JPS6222468B2 - - Google Patents

Info

Publication number
JPS6222468B2
JPS6222468B2 JP54032829A JP3282979A JPS6222468B2 JP S6222468 B2 JPS6222468 B2 JP S6222468B2 JP 54032829 A JP54032829 A JP 54032829A JP 3282979 A JP3282979 A JP 3282979A JP S6222468 B2 JPS6222468 B2 JP S6222468B2
Authority
JP
Japan
Prior art keywords
pressure
strain
diaphragm
sensitive diaphragm
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54032829A
Other languages
Japanese (ja)
Other versions
JPS55125676A (en
Inventor
Teizo Takahama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3282979A priority Critical patent/JPS55125676A/en
Publication of JPS55125676A publication Critical patent/JPS55125676A/en
Publication of JPS6222468B2 publication Critical patent/JPS6222468B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Description

【発明の詳細な説明】 本発明は圧力変換器に係り、特にシリコン感圧
ダイヤフラム中の拡散抵抗が歪によつて変化する
ことを利用した高感度の半導体圧力変換器に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pressure transducer, and more particularly to a highly sensitive semiconductor pressure transducer that utilizes the fact that the diffusion resistance in a silicon pressure-sensitive diaphragm changes with strain.

半導体圧力変換器は、シリコン感圧ダイヤフラ
ム中の拡散抵抗が歪によつて変化することを利用
して圧力を電気量に変換するものとして知られて
いる。第1図はこの種のシリコン感圧ダイヤフラ
ムの従来の構造の一例を示し、受圧台1の上には
シリコン感圧ダイヤフラム2が接着されている。
このシリコン感圧ダイヤフラム2は、通常、厚さ
150μ程度のシリコン単結晶板3で構成され、こ
の単結晶板3の上面には複数個の抵抗素子4が拡
散形成され、下面には選択エツチングにより凹型
起歪部5が形成されている。また、上記受圧台1
の中央部には、上記凹型起歪部5と連通する開口
6が形成されており、さらに受圧台1の下面には
受圧管7の一端が接着され、この受圧管7内には
開口6を介して上記凹型起歪部5と連通する軸方
向の受圧孔8が形成されている。さらに、上記受
圧台1にはハーメチツクシール9を介して複数の
電極棒10,10,…10が固定され、これら電
極棒10,10,…10の内端とシリコン感圧素
子2とはボンデイングワイヤ11,11によつて
電気的に接続されている。したがつて、受圧管7
の受圧孔8を通して圧力を測定すべき流体を上記
凹型起歪部5内に供給すると、シリコン単結晶板
3の肉薄部には歪が発生し、これに応じて抵抗素
子4の抵抗値が変化し、この抵抗値の変化を電極
棒10,10,…10を介して外部に取り出すこ
とができる。
Semiconductor pressure transducers are known to convert pressure into electrical quantities by utilizing the fact that the diffusion resistance in a silicon pressure-sensitive diaphragm changes with strain. FIG. 1 shows an example of the conventional structure of this type of silicon pressure-sensitive diaphragm, in which a silicon pressure-sensitive diaphragm 2 is bonded onto a pressure receiving base 1.
This silicon pressure sensitive diaphragm 2 usually has a thickness of
It is composed of a silicon single crystal plate 3 having a thickness of about 150 μm. A plurality of resistive elements 4 are diffused and formed on the upper surface of the single crystal plate 3, and a concave strain-generating portion 5 is formed on the lower surface by selective etching. In addition, the pressure receiving table 1
An opening 6 is formed in the center of the pressure receiving tube 7 to communicate with the concave strain-generating portion 5. Further, one end of a pressure receiving tube 7 is glued to the lower surface of the pressure receiving table 1, and an opening 6 is formed in the pressure receiving tube 7. An axial pressure-receiving hole 8 is formed which communicates with the concave strain-generating portion 5 via the concave strain-generating portion 5 . Further, a plurality of electrode rods 10, 10, ... 10 are fixed to the pressure receiving table 1 via a hermetic seal 9, and the inner ends of these electrode rods 10, 10, ... 10 and the silicon pressure sensitive element 2 are connected to each other. They are electrically connected by bonding wires 11,11. Therefore, the pressure receiving pipe 7
When a fluid whose pressure is to be measured is supplied into the concave strain-generating portion 5 through the pressure receiving hole 8, strain occurs in the thin portion of the silicon single crystal plate 3, and the resistance value of the resistance element 4 changes accordingly. However, this change in resistance value can be extracted to the outside via the electrode rods 10, 10, . . . .

感圧ダイヤフラム2の感度は使用するシリコン
単結晶板3の結晶面と抵抗素子4の形成される結
晶方位および抵抗素子4の形成されている位置な
どによつて決定される。このうち、抵抗素子4の
形成されている位置に関しては、その抵抗素子4
の形成されている位置が一定測定条件で発生する
歪の大きさに比例すると考えられる。外周を固定
された均一厚さのダイヤフラムに等分布荷重を作
用させた場合におけるダイヤフラムの各部の歪を
第2図に示す。横軸はダイヤフラムの半径方向の
位置を半径で規格化した値で、0がダイヤフラム
の中央を、1がダイヤフラムの外周を示す。縦軸
は歪の大きさを最大歪で規格化した値を示す。こ
れにより、外周近傍の歪が最も大きくなること、
すなわち最も高感度になることが分る。したがつ
て従来技術による感圧ダイヤフラム2において
は、この最も高感度となる外周近傍および中央部
に抵抗素子4が拡散形成されていた。一方、感圧
ダイヤフラムを用いて、圧力変換器を構成する場
合には他の各種構成部品と感圧ダイヤフラムが組
み合せられ、感圧ダイヤフラムはこの組み合せに
よつて色々な影響を受ける。中でも感圧ダイヤフ
ラム2が直接、接着される部分(たとえば受圧台
1)の材料とシリコンとの熱膨張係数の差によつ
て生じる熱歪は影響の最も大きなものである。受
圧台1として使用される材料として、通常コバー
ルと称されているFe−Ni−Co合金(熱膨張係数
4.5〜5.0×10-6/℃)板(厚さ1.5mm)を用いこの
受圧台1上にハンダづけで従来技術によるシリコ
ン感圧ダイヤフラム2を接着した圧力変換器にお
いては、その出力が低温側および高温側で、常温
の値から大巾にはずれ、特に低温側の−30℃にお
いてはフルスケールの15〜35%もずれてしまうと
いう問題点が生じ、この熱歪による特性の悪化を
軽減することが望まれていた。この熱歪による特
性の悪化を改善するための方法としてシリコン感
圧ダイヤフラムが接着される部分の構造および材
料については色々な提案がなされ、それぞれに効
果を上げているが、これらは全て熱歪を減少させ
るための工夫である。
The sensitivity of the pressure sensitive diaphragm 2 is determined by the crystal plane of the silicon single crystal plate 3 used, the crystal orientation in which the resistance element 4 is formed, the position in which the resistance element 4 is formed, and the like. Among these, regarding the position where the resistive element 4 is formed, the resistive element 4 is
It is considered that the position where the . Figure 2 shows the strain in each part of the diaphragm when a uniformly distributed load is applied to a diaphragm with a fixed outer circumference and a uniform thickness. The horizontal axis is a value obtained by normalizing the radial position of the diaphragm by the radius, where 0 indicates the center of the diaphragm and 1 indicates the outer circumference of the diaphragm. The vertical axis indicates a value obtained by normalizing the magnitude of strain by the maximum strain. As a result, the distortion near the outer periphery becomes the largest,
In other words, it can be seen that the sensitivity is the highest. Therefore, in the pressure sensitive diaphragm 2 according to the prior art, the resistance element 4 is diffused and formed near the outer periphery and at the center where the sensitivity is highest. On the other hand, when a pressure-sensitive diaphragm is used to construct a pressure transducer, the pressure-sensitive diaphragm is combined with various other components, and the pressure-sensitive diaphragm is affected in various ways by this combination. Among these, the thermal strain caused by the difference in thermal expansion coefficient between silicon and the material of the part to which the pressure sensitive diaphragm 2 is directly bonded (for example, the pressure receiving base 1) has the greatest effect. The material used for the pressure receiving table 1 is an Fe-Ni-Co alloy (with a coefficient of thermal expansion
In a pressure transducer using a 4.5 to 5.0 On the high temperature side, there is a problem that the value deviates widely from the normal temperature value, and especially on the low temperature side -30℃, it deviates by 15 to 35% of the full scale. That was what was hoped for. As a method to improve the deterioration of characteristics caused by thermal strain, various proposals have been made regarding the structure and material of the part to which the silicon pressure-sensitive diaphragm is bonded, and each has been effective, but all of these have been effective. This is a device to reduce it.

本発明は、シリコン感圧ダイヤフラムにおい
て、抵抗素子の配置の仕方を工夫することによつ
て、上記熱歪の影響を軽減することを目的とす
る。
An object of the present invention is to reduce the influence of the thermal distortion described above by devising the arrangement of resistive elements in a silicon pressure-sensitive diaphragm.

しかして、本発明による圧力変換器は、片面に
抵抗素子が拡散形成され他面に凹型起歪部を形成
してなるシリコン感圧ダイヤフラムを有するもの
において、上記感圧ダイヤフラムの抵抗素子のう
ち外側のものは、上記凹型起歪部の外周から凹型
起歪部の直径あるいは幅の6%に相当する領域を
越えた内側近傍に配置されたことを特徴としてい
る。
The pressure transducer according to the present invention has a silicon pressure sensitive diaphragm having a resistance element diffused and formed on one side and a concave strain-generating portion formed on the other side, in which the resistance element of the pressure sensitive diaphragm is located on the outer side. This is characterized in that it is disposed near the inner side of the concave strain-generating portion beyond an area corresponding to 6% of the diameter or width of the concave strain-generating portion from the outer periphery of the concave strain-generating portion.

以下本発明による圧力変換器の実施例を第1図
と同一部分に同一符号を付して示した第3図およ
び第4図を参照して説明する。
Embodiments of the pressure transducer according to the present invention will be described below with reference to FIGS. 3 and 4, in which the same parts as in FIG. 1 are denoted by the same reference numerals.

第3図は本発明によるシリコン感圧ダイヤフラ
ム2の縦断面図を示しており、シリコン感圧ダイ
ヤフラム2は厚さ150μで結晶面が(110)面のn
形のシリコン単結晶板3で構成され、この単結晶
板3の下面には、選択エツチングにより凹型起歪
部5が形成され、この凹型起歪部5は直径Dを有
する円形の凹所である。
FIG. 3 shows a longitudinal cross-sectional view of a silicon pressure-sensitive diaphragm 2 according to the present invention.
A concave strain-generating portion 5 is formed on the lower surface of the single-crystal plate 3 by selective etching, and the concave strain-generating portion 5 is a circular recess having a diameter D. .

一方、上記単結晶板3の上面には、第4図から
明らかなように、長さ方向が<110>方向である
4個のP形抵抗素子4,4,4,4が中
央部に2個、外側に2個それぞれ拡散形成されて
いる。これらの抵抗素子のうち最も外側に位置す
る抵抗素子4および4は、それぞれ、上記凹
型起歪部5の外周から凹型起歪部5の直径Dの6
%に相当する領域を越えた内側近傍に形成されて
いる。
On the other hand, on the upper surface of the single crystal plate 3, as is clear from FIG . Two are formed in the center and two are diffused on the outside. Of these resistance elements, the outermost resistance elements 4 1 and 4 4 are located at a distance from the outer periphery of the concave strain-generating portion 5 to 6 of the diameter D of the concave strain-generating portion 5, respectively.
It is formed near the inside beyond the area corresponding to %.

また、上記シリコン単結晶板3の抵抗素子側の
面はSiO2膜12で被われているが、上記各抵抗
素子4,4,4,4の両端部分はフオト
エツチング処理によつてSiO2膜12が除去さ
れ、Al電極13,14が形成されている。
Further, the surface of the silicon single crystal plate 3 on the resistance element side is covered with a SiO 2 film 12, but both end portions of each of the resistance elements 4 1 , 4 2 , 4 3 , 4 4 are photoetched. Then, the SiO 2 film 12 is removed, and Al electrodes 13 and 14 are formed.

上述のように構成されたシリコン感圧ダイヤフ
ラム2は、第1図に示したように、コバールと呼
称されるFe−Ni−Co合金で作られた厚さ1.5mmの
受圧台1の上にハンダでろう付けされる。しかし
て、Al電極13,14と電極棒10,10,…
10とは前述したようにボンデイングワイヤ1
1,11によつて電気的に接続されている。
The silicon pressure-sensitive diaphragm 2 constructed as described above is soldered onto a 1.5 mm thick pressure receiving base 1 made of an Fe-Ni-Co alloy called Kovar, as shown in FIG. It is brazed. Therefore, the Al electrodes 13, 14 and the electrode rods 10, 10,...
10 is the bonding wire 1 as mentioned above.
1 and 11 are electrically connected.

また、上記シリコン感圧ダイヤフラム2は、キ
ヤツプ15で被われ、このキヤツプ15の縁部は
受圧台1の外周に対して溶接部16によつて封止
され、キヤツプ15内は通常真空雰囲気に保たれ
基準室17とされている。
The silicon pressure-sensitive diaphragm 2 is covered with a cap 15, and the edge of the cap 15 is sealed against the outer periphery of the pressure receiving table 1 by a welded part 16, and the inside of the cap 15 is normally kept in a vacuum atmosphere. This is referred to as a sauce reference chamber 17.

第5図に、シリコン感圧ダイヤフラム2を接着
する受圧台1に、通常コバールと呼ばれている
Fe−Ni−Co合金製板(厚さ1.5mm)を用い、シリ
コン感圧ダイヤフラム2として、結晶面に
(110)面、抵抗素子の長さ方向に<110>方向を
とり、ダイヤフラムの中央から外周までにわたつ
て実験的に9個の抵抗素子(P形拡散層)を形成
したものを用い、感圧ダイヤフラム2と受圧台1
とをPb−Snハンダでろう付けした圧力変換器に
ついて、ダイヤフラムの各部の抵抗素子の抵抗値
が温度をかえたときに変化する実験データを示し
た。30℃の抵抗値を基準とし、温度をかえたとき
に変化する割合をとり、中央部の値を基準として
図示した。横軸はダイヤフラムにおける位置を示
し、中央を0、外周を1で示している。シリコン
の熱膨張係数は2.4×10-6/℃、コバールのそれ
は4.5〜5.0×10-6/℃であるので、30℃以上では
ダイヤフラムに引張応力(抵抗値が増加する方
向)が、30℃以下ではダイヤフラムに圧縮応力
(抵抗値が減少する方向)が、かかつていると考
えられる。第5図から、上記応力は感圧ダイヤフ
ラム全体に一様にかかるのではなく、外周に近い
部分に集中的にかかつていることが分る。第5図
における−30℃の最外部の値−0.91%という値
は、例えばフルスケール1気圧用圧力変換器に用
いられる通常の感圧ダイヤフラムにおけるフルス
ケールにおける抵抗値の変化率が約1%であるこ
とから判断すると、如何に大きな値であるか分る
であろう。同時に、従来技術による圧力変換器の
−30℃における出力のズレ15〜35%とほゞ対応し
ていることが分る。
In Fig. 5, a silicon pressure sensitive diaphragm 2 is attached to a pressure receiving base 1, which is usually called Kovar.
A Fe-Ni-Co alloy plate (thickness 1.5 mm) is used as the silicon pressure-sensitive diaphragm 2, with the (110) crystal plane and the <110> direction in the length direction of the resistance element. A pressure-sensitive diaphragm 2 and a pressure-receiving base 1 were used, in which nine resistance elements (P-type diffusion layer) were experimentally formed along the outer periphery.
For a pressure transducer in which the diaphragm and the diaphragm are brazed with Pb-Sn solder, we have shown experimental data on how the resistance values of the resistance elements in each part of the diaphragm change when the temperature changes. The resistance value at 30°C is used as the reference, and the rate of change when the temperature is changed is calculated, and the value at the center is used as the reference. The horizontal axis indicates the position on the diaphragm, with 0 indicating the center and 1 indicating the outer periphery. The coefficient of thermal expansion of silicon is 2.4×10 -6 /℃, and that of Kovar is 4.5 to 5.0×10 -6 /℃, so the tensile stress (in the direction of increasing resistance value) on the diaphragm increases at temperatures above 30℃. In the following, it is considered that compressive stress (in the direction in which the resistance value decreases) is applied to the diaphragm. From FIG. 5, it can be seen that the stress is not uniformly applied to the entire pressure-sensitive diaphragm, but concentrated to a portion near the outer periphery. The outermost value of -0.91% at -30°C in Figure 5 means, for example, that the rate of change in resistance at full scale of a normal pressure-sensitive diaphragm used in a full-scale 1 atm pressure transducer is about 1%. Judging from certain facts, you can see how large the value is. At the same time, it can be seen that this substantially corresponds to the 15 to 35% output deviation at -30° C. of the pressure transducer according to the prior art.

すなわち、通常の感圧ダイヤフラムのフルスケ
ールにおける抵抗値の変化は、中央部に配置され
ている2つの抵抗で約1%増加し、外側に配置さ
れている2つの抵抗で約1%減少する。(この増
減は加圧の方向が逆になれば逆になる。)一方抵
抗の長さは第5図の横軸の巾で0.2に相当するの
で、第5図によれば−30℃において中央部の抵抗
は約0.05%減少し、外側の抵抗は約0.63%減少す
ることになり、これをフルスケールに対する割合
としてみると (0.63−0.05)/(1+1)=0.29 となり、前述の出力のズレ15〜35%とよく一致す
る。
That is, the full-scale change in resistance of a typical pressure-sensitive diaphragm increases by about 1% for the two resistors placed in the center, and decreases by about 1% for the two resistors placed on the outside. (This increase/decrease will be reversed if the direction of pressure is reversed.) On the other hand, the length of the resistance corresponds to 0.2 of the width of the horizontal axis in Figure 5, so according to Figure 5, at -30°C, the center The outer resistance will decrease by about 0.05%, and the outer resistance will decrease by about 0.63%. If we look at this as a percentage of the full scale, it will be (0.63 - 0.05) / (1 + 1) = 0.29, and the output deviation mentioned above will decrease. Good agreement with 15-35%.

第5図の結果を用いて、外側の抵抗と中央部の
抵抗との熱歪による抵抗値の変化の影響をフルス
ケールの2.5%以下にするための条件を求める。
このためには−30℃において外周部の抵抗の変化
を0.10%以下に抑える必要があり、これは外周部
の抵抗の配置位置を第5図の横軸の0.88以内にす
ることに相当する。すなわち、外側の抵抗の配置
位置を凹型起歪部の外周から凹型起歪部の直径の
6%に相当する領域を越える内側にすることに相
当する。
Using the results shown in Figure 5, find the conditions to keep the effect of change in resistance value due to thermal strain between the outer resistor and the central resistor to 2.5% or less of the full scale.
For this purpose, it is necessary to suppress the change in resistance at the outer circumference to 0.10% or less at −30° C., which corresponds to setting the position of the resistance at the outer circumference within 0.88 of the horizontal axis in FIG. That is, this corresponds to arranging the outer resistor so that it is located inside the area beyond the outer periphery of the concave strain-generating portion, which corresponds to 6% of the diameter of the concave strain-generating portion.

第5図から感圧ダイヤフラムの外周部近傍を避
けて抵抗素子を形成することが熱歪の影響を軽減
するために有効であることが明らかとなつた。こ
のことは、第3図および第4図の実施例におい
て、抵抗素子4,4,4,4のうち最も
外側の抵抗素子4,4の位置を凹型起歪部5
の中央から0.92mmの位置とし、そしてこの凹型起
歪部5の半径を1.0mmに形成した場合と1.1mmに形
成した場合とを比較するとさらに明確になる。す
なわち、本発明の実験によれば、−30〜80℃にお
ける温度特性の精度をフルスケールに対する割合
で表わした場合の精度が±1.5%以内に入る歩留
りは、凹型起歪部5の直径が2.0mmの場合に25%
であるのに対し、2.2mmの場合には82%である。
2.0mmの場合は第5図の横軸と同じ表し方にする
と0.92であり、2.2mmの場合は0.84であり、第5図
の結果とよい対応を示している。このような理由
から−30〜80℃の温度範囲において、精度±1.5
%を確保するためには外側の抵抗を凹型起歪部の
外周から凹型起歪部の直径の6%に相当する領域
を越えた内側近傍に配置する必要がある。
From FIG. 5, it has become clear that forming the resistance element avoiding the vicinity of the outer circumference of the pressure-sensitive diaphragm is effective in reducing the influence of thermal strain. This means that in the embodiments shown in FIGS. 3 and 4, the position of the outermost resistance elements 4 1 , 4 4 among the resistance elements 4 1 , 4 2 , 4 3 , 4 4 is changed to the concave strain-generating portion 5 .
This becomes even clearer when comparing the cases where the radius of the concave strain-generating portion 5 is 1.0 mm and 1.1 mm. That is, according to the experiments of the present invention, when the accuracy of temperature characteristics at -30 to 80°C is expressed as a percentage of the full scale, the yield is within ±1.5% when the diameter of the concave strain-generating portion 5 is 2.0%. 25% for mm
In contrast, in the case of 2.2 mm, it is 82%.
In the case of 2.0 mm, it is 0.92 when expressed in the same way as the horizontal axis in Fig. 5, and in the case of 2.2 mm, it is 0.84, showing good correspondence with the results in Fig. 5. For this reason, the accuracy is ±1.5 in the temperature range of -30 to 80℃.
%, it is necessary to arrange the outer resistor near the inner side beyond the area corresponding to 6% of the diameter of the concave strain-generating portion from the outer periphery of the concave strain-generating portion.

以上述べたように本発明によれば、シリコン単
結晶板の表面に拡散形成される抵抗素子群のうち
測定に用いられる4つの抵抗素子のうち外側の2
つをを、受圧台の凹型起歪部の外周から凹型起歪
部の直径あるいは幅の6%に相当する領域を越え
た内側に配置するようにしたから、使用温度の変
化に基づく熱応力の影響によつて圧力変換器の出
力特性が害されることが少なく、精度の高い圧力
変換器を提供することができる。
As described above, according to the present invention, the outer two of the four resistance elements used for measurement among the resistance element group diffused and formed on the surface of the silicon single crystal plate.
Since the two parts are arranged inside the outer circumference of the concave strain-generating part of the pressure receiving table beyond an area corresponding to 6% of the diameter or width of the concave strain-generating part, thermal stress due to changes in operating temperature can be reduced. The output characteristics of the pressure transducer are less likely to be affected by the influence, and a highly accurate pressure transducer can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は圧力変換器の構造を示した縦断面図、
第2図はダイヤフラムに等分布荷重を作用させた
際のダイヤフラムの歪特性図、第3図は本発明に
よるシリコン感圧ダイヤフラムの構造を示した縦
断面図、第4図は同素子の平面図、第5図はシリ
コン感圧ダイヤフラムの半径方向に沿う抵抗値の
変化を示した線図である。 1……受圧台、2……シリコン感圧ダイヤフラ
ム、3……シリコン単結晶板、4……抵抗素子、
5……凹型起歪部、7……受圧管、10……電極
棒、11……ボンデイングワイヤ、12……
SiO2膜、13,14……Al電極。
Figure 1 is a vertical cross-sectional view showing the structure of the pressure transducer;
Fig. 2 is a strain characteristic diagram of the diaphragm when a uniformly distributed load is applied to the diaphragm, Fig. 3 is a longitudinal cross-sectional view showing the structure of the silicon pressure-sensitive diaphragm according to the present invention, and Fig. 4 is a plan view of the same element. , FIG. 5 is a diagram showing the change in resistance value along the radial direction of the silicon pressure-sensitive diaphragm. 1... Pressure receiving base, 2... Silicon pressure sensitive diaphragm, 3... Silicon single crystal plate, 4... Resistance element,
5... Concave strain-generating part, 7... Pressure receiving tube, 10... Electrode rod, 11... Bonding wire, 12...
SiO 2 film, 13, 14...Al electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 片面に抵抗素子が拡散形成され他面に凹型起
歪部を形成してなるシリコン感圧ダイヤフラムを
有するものにおいて、上記感圧ダイヤフラムの抵
抗素子のうち外側のものを上記凹型起歪部の外周
から凹型起歪部の直径あるいは幅の6%に相当す
る領域を越えた内側近傍に配置したことを特徴と
する圧力変換器。
1. In a silicon pressure-sensitive diaphragm having a resistance element diffused on one side and a concave strain-generating part formed on the other side, the outer resistance element of the pressure-sensitive diaphragm is placed on the outer periphery of the concave strain-generating part. 1. A pressure transducer characterized in that the pressure transducer is disposed near the inner side beyond a region corresponding to 6% of the diameter or width of the concave strain-generating portion.
JP3282979A 1979-03-20 1979-03-20 Pressure transducer Granted JPS55125676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3282979A JPS55125676A (en) 1979-03-20 1979-03-20 Pressure transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3282979A JPS55125676A (en) 1979-03-20 1979-03-20 Pressure transducer

Publications (2)

Publication Number Publication Date
JPS55125676A JPS55125676A (en) 1980-09-27
JPS6222468B2 true JPS6222468B2 (en) 1987-05-18

Family

ID=12369706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3282979A Granted JPS55125676A (en) 1979-03-20 1979-03-20 Pressure transducer

Country Status (1)

Country Link
JP (1) JPS55125676A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158367A (en) * 1985-12-28 1987-07-14 Anritsu Corp Pressure sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159982A (en) * 1974-06-14 1975-12-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159982A (en) * 1974-06-14 1975-12-24

Also Published As

Publication number Publication date
JPS55125676A (en) 1980-09-27

Similar Documents

Publication Publication Date Title
US4303903A (en) Pressure sensitive apparatus
US4127840A (en) Solid state force transducer
US3800264A (en) High temperature transducers and housing including fabrication methods
US4141253A (en) Force transducing cantilever beam and pressure transducer incorporating it
US5537882A (en) Semiconductor sensor for detecting physical amount without thermal hypsteresis where output wiring is disposed in a stress insensitive direction
US5186055A (en) Hermetic mounting system for a pressure transducer
US5477738A (en) Multi-function differential pressure sensor with thin stationary base
US4188258A (en) Process for fabricating strain gage transducer
US4527428A (en) Semiconductor pressure transducer
US7444879B2 (en) Displacement transducer
US3968466A (en) Pressure transducer
US3930823A (en) High temperature transducers and housing including fabrication methods
US4151502A (en) Semiconductor transducer
JPS6051051B2 (en) Micro pressure measurement transducer
US3624714A (en) Piezoresistive miniature pressure transducer
US4212209A (en) Differential pressure to electric current transducer employing a strain sensitive resistive pattern on a substrate having a high modulus of elasticity
US3434090A (en) Compound strain gage structure
JPS5952727A (en) Semiconductor pressure sensor
US3237138A (en) Integral strain transducer
EP0080186B1 (en) Semiconductor pressure transducer
JPS6222468B2 (en)
US4400682A (en) Pressure sensor
CN111122026A (en) Pressure sensor
JPS6313357B2 (en)
JPS63196081A (en) Semiconductor-type pressure detector