JPS6222421B2 - - Google Patents

Info

Publication number
JPS6222421B2
JPS6222421B2 JP4137979A JP4137979A JPS6222421B2 JP S6222421 B2 JPS6222421 B2 JP S6222421B2 JP 4137979 A JP4137979 A JP 4137979A JP 4137979 A JP4137979 A JP 4137979A JP S6222421 B2 JPS6222421 B2 JP S6222421B2
Authority
JP
Japan
Prior art keywords
sensing element
gas
oxygen concentration
binder
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4137979A
Other languages
Japanese (ja)
Other versions
JPS55132942A (en
Inventor
Kenji Kusakabe
Tomu Sato
Mitsuhiro Ootani
Nobuo Hiroi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4137979A priority Critical patent/JPS55132942A/en
Publication of JPS55132942A publication Critical patent/JPS55132942A/en
Publication of JPS6222421B2 publication Critical patent/JPS6222421B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は遷移金属酸化物からなり、ガス中の酸
素濃度を検知して排気ガス浄化システムに使用さ
れる酸素濃度検知素子の製造方法に関するもので
ある。 一般に内燃機関あるいは燃焼機器においてそれ
らに供給されるガス混合物中の空燃比(A/F)
が化学量論点近傍にある時燃焼後の平衡状態にお
けるガス中の酸素分圧が急変する。車載用の内燃
機関において、排気ガス中のNOx、CO、HC等の
有害成分の排出量を最小限に抑えるためには、そ
れらに供給されるガス混合物中の空燃比(A/
F)を敏速に化学量論点に非常に近い範囲に制御
する必要がある。そのためには、ガス中の酸素濃
度変化に対して敏速な応答特性を示す検知素子が
必要である。また、この検知素子には長時間高温
の排気ガス中で使用できるすぐれた耐久性が要望
される。前述の目的で使用される検知素子として
ZrO2セラミツクを用いた酸素濃淡電池型素子と
酸化チタン等の遷移金属酸化物セラミクスを用い
た電気抵抗体素子とがある。後者について説明す
れば、これは基本的には酸化チタン等の検出ガス
中の酸素濃度に依存した電気抵抗値を示す遷移金
属酸化物セラミクスを感ガス体としたものであ
り、さらに応答速度を速めるために、これに貴金
属系触媒を担持させたものが実用上有用である。
第1図は酸化チタン型検知素子の電気抵抗値と空
燃比(A/F)との関係を示すグラフの一例であ
る。 この遷移金属酸化物セラミクスは高速にガス応
答性を得るために多孔質に焼結されており、ガス
応答性と耐寿命性を満足するためにはその空孔の
気孔率の制御が重要である。 従来、この素子の製造方法としては原料となる
遷移金属酸化物粉末を高温(たとえば1000℃)で
仮焼し、ボールミルにて湿式粉砕後、ポリビニル
ブチラール等のバインダ、可塑剤、溶剤等よりな
る泥漿を形成し、湿式成形法にてテープ状に乾燥
されたものを打抜き、電極線となる貴金属線の端
部を埋設する形で接合したものを高温で燃結し、
素子を得る。気孔率の制御は粉末の仮焼条件、粉
砕条件、泥漿組成、焼成条件によつて大きく左右
される。活性の高い粉末を適当な気孔率になるよ
うに焼結させようとすれば、低い温度で焼成せね
ばならず、そのような素子は高温で動作させた時
の寿命特性が悪い。 本発明は粉末の製造条件及び素子の製造条件等
にあまり影響されないで最適な気孔率を与える検
知素子の製造方法を提供するものである。 すなわち、バインダとしてブチリル基35〜
40wt%、アセチル基12〜15wt%、水酸基0〜3wt
%、よりなるセルロースアセテートブチラート樹
脂を、溶剤としてn−酢酸ブチルの組合わせより
なるバインダ系を使用することを特徴とする。こ
のバインダ系にセラミツク粉末を混ぜて混合し、
シート状に湿式成形したものは、溶剤の乾燥の過
程で溶剤の蒸発と共にバインダの樹脂が溶剤に対
しての溶解度以上となりゲル化をおこす。その際
にセラミツク粉末は5〜20μの二次粒子に凝集
し、最終的に密度が粗な成形体ができあがる。こ
れを所定の方法にてセンサ形状に加工し焼成する
ことにより気孔率の最適なセンサが得られる。 活性の大きい原料を用いても粒成長は二次粒子
の大きさの段階までで、それ以上は進みにくい。
従つて、原料の粒径、活性度にあまり左右されな
いでいつも同一の粒径、気孔率に制御できる。 以下、本発明について実施例をあげ説明する。 酸化チタン生原料を1090℃、4時間仮焼後、ボ
ールミルで20時間湿式粉砕し、乾燥する。得られ
た酸化チタン粉末40gとセルロースアセテートブ
チラート樹脂(商品名CAB−381−05、イースト
マンケミカル社製)9g、可塑剤としてジブチル
フタレート11g、溶剤としてn−酢酸ブチル55g
をボールミルにて10時間混練し、泥漿をつくり、
ドクタブレード法にて厚みが200μのシートを作
成する。このシートを直径3.5mmの円板に打ち抜
く。このようにして得られた2枚の円板の間に線
径250μの一対の白金線を平行に1.5mmの間隔での
せ、同様な方法で打ち抜かれた円板を上から重ね
合わせて加圧しながら貼り合わせる。貼り合わせ
の際に有機バインダを結合剤として使用した。こ
のようにしてつくつたチツプを1250℃、1時間焼
結して検知素子を得た。 下記の表に同様の方法につくられた素子の製造
条件と特性一覧表をあげる。表中バインダ系にA
の印のあるものは本方法によるもの、Bは従来法
によるもので、気孔率、応答性とも従来法に比べ
て工程の諸条件による影響が小さい。 上記実施例はNo.5に相当する。
The present invention relates to a method for manufacturing an oxygen concentration detection element made of a transition metal oxide and used in an exhaust gas purification system for detecting the oxygen concentration in gas. The air/fuel ratio (A/F) in the gas mixture typically supplied to internal combustion engines or combustion equipment.
When is near the stoichiometric point, the oxygen partial pressure in the gas in the equilibrium state after combustion changes suddenly. In automotive internal combustion engines, in order to minimize the emissions of harmful components such as NOx, CO, and HC in the exhaust gas, the air-fuel ratio (A/
F) needs to be rapidly controlled within a range very close to the stoichiometric point. To this end, a sensing element is required that exhibits rapid response characteristics to changes in oxygen concentration in the gas. Further, this sensing element is required to have excellent durability so that it can be used in high-temperature exhaust gas for a long time. As a sensing element used for the aforementioned purposes
There are oxygen concentration battery elements using ZrO 2 ceramics and electrical resistor elements using transition metal oxide ceramics such as titanium oxide. Regarding the latter, it basically uses transition metal oxide ceramics such as titanium oxide, which exhibits an electrical resistance value depending on the oxygen concentration in the detection gas, as the gas-sensitive body, and further increases the response speed. Therefore, it is practically useful to support a noble metal catalyst thereon.
FIG. 1 is an example of a graph showing the relationship between the electrical resistance value of a titanium oxide type sensing element and the air-fuel ratio (A/F). This transition metal oxide ceramic is sintered into a porous state in order to obtain high-speed gas responsiveness, and controlling the porosity of the pores is important in order to satisfy gas responsiveness and longevity. . Conventionally, the manufacturing method for this element was to calcinate transition metal oxide powder as a raw material at a high temperature (for example, 1000°C), wet mill it in a ball mill, and then turn it into a slurry consisting of a binder such as polyvinyl butyral, a plasticizer, a solvent, etc. is formed, dried into a tape shape using a wet molding method, then punched out, and the ends of the precious metal wires that will become the electrode wires are buried and joined together, which is then sintered at high temperature.
Get the element. Control of porosity is greatly influenced by powder calcination conditions, pulverization conditions, slurry composition, and calcination conditions. If highly active powder is to be sintered to a suitable porosity, it must be fired at a low temperature, and such devices have poor life characteristics when operated at high temperatures. The present invention provides a method for manufacturing a sensing element that provides optimum porosity without being significantly influenced by powder manufacturing conditions, element manufacturing conditions, etc. That is, butyryl group 35~ as a binder
40wt%, acetyl group 12-15wt%, hydroxyl group 0-3wt
% of cellulose acetate butyrate resin in combination with n-butyl acetate as a solvent. Mix this binder system with ceramic powder,
When wet-molded into a sheet, the solvent evaporates during the drying process, and the binder resin exceeds its solubility in the solvent, causing gelation. At this time, the ceramic powder is aggregated into secondary particles of 5 to 20 microns, and a compact with a coarse density is finally completed. By processing this into a sensor shape using a predetermined method and firing it, a sensor with optimal porosity can be obtained. Even if highly active raw materials are used, grain growth only reaches the size of secondary particles and is difficult to progress beyond that.
Therefore, the particle size and porosity can always be controlled to be the same without being greatly influenced by the particle size and activity of the raw materials. Hereinafter, the present invention will be described with reference to examples. The titanium oxide raw material is calcined at 1090℃ for 4 hours, wet-pulverized in a ball mill for 20 hours, and then dried. 40 g of the obtained titanium oxide powder, 9 g of cellulose acetate butyrate resin (trade name CAB-381-05, manufactured by Eastman Chemical Company), 11 g of dibutyl phthalate as a plasticizer, and 55 g of n-butyl acetate as a solvent.
Knead in a ball mill for 10 hours to make slurry,
Create a sheet with a thickness of 200μ using the doctor blade method. Punch out this sheet into a disk with a diameter of 3.5 mm. A pair of platinum wires with a wire diameter of 250μ are placed parallel to each other at a spacing of 1.5 mm between the two disks obtained in this way, and the disks punched out in the same way are stacked on top of each other and pasted together under pressure. match. An organic binder was used as a binding agent during lamination. The chip thus produced was sintered at 1250°C for 1 hour to obtain a sensing element. The table below lists the manufacturing conditions and characteristics of devices made using a similar method. A for binder system in the table
Those marked with are those made by this method, and those marked B are those made by the conventional method, and both porosity and responsiveness are less affected by process conditions than in the conventional method. The above embodiment corresponds to No.5.

【表】 評価方法を詳しくいえば下記の通りである。 検知素子の応答時間はプロパンガスバーナを用
い、検知素子を第2図のように結線して測定し
た。プロパンガスバーナは空気とプロパンガスと
の混合比がλ=0.9からλ=1.1へ交互に高速で自
動的に切り換えられる燃焼装置であり、検知素子
はこのバーナの高温の排気ガス中(約700℃)に
取付けられている。第2図において、1は検知素
子、2は20KΩの固定抵抗器、E0は定電圧電源、
Eは出力電圧である。上述のλの変化に対応して
検知素子1の抵抗値が大きく変化し、従つてE/
E0も大きく変化する。応答速度は電圧比E/E0
が0.9から0.2に変化するのに要する時間(λ=0.9
からλ=1.1に切りかわる時)と、その逆に変化
するのに要する時間(λ=1.1からλ=0.9に切り
かわる時)との和である。 耐久試験はガソリン燃焼装置を用い、燃料過剰
の燃焼状態で温度750〜800℃の燃焼排気中に試験
サンプルの検知素子を100時間放置した。 このように本発明は工程の諸条件に左右されな
い安定した酸素濃度検知素子の製造方法を提供す
るものである。
[Table] The details of the evaluation method are as follows. The response time of the sensing element was measured by using a propane gas burner and connecting the sensing element as shown in FIG. A propane gas burner is a combustion device in which the mixture ratio of air and propane gas is automatically switched at high speed alternately from λ = 0.9 to λ = 1.1, and the detection element is located in the high temperature exhaust gas of this burner (about 700°C). installed on. In Figure 2, 1 is a detection element, 2 is a 20KΩ fixed resistor, E 0 is a constant voltage power supply,
E is the output voltage. Corresponding to the change in λ mentioned above, the resistance value of the sensing element 1 changes greatly, and therefore E/
E 0 also changes significantly. The response speed is the voltage ratio E/E 0
The time required for λ to change from 0.9 to 0.2 (λ=0.9
It is the sum of the time required for the change (when changing from λ = 1.1 to λ = 1.1) and vice versa (when changing from λ = 1.1 to λ = 0.9). The durability test used a gasoline combustion device, and the sensing element of the test sample was left in combustion exhaust gas at a temperature of 750 to 800 degrees Celsius for 100 hours in a combustion state with excess fuel. As described above, the present invention provides a method for manufacturing a stable oxygen concentration sensing element that is not affected by process conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸化チタン型検知素子の空燃比(A/
F)と電気抵抗値との関係の一例を示すグラフ、
第2図は検知素子の応答速度の測定に使用した測
定回路の回路図である。
Figure 1 shows the air-fuel ratio (A/
A graph showing an example of the relationship between F) and electrical resistance value,
FIG. 2 is a circuit diagram of a measuring circuit used to measure the response speed of the sensing element.

Claims (1)

【特許請求の範囲】[Claims] 1 バインダとしてブチリル基35〜40wt%、ア
セチル基12〜15wt%、水酸基0〜3wt%よりなる
セルロースアセテートブチラート樹脂、有機溶剤
としてn−酢酸ブチル、及び可塑剤、遷移金属酸
化物粉末よりなる泥漿を湿式成形法にて成形した
シートより製造することを特徴とした酸素濃度検
知素子の製造方法。
1 Cellulose acetate butyrate resin consisting of 35 to 40 wt% butyryl groups, 12 to 15 wt% acetyl groups, and 0 to 3 wt% hydroxyl groups as a binder, n-butyl acetate as an organic solvent, and a plasticizer and a slurry consisting of transition metal oxide powder. A method for manufacturing an oxygen concentration sensing element, characterized in that it is manufactured from a sheet formed by a wet molding method.
JP4137979A 1979-04-05 1979-04-05 Production of oxygen density detecting element Granted JPS55132942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4137979A JPS55132942A (en) 1979-04-05 1979-04-05 Production of oxygen density detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4137979A JPS55132942A (en) 1979-04-05 1979-04-05 Production of oxygen density detecting element

Publications (2)

Publication Number Publication Date
JPS55132942A JPS55132942A (en) 1980-10-16
JPS6222421B2 true JPS6222421B2 (en) 1987-05-18

Family

ID=12606758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4137979A Granted JPS55132942A (en) 1979-04-05 1979-04-05 Production of oxygen density detecting element

Country Status (1)

Country Link
JP (1) JPS55132942A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190046A (en) * 1990-11-22 1992-07-08 Sekisui Chem Co Ltd Hot water feeding system for electrical hot water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190046A (en) * 1990-11-22 1992-07-08 Sekisui Chem Co Ltd Hot water feeding system for electrical hot water heater

Also Published As

Publication number Publication date
JPS55132942A (en) 1980-10-16

Similar Documents

Publication Publication Date Title
US20080006532A1 (en) Ammonia and nitrogen oxide sensors
EP0056752A1 (en) Titania oxygen sensor with chrome oxide compensator
US7575709B2 (en) Tape-cast sensors and method of making
EP1346210A2 (en) Gas sensor
JP2766029B2 (en) Ceramic green sheet material, electrochemical device, and method of manufacturing the same
JP2002116172A (en) Humidity sensor
JPS6179155A (en) Oxygen sensor element
JPS6222421B2 (en)
JPS6152421B2 (en)
JP2584881B2 (en) Ceramic green sheet and method for producing electrochemical element using the same
JPS6366448A (en) Gas detector
JPS6161344B2 (en)
JPS63200055A (en) Oxygen sensor element and its manufacture
US4536241A (en) Method of making a titanium dioxide oxygen sensor element with fast transient response
JPH07107524B2 (en) Oxygen gas detector
JPS5840693B2 (en) Manufacturing method of exhaust gas air-fuel ratio sensor
JPH0114534B2 (en)
WO2009017485A2 (en) Ammonia and nitrogen oxide sensors
JPS5919310B2 (en) Gas component detection element
JPH0390851A (en) Oxygen sensor with heater and production thereof
JPH0514861B2 (en)
JPH0110590Y2 (en)
JPS6161684B2 (en)
JPH0417377B2 (en)
JPS59220641A (en) Gas detecting element