結できる第1項
記載の装置。 4 凹部が土壌表面に面しかつ分配管全長にわた
つている第1項記載の装置。 5 給水管2,12〜14,19,25,32が
該管に関して対称に配設された2つの分枝部材3
4を各分配点に含み、それによつて多数のこれら
の分枝部材が該管に沿つて相互に対になつて配設
され、該分枝部材に連結した分配管が該給水管の
両側に延びている第1項記載の装置。 6 給水管8,8′,31が各分配点に連給部材
33を有し、多数の連結部材が給水管に沿つて相
互に配設され、該連結部材に連結された分配管
が、該連結部材が接続された給水管の側面にわた
つて延びている第1項記載の装置。 7 給水管が2つの給水管8,8′に区分され、
分配管9の各端部が給水管の一方に連結される第
1項記載の装置。 8 脱気装置6,10,15′〜17′,24が分
配管の各端部にある第1項記載の装置。 9 分配管の横断面が三日月形であり、被覆板4
2が流路領域に面した凹壁である第1項記載の装
置。 10 分配管の横断面が不等辺四角形であり、被
覆板74,85が平たい第1項記載の装置。 11 流路領域が数個の単一流路に区分され82
〜84、このうちの2つ82,84を給水用に、
さらに1つ83を排水用とする第1項記載の装
置。 12 排水用単一流路83が分配管の底部に少な
くとも1つの吸入開口部88,89を含む第11
項記載の装置。 13 被覆層が厚さ0.5〜2.5mmを有する細長いノ
ンウーブンガラス繊維である第1項記載の装置。 14 被覆層57が開放孔を有する細長い発泡プ
ラスチツクである第1項記載の装置。
[Claims] 1. A water supply pipe and a distribution pipe connected to the water supply pipe,
The distribution pipe has at least one channel, a cover plate forming the upper surface of the channel and having a number of openings for leaking water flowing through the channel to the outside, and a cover plate provided on the side of the distribution pipe. A pair of cams, at least a recess formed by the above-mentioned covering plate and the cam, and a covering layer disposed in the recess for controlling the amount of water flowing from the flow path and preventing clogging of the opening. Device. 2 The first pipe connects the water supply pipe and the distribution pipe at a substantially right angle.
Apparatus described in section. 3. The device according to item 1, in which the distribution pipes can be connected using a plug connection method. 4. The device according to paragraph 1, wherein the recess faces the soil surface and extends the entire length of the distribution pipe. 5 Two branch members 3 in which water supply pipes 2, 12 to 14, 19, 25, 32 are arranged symmetrically with respect to the pipes
4 at each distribution point, such that a number of these branch members are arranged in pairs with each other along the pipe, and distribution pipes connected to the branch members are arranged on opposite sides of the water supply pipe. 2. The device of claim 1, wherein the device extends. 6. The water supply pipes 8, 8', 31 have a continuous feed member 33 at each distribution point, a large number of connecting members are mutually arranged along the water supply pipe, and the distribution pipes connected to the connecting member 2. The device of claim 1, wherein the connecting member extends over the side of the connected water pipe. 7 The water supply pipe is divided into two water supply pipes 8 and 8',
2. The device according to claim 1, wherein each end of the distribution pipe 9 is connected to one of the water supply pipes. 8. Apparatus according to claim 1, in which a deaerator 6, 10, 15' to 17', 24 is located at each end of the distribution pipe. 9 The cross section of the distribution pipe is crescent-shaped, and the covering plate 4
2. The device according to claim 1, wherein 2 is a concave wall facing the flow path area. 10. The device according to item 1, wherein the cross section of the branch pipe is trapezoidal and the covering plates 74, 85 are flat. 11 The channel area is divided into several single channels 82
~84, two of these 82 and 84 for water supply,
2. Apparatus according to claim 1, further comprising one 83 for drainage. 12 The single channel 83 for drainage comprises at least one suction opening 88, 89 at the bottom of the distribution tube.
Apparatus described in section. 13. The device of claim 1, wherein the coating layer is an elongated nonwoven glass fiber having a thickness of 0.5 to 2.5 mm. 14. The device of claim 1, wherein the covering layer 57 is an elongated foamed plastic with open pores.
JP3399078A 1978-03-23 1978-03-23 Device for irrigation Granted JPS54128133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3399078A JPS54128133A (en) 1978-03-23 1978-03-23 Device for irrigation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3399078A JPS54128133A (en) 1978-03-23 1978-03-23 Device for irrigation

Publications (2)

Publication Number Publication Date
JPS54128133A JPS54128133A (en) 1979-10-04
JPS6222572B2 true JPS6222572B2 (en) 1987-05-19

Family

ID=12401910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3399078A Granted JPS54128133A (en) 1978-03-23 1978-03-23 Device for irrigation

Country Status (1)

Country Link
JP (1) JPS54128133A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203421A1 (en) * 2013-06-16 2014-12-24 西日本圃場改良株式会社 Underground irrigation system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914735A (en) * 1982-07-16 1984-01-25 杉浦 栄市 Supplying apparatus of air/water mixture
WO2020251479A2 (en) 2019-06-14 2020-12-17 Alali Jehad Technology of atmospheric pressure isolation in irrigation water uses

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203421A1 (en) * 2013-06-16 2014-12-24 西日本圃場改良株式会社 Underground irrigation system

Also Published As

Publication number Publication date
JPS54128133A (en) 1979-10-04

Similar Documents

Publication Publication Date Title
US4140421A (en) Soil irrigation system
JP6536689B2 (en) Perforated infiltration irrigation drainage pipe and sealed type fully automatic infiltration irrigation rainwater recovery omnidirectional planter
US5374138A (en) Subsurface irrigation apparatus and method
US6237283B1 (en) Linked sub-irrigation reservoir system
CA2745877C (en) Self-watering plant container and related methods
US2653449A (en) Soil irrigation system
GB2036521A (en) Subsurface irrigation and drainage systems
US20220142065A1 (en) Liquid Containment and Focus for Subterranean Capillary Irrigation
RU2346427C1 (en) Irrigation system
RU2652098C1 (en) Method of drying irrigation on ravine slopes
US20020017055A1 (en) Linked sub-irrigation reservoir system
CN101259454A (en) Root irrigation and root irrigation system
US5993111A (en) Method and system for flood irrigation
WO2009028702A1 (en) Subirrigation system
CN201067719Y (en) Root irrigating pipe and root irrigating system
JPS6222572B2 (en)
US20070289213A1 (en) Irrigation systems
KR810001225B1 (en) Soil irrigation system
CN107466665A (en) A kind of sand ground soil and water conservation system and method
US5036619A (en) Capillary irrigation system
US5984202A (en) Hybrid low flow and spray irrigation apparatus and method
WO2017035410A1 (en) Liquid containment and focus for subterranean capillary irrigation
CN212087443U (en) Vertical irrigation subsystem and system
KR101654187B1 (en) Water level control means, water supplying apparatus having the same and water supply system
RU2779071C1 (en) Subsurface irrigation system