JPS62224980A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62224980A
JPS62224980A JP61067330A JP6733086A JPS62224980A JP S62224980 A JPS62224980 A JP S62224980A JP 61067330 A JP61067330 A JP 61067330A JP 6733086 A JP6733086 A JP 6733086A JP S62224980 A JPS62224980 A JP S62224980A
Authority
JP
Japan
Prior art keywords
diffused
trench
type impurity
conductivity type
trenches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61067330A
Other languages
Japanese (ja)
Inventor
Chikao Kimura
親夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP61067330A priority Critical patent/JPS62224980A/en
Publication of JPS62224980A publication Critical patent/JPS62224980A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a high performance P-I-N diode with small frequency dispersion with a high yield by a method wherein one conductivity type impurity atoms are diffused into one of trenches formed in specific Si by anisotropic chemical etching and the other conductivity type impurity atoms are diffused into the other trenches. CONSTITUTION:One conductivity type impurity atoms are diffused into one of trenches 3 surrounded by (111) faces which are so formed by anisotropic chemical etching as to be parallel to each other and to make right angles with a ma.in surface of Si in the Si which has a resistivity not less than 50OMEGA-cm and (110) face as a main surface and the other conductivity type impllrity atoms are diffused into the other trench. For instance, a protective film 2 sv!ch as a silicon oxide film is formed on the Si substrate 1 and a rectangular part of the protective film 2 is removed and the exposed substrate is etched by anisotropic chemical solution of caustic alkali system or the like to form a rectangular parallelepiped trench 3 whose side walls are surrounded by (111) faces and N-type impurity is diffused into the trench. After that, etching resistant films are provided on the inner walls of the trench and another trench of the same shape is formed with its longer side being parallel to the longer side the trench 3 and with a distance corresponding to the thickness of a required high resistance wall 5 leaving between the two trenches and P-type impurity is diffused into the other trench.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は周波数分散が小さく、かつ精度のよいPIN接
合型ダイオードに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a PIN junction diode with low frequency dispersion and high precision.

(従来の技術) 近年に至りマイクロ波領域の電磁波の応用は人混かつ大
量になシつつある。従来からの応用である通信も人工衛
星の発達により通信、放送、気象、探査、制御等の多く
の内容を含んだものになり、レーダも固体の進歩と共に
小型化、軽量化、高性能化が著しい。この様な従来から
の応用の進歩の外如これまで余り応用されてこなかった
民需への広がりが目立つ様になって来た。例えば衛星放
送、警備保障、追突防止等の交通安全、自動ドア等の検
出制御、スピード・メータ等の計測等々がふえて来てい
る。
(Prior Art) In recent years, the applications of electromagnetic waves in the microwave region have been declining in large numbers and crowds. With the development of artificial satellites, communication, which has traditionally been an application, has come to include many areas such as communication, broadcasting, weather, exploration, and control, and with the advancement of solid-state technology, radar has also become smaller, lighter, and more sophisticated. Significant. As a result of the progress of such conventional applications, it has become noticeable that they are spreading to civilian needs, which have not been applied much in the past. For example, satellite broadcasting, security guarantees, traffic safety such as prevention of rear-end collisions, detection control of automatic doors, measurement of speed meters, etc. are increasing.

これらのマイクロ波装置は送受アンテナ、主発振器、局
部発振器、変調器、移相器、スイッチ、可変減衰器、混
合復調器、高周波増幅器などの組合せKよって構成され
る。近年になって数多くのマイクロ波デバイスが化合物
半導体を用いて作られる様になって来たが、一般に化合
物半導体に於ける電子移動度がStに比べて5〜6倍以
上も大きいことを利用している。しかし化合物半導体に
於ては少数キャリアの再結合寿命がSiに比べて十分の
−乃至百分の−と短いため少数キャリアの再結合寿命の
長さが重要な因子である様なデバイスではStが用いら
れている。例えば移相器、スイッチ、可変減衰器或はマ
イクロ波の7・イ・ぐワー領域でリミッタとして用いら
れるPINダイオードはStで作った方が化合物゛1′
−導体で作るよりも良い性能かえられる。
These microwave devices are composed of a combination K of a transmitting/receiving antenna, a main oscillator, a local oscillator, a modulator, a phase shifter, a switch, a variable attenuator, a mixing demodulator, a high frequency amplifier, etc. In recent years, many microwave devices have been made using compound semiconductors, and in general, the electron mobility in compound semiconductors is 5 to 6 times higher than that of St. ing. However, in compound semiconductors, the recombination lifetime of minority carriers is a tenth to a hundredth shorter than that of Si, so in devices where the long recombination lifetime of minority carriers is an important factor, St is It is used. For example, PIN diodes used as phase shifters, switches, variable attenuators, or limiters in the microwave 7-channel range are better made of St than the compound ``1''.
- Better performance than when made with conductors.

その一つの理由は既に述べた様に少数キャリアの再結合
寿命が長いことによるが、その外にSiは単体元素の半
導体であって化合物半導体に比べて高純度即ち低残留不
純物密度にしやすいため、少数キャリアを注入しない状
態では誘電体とみなせる周波数が化合物半導体よりも低
い周波数まで拡けられる。
One reason for this is that the recombination lifetime of minority carriers is long, as already mentioned, but in addition to that, Si is a single element semiconductor and it is easier to make it highly pure, that is, with a low residual impurity density, compared to compound semiconductors. In a state where minority carriers are not injected, the frequency that can be considered as a dielectric material is expanded to a frequency lower than that of a compound semiconductor.

また仮に化合物半導体の残留不純物密度がSiの場合と
同水準であったとしたとき、その電子密度f:Nr (
cm−3)とし電子の移動度をμ8c電子の電荷をeと
するならば、化合物半導体の抵抗率ρ。は一方この化合
物半導体の誘電分散周波数fdcは物子導体の比誘電率
、ε。は真空の誘電率である。
Furthermore, if the residual impurity density of the compound semiconductor is at the same level as that of Si, then the electron density f: Nr (
cm-3), the electron mobility is μ8c, and the electron charge is e, then the resistivity of the compound semiconductor is ρ. On the other hand, the dielectric dispersion frequency fdc of this compound semiconductor is the relative permittivity of the physical conductor, ε. is the dielectric constant of vacuum.

誘電分散周波数より高い周波数では化合物半導体は誘電
体的性質が強くなり、逆に低い周波数では抵抗的性質が
強くなる。マイクロ波素子に用いる化合物半導体では一
般にSi に比べて電子の移動度が大きいから、同一の
残留不純物密度では(1)式かられかる様に抵抗率ρC
が小さくなる。従って(2)式にみる通り同じ残留不純
物密度ではSi  よりもより高い周波数領域ではじめ
て誘電体的性質を示すことになる。更に化合物半導体は
Stが単体元素から成る半導体であるのに比べて少くと
も二元以上の元素を含んでいる土、例えば最も広く使用
されているGaAsに於て見られるようにSiに比べて
一般に解離圧が高く、一方の元素が失われ易いなど残留
欠陥を作り易い欠点がある。この為に少数キャリア寿命
が短くなりやすい。また結晶成長時に非意図的に導入さ
れる残留不純物の量は高純度Siに比べて1000倍以
上も多い。この結果一般の化合物半導体では誘電分散周
波数が高くなりすぎてPINダイオードになりにくい状
況にある。
At frequencies higher than the dielectric dispersion frequency, compound semiconductors exhibit strong dielectric properties, and conversely, at frequencies lower than the dielectric dispersion frequency, their resistive properties become stronger. Compound semiconductors used in microwave devices generally have higher electron mobility than Si, so at the same residual impurity density, the resistivity ρC can be seen from equation (1).
becomes smaller. Therefore, as shown in equation (2), with the same residual impurity density, dielectric properties are first exhibited in a higher frequency range than that of Si. Furthermore, unlike St, which is a semiconductor consisting of a single element, compound semiconductors generally contain at least two or more elements, such as Si, as seen in GaAs, which is the most widely used. Dissociation pressure is high and one element is easily lost, which makes it easy to create residual defects. For this reason, the minority carrier life tends to be shortened. Furthermore, the amount of residual impurities unintentionally introduced during crystal growth is more than 1000 times greater than that of high-purity Si. As a result, in general compound semiconductors, the dielectric dispersion frequency becomes too high, making it difficult to use as a PIN diode.

一方Siは現今最も精製技術の進歩した材料であって残
留不純物密度を1012/CC以下のものを入手するこ
とは容易である。また少数キャリア寿命としても数マイ
クロ秒から1ミリ秒程度までの最も長い値をうろことも
比較的容易である。したがってPINダイオードとして
は化合物半導体ではなくSiが最も適切な材料であるこ
とは明らかであり実際にもSiが多用されている。
On the other hand, Si is currently the material with the most advanced purification technology, and it is easy to obtain Si with a residual impurity density of 1012/CC or less. Furthermore, it is relatively easy to vary the minority carrier lifetime from several microseconds to about 1 millisecond. Therefore, it is clear that Si, rather than compound semiconductors, is the most suitable material for PIN diodes, and Si is often used in practice.

(発明が解決しようとする問題点) 次にSi゛のPINダイオードの製造法について言及し
、それらの有する欠点を述べることによって本発明の特
長を詳しく説明する。
(Problems to be Solved by the Invention) Next, the features of the present invention will be explained in detail by referring to methods for manufacturing Si PIN diodes and describing their drawbacks.

先ず最も簡便なSt PINダイオードの製造法は高抵
抗率即ち低不純物密度のSiを1層基板とし一方の主表
面よりN形不純物を、反対側の主表面よりP形の不純物
を各々拡散し、中央の1層の厚みが所望の値になる様に
したもので理想的な不純物分布は第4図のようである。
First, the simplest method for manufacturing a St PIN diode is to use a single-layer Si substrate with high resistivity, i.e., low impurity density, and diffuse N-type impurities from one main surface and P-type impurities from the opposite main surface. The ideal impurity distribution is as shown in FIG. 4, where the thickness of the central layer is set to a desired value.

この構造の欠点は第5図のように深い拡散によって形成
したPINダイオードの不純物分布に示す様にP形不純
物もN形不純物も1層の方向に向って漸減していること
にある。何故なら既に(2)式で示した様に半導体の誘
電分散周波数は誘電率と抵抗率の積できまるが第5図の
様に不純物分布がなだらかに変化するときには即ち抵抗
率が徐々に変化することになりそれと、共に誘電分散周
波数が場所によって変化することになる。この様なPI
Nダイオードでは従って使用周波数によってPINダイ
オードの電気容量も直列抵抗も変化する為ことに広帯域
で整合を必要とするマイクロ波回路に於てはきわめて不
都合な特性を示すものである。したがってこの様な構造
のPINダイオードはマイクロ波用としては一般には用
いられず高耐圧の整流器などにのみ利用される。
The drawback of this structure is that both the P-type impurity and the N-type impurity gradually decrease in the direction of one layer, as shown in the impurity distribution of the PIN diode formed by deep diffusion as shown in FIG. This is because, as already shown in equation (2), the dielectric dispersion frequency of a semiconductor is determined by the product of permittivity and resistivity, but when the impurity distribution changes gently as shown in Figure 5, that is, the resistivity changes gradually. This means that the dielectric dispersion frequency also changes depending on the location. This kind of PI
Therefore, since the capacitance and series resistance of the PIN diode vary depending on the frequency used, the N diode exhibits extremely inconvenient characteristics, especially in microwave circuits that require matching over a wide band. Therefore, a PIN diode having such a structure is generally not used for microwave applications, but is used only for high voltage rectifiers and the like.

この欠点を克服する為に種々の製造法が考案されている
。例えば第6図のように高不純物密度即ち低抵抗率N型
St基板61の上に低不純物密度の領域62を気相エピ
タキシアル法によって所望の厚さまで成長させ、成長面
側からP型不純物領域63を浅く拡散してPINダイオ
ードを形成する方法である。この場合の欠点は低抵抗率
基板61上に高抵抗率層を気相成長させようとすると基
板より蒸発した不純物が成長層内にとり込まれる所謂オ
ート・ドーピング領域621が不可避的に生ずる。この
為P型拡散領域63を可及的に浅く形成してこの領域の
周波数分散効果を小さくしたとしても1層内にオート・
ドーピングによって生じた不純物分布に伴う周波数分散
は避けられない欠点が伴う。更に別の方法としては第7
図のように高抵抗率基板71上に低抵抗率N形層72を
エピタキシアル成長法によって厚く堆積したのち高抵抗
率層を所望の厚さ才で研摩したのち可及的に浅くP形層
73を拡散してPIN接合を形成する方法である。この
方法によって形成されるPIN接合は71】に示す低抵
抗率N形成長層からの外方向拡散領域もオート・ドーピ
ングに比べて小さくまたP膨拡散層も十分浅く、性能的
には最も周波数分散の小さなPINダイオードとなる。
Various manufacturing methods have been devised to overcome this drawback. For example, as shown in FIG. 6, a low impurity density region 62 is grown to a desired thickness by vapor phase epitaxial method on a high impurity density, ie, low resistivity N type St substrate 61, and a P type impurity region is grown from the growth surface side. In this method, 63 is diffused shallowly to form a PIN diode. A drawback in this case is that when a high resistivity layer is vapor-phase grown on a low resistivity substrate 61, a so-called auto-doping region 621 is inevitably generated in which impurities evaporated from the substrate are incorporated into the grown layer. For this reason, even if the P-type diffusion region 63 is formed as shallowly as possible to reduce the frequency dispersion effect of this region, auto-transmission can occur within one layer.
Frequency dispersion associated with impurity distribution caused by doping is accompanied by an unavoidable drawback. Yet another method is the seventh
As shown in the figure, a low-resistivity N-type layer 72 is deposited thickly by epitaxial growth on a high-resistivity substrate 71, the high-resistivity layer is polished to a desired thickness, and then a P-type layer is deposited as shallowly as possible. In this method, 73 is diffused to form a PIN junction. In the PIN junction formed by this method, the outward diffusion region from the low-resistivity N-type growth layer shown in [71] is smaller than in auto-doping, and the P-swelled diffusion layer is sufficiently shallow, resulting in the highest frequency dispersion in terms of performance. It becomes a small PIN diode.

しかしこの製造法には次の様な欠点がある。即ち気相成
長法では結晶成長速度が小さい為プロセス上必要な10
0ミクロン以上の厚さに成長させるには長時間を要する
こと、と高抵抗率層と気相成長低抵抗率層の間に格子定
数の違いを生じ気相成長層内にボイドやクランクを生じ
やすい欠点がある。また最終的に必要とする厚さまで高
抵抗層を研摩しなければならない上に格子定数の差から
生ずるウェーファのそりの為に基板に対して平行に研摩
することが著しく困難になるという大きな欠点がある。
However, this manufacturing method has the following drawbacks. In other words, in the vapor phase growth method, the crystal growth rate is low, so 10
It takes a long time to grow to a thickness of 0 microns or more, and the difference in lattice constant between the high resistivity layer and the vapor-grown low-resistivity layer causes voids and cranks in the vapor-grown layer. There are some easy drawbacks. Another major drawback is that the high-resistance layer must be polished to the final required thickness, and it is extremely difficult to polish the layer parallel to the substrate due to the warpage of the wafer caused by the difference in lattice constants. be.

本発明は上述したPINダイオードの製造方法の欠陥を
克服する為になされたものである。
The present invention has been made to overcome the deficiencies of the above-mentioned PIN diode manufacturing method.

(問題点を解決するための手段) 先ずPINダイオードの性能上重要なことは既に詳述し
た通り不純物分布の急峻度であり次に重要なことはP形
層とN形層によってはさまれる1層の厚さである。本発
明は1層を異方性化学腐蝕法を用いて所要の厚みに制御
性よく形成し、且つ可及的に急峻なP形層とN形層を形
成することを可能にしたもので、PIN接合の構造とそ
の製造方法に関するものである。
(Means for solving the problem) First of all, what is important in terms of the performance of the PIN diode is the steepness of the impurity distribution, as already detailed, and the second important thing is the impurity distribution between the P-type layer and the N-type layer1. It is the thickness of the layer. The present invention makes it possible to form one layer to a desired thickness with good control using an anisotropic chemical etching method, and to form a P-type layer and an N-type layer as steep as possible. The present invention relates to the structure of a PIN junction and its manufacturing method.

(発明の実施例) 第1図は本発明の一実施例を示す説明図である。(Example of the invention) FIG. 1 is an explanatory diagram showing one embodiment of the present invention.

第1図に示す様に少くとも50オーム・センチメートル
以上の抵抗率を有し主表面として(110)面を有する
Si基板1上に酸化硅素皮膜或は窒化硅素皮膜或はそれ
と同等機能をイアする保護膜2を形成し、周知の写真蝕
刻技術により最終的に側壁が(111)面を形成する方
法に平行方向に長方形に上記保護膜を除去し苛性アルカ
リ系或は各種ジアミンとピロカテコールと水の混合液に
代表される異方性化学溶液によって腐蝕するならば化学
腐蝕は(11o>方向には早く進行しく111>方向に
は殆んど進行しない為に第1図に示す様に側壁を(11
11面でかこ−まれた直方体状の溝部分3を形成するこ
とが出来る。この溝内はSlが露出しており基板表面は
保護膜でおおわれているのでこの耐腐蝕皮膜をそのま壕
拡散保護膜としてこの溝部にN形不純物を拡散する。P
形不純物を先に拡散することをさまたげない第2図は第
1図に於てa−a’の方向に主表面に垂直に切断した時
の断面図である。図において第1図と同一の符号は同一
または相当する部分を示している。耐腐蝕皮膜2を拡散
保護膜として溝部3にN形成はP形の拡散を行い拡散領
域4を形成する。この時基板1は高抵抗である。この後
溝内壁にも既述と同様の血J腐蝕性皮膜を設け、写真蝕
刻の技法を再び用いて長辺方向が平行になる様に、所要
の高抵抗層の厚さに相当する丈の距離を残して同一形状
の溝を形成する。
As shown in Figure 1, a silicon oxide film, a silicon nitride film, or an equivalent function is applied to a Si substrate 1 having a resistivity of at least 50 ohm-cm or more and a (110) plane as its main surface. A protective film 2 is formed, and the protective film is removed in a rectangular direction parallel to the method in which the side walls finally form a (111) plane using a well-known photolithographic technique. If corrosion is caused by an anisotropic chemical solution such as a mixed solution of water, chemical corrosion will progress rapidly in the 11o> direction and hardly progress in the 111> direction, so as shown in Figure 1, the side wall (11
A rectangular parallelepiped groove portion 3 surrounded by 11 planes can be formed. Since Sl is exposed in this groove and the substrate surface is covered with a protective film, the N-type impurity is diffused into this groove by using this corrosion-resistant coating as a trench diffusion protective film. P
FIG. 2 is a cross-sectional view of FIG. 1 taken perpendicularly to the main surface in the direction of a-a', without interfering with the initial diffusion of the shaped impurities. In the figure, the same reference numerals as in FIG. 1 indicate the same or corresponding parts. Using the corrosion-resistant coating 2 as a diffusion protection film, N formation in the groove portion 3 performs P-type diffusion to form a diffusion region 4. At this time, the substrate 1 has a high resistance. A blood-corrosive film similar to that described above was also provided on the inner wall of the rear groove, and the photo-etching technique was again used to create a film with a length corresponding to the thickness of the high-resistance layer so that the long sides were parallel to each other. Grooves of the same shape are formed leaving a distance.

第3図は以上説明した本発明の一実施例の半導体装置の
断面図を示す。先に形成した溝に拡散した不純物の導電
型と逆導電型の不純物を後から明けた空孔内に拡散する
ことにより例えば先に拡散した領域41をP型頭域とす
れば後から拡散した領域42はN影領域でありその中間
に当る二つの平行する(111)面ではさ1れた領域5
は高抵抗率層即ち1層である。この場合(1111面は
渚稠密面であり、異方性腐蝕により写真蝕刻の精度でそ
の距離を制御できしかも平行度は結晶の異方性によって
保証されるという利点がある。また1層の厚みを十分薄
くとっても不純物分布を可及的急峻に作ることができ、
研摩等では作り難い厚さまで十分薄くすることができる
。しかるのちスパッタ等の技法を用いて溝内にオーム性
接触を設は保護膜2上に配線用電極を設けることでPI
Nダイオードを精度よく且つ歩留りよく形成しながら高
性能を併せて達成することが出来る。P、IN接合を取
り囲む残余の高抵抗領域はそのままPINダイオードの
保護として役立つと同時に微細なPINダイオードの支
持基体として取扱いを容易にする。PINダイオードの
容量特性はP影領域とN影領域の間にはさまれる1層領
域がそれ以外の部分の■領域に比べて十分狭い限り電束
が領域5の1層領域に集中するので殆んど影響を与える
ことはない。また電界の弱い部分に拡散した少数キャリ
アの影響は残余の1層表面にサンドブラスト法やプラズ
マ処理等により欠陥を導入すれば影響を十分小さく出来
ることがわかっている。
FIG. 3 shows a sectional view of a semiconductor device according to an embodiment of the present invention described above. By diffusing an impurity of a conductivity type opposite to that of the impurity diffused into the groove previously formed into the hole opened later, for example, if the region 41 diffused earlier is made into a P-type head region, the region 41 is diffused later. Region 42 is an N shadow region, and region 5 is separated by two parallel (111) planes in the middle.
is a high resistivity layer, that is, one layer. In this case (1111 plane is a Nagisa dense plane, it has the advantage that its distance can be controlled with the precision of photoetching by anisotropic etching, and parallelism is guaranteed by the anisotropy of the crystal. Also, the thickness of one layer is Even if it is made sufficiently thin, the impurity distribution can be made as steep as possible.
It can be made sufficiently thin to a thickness that is difficult to make by polishing or the like. After that, an ohmic contact is established in the groove using a technique such as sputtering, and a wiring electrode is provided on the protective film 2 to connect the PI.
High performance can be achieved while forming N diodes with high precision and high yield. The remaining high resistance region surrounding the P, IN junction serves as a protection for the PIN diode and at the same time facilitates handling as a support base for the fine PIN diode. The capacitance characteristic of the PIN diode is that as long as the one-layer region sandwiched between the P shadow region and the N shadow region is sufficiently narrow compared to the other region (■), the electric flux will be concentrated in the one-layer region of region 5. It will not affect you at all. Furthermore, it has been found that the influence of minority carriers diffused in areas where the electric field is weak can be sufficiently reduced by introducing defects into the surface of the remaining single layer by sandblasting, plasma treatment, or the like.

(効果) 以上説明したことから明らかなように、本発明による異
方性化学腐蝕を用いた半導体装置の製造方法によれば周
波数分散が小さく高性能なPINダイオードを歩留りよ
く得る事ができるようになる。
(Effects) As is clear from the above explanation, the semiconductor device manufacturing method using anisotropic chemical corrosion according to the present invention makes it possible to obtain high-performance PIN diodes with low frequency dispersion and high yield. Become.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例を示す説明図で
斜視図と断面図である。第3図は本発明の半導体装置の
断面図、第4図は理想的なMNダイオードの不純物分布
図、第5図ないし第7図は従来のPINダイオードの不
純物分布図である。 1・・・基板、2・・・保護膜、3・・・溝、4,41
.42・・・拡散領域、5・・・1層領域。 特許出願人 新日本無線株式会社 第1図 第3図 −距離 第4図 63 −距離 第6図 一距離 第5図 一距離 第7図
FIGS. 1 and 2 are explanatory diagrams showing one embodiment of the present invention, and are a perspective view and a sectional view. FIG. 3 is a sectional view of the semiconductor device of the present invention, FIG. 4 is an impurity distribution diagram of an ideal MN diode, and FIGS. 5 to 7 are impurity distribution diagrams of conventional PIN diodes. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Protective film, 3... Groove, 4,41
.. 42...Diffusion area, 5...1 layer area. Patent applicant New Japan Radio Co., Ltd. Figure 1 Figure 3 - Distance Figure 4 63 - Distance Figure 6 - Distance Figure 5 - Distance Figure 7

Claims (1)

【特許請求の範囲】[Claims] (1)少くとも50Ω−cm以上の抵抗率を有し主表面
として{110}面を有するSiに於て主表面に対して
直交し互いに平行になる様に異方性化学腐蝕によって形
成された{111}面によりかこまれた溝の一方に一導
電形不純物原子を拡散し、他の一方の溝には逆導電型不
純物原子を拡散して形成したことを特徴とする半導体装
置。
(1) Formed by anisotropic chemical etching so as to be perpendicular to the main surface and parallel to each other in Si having a resistivity of at least 50 Ω-cm and a {110} plane as the main surface. A semiconductor device characterized in that impurity atoms of one conductivity type are diffused into one groove surrounded by a {111} plane, and impurity atoms of an opposite conductivity type are diffused into the other groove.
JP61067330A 1986-03-27 1986-03-27 Semiconductor device Pending JPS62224980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61067330A JPS62224980A (en) 1986-03-27 1986-03-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61067330A JPS62224980A (en) 1986-03-27 1986-03-27 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62224980A true JPS62224980A (en) 1987-10-02

Family

ID=13341898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61067330A Pending JPS62224980A (en) 1986-03-27 1986-03-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62224980A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2632776A1 (en) * 1988-06-10 1989-12-15 Thomson Hybrides Microondes Microwave diode of the PIN type and its method of manufacture
JP2020506534A (en) * 2016-12-20 2020-02-27 西安科鋭盛創新科技有限公司Xi’An Creation Keji Co., Ltd. Method for manufacturing heterogeneous SiGe-based plasma pin diode set for sleeve antenna

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165685A (en) * 1979-06-12 1980-12-24 Nec Corp Microwave diode
JPS58132975A (en) * 1982-02-03 1983-08-08 Hitachi Ltd Semiconductor device and preparation thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165685A (en) * 1979-06-12 1980-12-24 Nec Corp Microwave diode
JPS58132975A (en) * 1982-02-03 1983-08-08 Hitachi Ltd Semiconductor device and preparation thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2632776A1 (en) * 1988-06-10 1989-12-15 Thomson Hybrides Microondes Microwave diode of the PIN type and its method of manufacture
JP2020506534A (en) * 2016-12-20 2020-02-27 西安科鋭盛創新科技有限公司Xi’An Creation Keji Co., Ltd. Method for manufacturing heterogeneous SiGe-based plasma pin diode set for sleeve antenna

Similar Documents

Publication Publication Date Title
US3962713A (en) Large value capacitor
US4017885A (en) Large value capacitor
EP0518683B1 (en) High power, high frequency metal-semiconductor field-effect transistor formed in silicon carbide
US4262296A (en) Vertical field effect transistor with improved gate and channel structure
US3966577A (en) Dielectrically isolated semiconductor devices
Miller Lateral p‐n junction formation in GaAs molecular beam epitaxy by crystal plane dependent doping
US5225369A (en) Tunnel diode detector for microwave frequency applications
US3938176A (en) Process for fabricating dielectrically isolated semiconductor components of an integrated circuit
CA1155968A (en) Zener diode
EP0160255A2 (en) Field effect transistor device and method of making same
USRE32613E (en) Method of making contact electrodes to silicon gate, and source and drain regions, of a semiconductor device
US3981073A (en) Lateral semiconductive device and method of making same
US4532533A (en) Ballistic conduction semiconductor device
JPS62224980A (en) Semiconductor device
US3752702A (en) Method of making a schottky barrier device
US5496743A (en) Method of making an article comprising a semiconductor device
US3739243A (en) Semiconductor device for producing or amplifying electric oscillations
US3483443A (en) Diode having large capacitance change related to minimal applied voltage
US3990099A (en) Planar Trapatt diode
CN112993045B (en) Preparation method of heterogeneous GeSn-based solid-state plasma Pin diode and device thereof
CN106783593B (en) Preparation method of Ge-based heterogeneous solid-state plasma diode applied to loop antenna
US10177141B2 (en) Preparation method for heterogeneous SiGe based plasma P-I-N diode string for sleeve antenna
US3586929A (en) Semiconductor device having two varicap diodes arranged back to back
CA2425541C (en) Method of fabricating a self-aligned bipolar junction transistor in silicon carbide and resulting devices
WO2018113542A1 (en) Preparation method for pin diode string based on platform-type active region in reconfigurable loop antenna