JPS62224051A - Resin sealed semiconductor device - Google Patents

Resin sealed semiconductor device

Info

Publication number
JPS62224051A
JPS62224051A JP61067993A JP6799386A JPS62224051A JP S62224051 A JPS62224051 A JP S62224051A JP 61067993 A JP61067993 A JP 61067993A JP 6799386 A JP6799386 A JP 6799386A JP S62224051 A JPS62224051 A JP S62224051A
Authority
JP
Japan
Prior art keywords
resin
semiconductor element
semiconductor device
integer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61067993A
Other languages
Japanese (ja)
Inventor
Yoshio Yamaguchi
美穂 山口
Akiko Kitayama
北山 彰子
Tatsushi Ito
達志 伊藤
Haruo Tabata
田畑 晴夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP61067993A priority Critical patent/JPS62224051A/en
Publication of JPS62224051A publication Critical patent/JPS62224051A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To improve moisture resistance after solder dip, by coating the surface of a semiconductor element with specified polyorganosiloxane. CONSTITUTION:The surface of a semiconductor element is coated with at least one of polyorganosiloxane shown by formula I and polyorganosiloxane shown by formula II. In these formulae I and II, notations are as follows; R represents methyl group, R1 is (CH2)l (where l=1-3, integer), A is one of amino group, epoxy group, carboxyl group, by hydroxyl group and cyclohexane oxide group, (m) is an integer of 1-300, (n) is 0 or an integer of 1-300 (where m+n=1-500, integer), and (x) is an integer of 10-300. Thereby adhesive property to resin seal is remarkably improved, and permeation of moisture into the boundary between the semiconductor element and the resin seal is prevented, so that moisture resistance after solder dip is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半田浸漬後の信顛性に優れた樹脂封止半導
体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a resin-sealed semiconductor device that has excellent reliability after being dipped in solder.

〔従来の技術〕[Conventional technology]

従来から、トランジスタ、IC,LSI等の半導体素子
をプラスチックパッケージで保護した樹脂封止半導体装
置として、プリント基板等にビンを挿入して実装するデ
ュアル・インライン・パッケージ(DIP)タイプのも
のが、賞月されている。
Traditionally, the dual in-line package (DIP) type, which is a resin-sealed semiconductor device in which semiconductor elements such as transistors, ICs, and LSIs are protected by a plastic package, has been awarded an award. It's been a month.

しかしながら、近年、腕時計や電卓、VTRカメラ等の
小形高機能製品の開発の流れに伴い、半導体装置の高密
度実装化、薄形化が要求され、いわゆるフラットパッケ
ージタイプの表面実装型半導体装置が多用されるように
なってきている。
However, in recent years, with the trend of development of small, high-performance products such as wristwatches, calculators, and VTR cameras, there has been a demand for higher-density packaging and thinner semiconductor devices, and so-called flat package type surface-mount semiconductor devices are often used. This is becoming more and more common.

上記表面実装型半導体装置は、従来のDIPタイプのも
ののようにリードピンだけを部分的に半田浸漬するもの
ではなく、通常、半導体装置全体を260℃の半田槽に
浸漬したのち、プリント基板に接続、固定することによ
り実装を行うものである。
The above-mentioned surface mount type semiconductor device is not one in which only the lead pins are partially immersed in solder as in conventional DIP type devices, but the entire semiconductor device is usually immersed in a solder bath at 260°C and then connected to a printed circuit board. It is implemented by fixing it.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記のように半導体装置全体を半田槽に
浸漬すると、半導体装置が室温から260℃というよう
な急激な温度変化を受けるため、熱衝撃によってリード
フレームと封止樹脂間に隙間を生じ、パッケージの耐湿
性が損なわれてしまう。
However, when the entire semiconductor device is immersed in a solder bath as described above, the semiconductor device undergoes a rapid temperature change from room temperature to 260 degrees Celsius, which causes a gap between the lead frame and the sealing resin due to thermal shock, causing the package to deteriorate. moisture resistance is impaired.

そこで、半導体装置の薄形化、高密度実装化の要求に対
応できるよう、上記パッケージの耐湿性低下の改善が強
(望まれていた。
Therefore, in order to meet the demands for thinner semiconductor devices and higher density packaging, there has been a strong desire to improve the moisture resistance of the package.

この発明は、このような事情に鑑みなされたもので、半
田浸漬後の耐湿性に優れた樹脂封止半導体装置の提供を
その目的とするものである。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a resin-sealed semiconductor device that has excellent moisture resistance after being immersed in solder.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため、この発明の樹脂封止半導体
装置は、半導体素子が樹脂組成物によって封止されてい
る樹脂封止半導体装置であって、上記半導体素子の表面
が下記の式(1)で示されるポリオルガノシロキサンお
よび下記の弐(H)で示されるポリオルガノシロキサン
の少なくとも一方で被覆処理されているという構成をと
る。
In order to achieve the above object, the resin-sealed semiconductor device of the present invention is a resin-sealed semiconductor device in which a semiconductor element is encapsulated with a resin composition, and the surface of the semiconductor element is expressed by the following formula (1). ) and at least one of the polyorganosiloxanes shown in (H) below.

なお、上記「半導体素子の表面」とは、文字通りの表面
のみならず、裏面、側面等外表面金てを含む趣旨である
Note that the above-mentioned "surface of the semiconductor element" includes not only the literal front surface but also outer surface metals such as the back surface and side surfaces.

すなわち、本発明者らは、樹脂封止半導体装置の半田浸
漬後の耐湿性向上のために、まず、パッケージの耐湿性
を低下させる因子を解明すべく研究を重ねた。その結果
、半導体装置製造過程あるいは製品化後の保管過程にお
いて半導体装置内に吸収された水分が、主として半導体
素子と封止用樹脂の界面に滞留しており、この水分が、
半田浸漬時の高温(240℃以上)により急激に蒸発し
て高圧蒸気となり、半導体素子と封止用樹脂の界面に隙
間を生じさせたり、パッケージにクラックを生じさせた
りし、それによって半田浸漬後のパッケージの耐湿性が
低下することを突き止めた。
That is, in order to improve the moisture resistance of a resin-sealed semiconductor device after being immersed in solder, the present inventors first conducted research to elucidate the factors that reduce the moisture resistance of the package. As a result, moisture absorbed into the semiconductor device during the semiconductor device manufacturing process or post-product storage process remains mainly at the interface between the semiconductor element and the sealing resin.
The high temperature (240°C or higher) during solder dipping causes rapid evaporation into high-pressure steam, which creates gaps at the interface between the semiconductor element and the encapsulating resin, and cracks in the package. It was found that the moisture resistance of the package decreased.

そこで、本発明者らは、上記半導体装置内に滞留する水
分を除去する方法、あるいは、予め吸湿を防止する方法
についてさらに一連の研究を重ねた結果、半導体素子の
表面を上記特定のシリコーンオイルで処理すると半導体
素子自体の表面が上記シリコーンオイルにおける官能基
と封止樹脂中におけるエポキシ基との反応により封止樹
脂に対して著しく密着性の向上効果をもたらし、それに
よって半導体素子と封止樹脂の界面に対する水分の浸入
を防止し、半田浸漬後の耐湿性の向上が実現されるよう
になることを見いだしこの発明に到達したのである。
Therefore, the present inventors conducted a series of further studies on methods for removing moisture remaining in the semiconductor device or methods for preventing moisture absorption in advance, and as a result, the surface of the semiconductor element was coated with the above specific silicone oil. When treated, the surface of the semiconductor element itself has the effect of significantly improving adhesion to the encapsulating resin due to the reaction between the functional groups in the silicone oil and the epoxy groups in the encapsulating resin, thereby improving the bond between the semiconductor element and the encapsulating resin. This invention was achieved by discovering that it is possible to prevent moisture from entering the interface and to improve moisture resistance after immersion in solder.

この発明の樹脂封止半導体装置は、その表面が上記特定
のシリコーンオイルで処理されている半導体素子と、こ
の半導体素子を封止する樹脂組成物とからなる。
The resin-sealed semiconductor device of the present invention includes a semiconductor element whose surface is treated with the above-mentioned specific silicone oil, and a resin composition for sealing this semiconductor element.

上記シリコーンオイルは、下記の一般式CI)および下
記の一般式(n)で示されるポリオルガノシロキサンの
少なくとも一方が用いられる。
As the silicone oil, at least one of polyorganosiloxanes represented by the following general formula CI) and the following general formula (n) is used.

(以下余白) 上記の一般式(1)および〔II〕で表されるシリコー
ンオイルは、その分子構造中にエポキシ基に対する反応
性を示すアミノ基、エポキシ基、カルボキシル基等を有
する必要があり、したがって、式(r)においてはmは
必ず1以上に設定される。
(Space below) The silicone oil represented by the above general formulas (1) and [II] must have an amino group, an epoxy group, a carboxyl group, etc. that exhibit reactivity with epoxy groups in its molecular structure, Therefore, in formula (r), m is always set to 1 or more.

上記のようなシリコーンオイルは一般には25℃での粘
度が300〜400cpsであり、代表例としては、下
記のようなものがあげられる。
The above-mentioned silicone oil generally has a viscosity of 300 to 400 cps at 25°C, and representative examples include the following.

上記例示のシリコーンオイルは、単独で用いてもよいし
、併用しても差し支えはない。特に併用する場合には、
一般式(1)で表されるシリコーンオイルと一般式〔■
〕で表されるシリコーンオイルとを前者5に対し後者が
1になるように設定することが好結果をもたらす。そし
て、上記一般式(I)におけるシリコーンオイルにおい
て繰返し数mにかかる繰返し単位と、繰返し数nにかか
る繰返し単位とはランダムであってもよいし、交互にな
っていてもよいし、またブロック状になっていても差し
支えはない。
The silicone oils listed above may be used alone or in combination. Especially when used together,
Silicone oil represented by general formula (1) and general formula [■
] Setting the silicone oil represented by 5 so that the former is 5 and the latter is 1 brings about good results. In the silicone oil in the above general formula (I), the repeating units corresponding to the number of repeats m and the repeating units corresponding to the number n of repeats may be random or alternate, or may have a block shape. There is no problem even if it is.

上記のようなシリコーン化合物を用いることにより、シ
リコーン化合物自体の有する撥水性と、シリコーン化合
物ケイ素原子が有する半導体素子に対する親和性と、さ
らにその分子構造中の官能基が有する封止樹脂中のエポ
キシ基との反応性とによって半導体素子の表面が撥水性
になると同時に封止樹脂との密着性が著しく向上するよ
うになるのであり、半導体素子と封止樹脂との界面への
水分の浸入を阻止しうるようになる。
By using the above-mentioned silicone compound, the water repellency of the silicone compound itself, the affinity for semiconductor elements of the silicon atom of the silicone compound, and the epoxy group of the encapsulating resin of the functional group in its molecular structure can be improved. The surface of the semiconductor element becomes water repellent due to the reactivity with the encapsulating resin, and at the same time, the adhesion with the encapsulating resin is significantly improved, preventing moisture from entering the interface between the semiconductor element and the encapsulating resin. It becomes wet.

上記のように表面処理されている半導体素子の封止に用
いる樹脂組成物は、熱硬化性樹脂、硬化剤、充填剤、顔
料等を用いて得られるものであって、通常、粉末状もし
くはこれを打錠したタブレット状になっている。
The resin composition used for encapsulating the semiconductor element whose surface has been surface-treated as described above is obtained using a thermosetting resin, a hardening agent, a filler, a pigment, etc., and is usually in powder form or in powder form. It is in the form of a compressed tablet.

上記熱硬化性樹脂としては、エポキシ樹脂が好適に用い
られるが、フェノール樹脂、尿素樹脂。
As the thermosetting resin, epoxy resins are preferably used, including phenol resins and urea resins.

メラミン樹脂、ポリエステル樹脂、ジアリルフタレート
樹脂、ポリフェニレンサルファイド等を上記エポキシ樹
脂の全部もしくは一部に代えて、用いることができる。
Melamine resin, polyester resin, diallyl phthalate resin, polyphenylene sulfide, etc. can be used in place of all or part of the above epoxy resin.

エポキシ樹脂としては、ビスフェノールA型。Bisphenol A type epoxy resin.

フェノールノボラック型、タレゾールノボラック型のよ
うなグリシジルエーテル型エポキシ樹脂、脂環式エポキ
シ樹脂、ハロゲン化エポキシ樹脂等公知のいずれのもの
を用いてもよいが、特にフェノールノボラックあるいは
クレゾールノボラック型エポキシ樹脂の使用が好適であ
る。さらに、これらのエポキシ樹脂の中でも塩素イオン
の含を量が10ppm以下で、かつ加水分解性塩素の含
有1が0.1重量%(以下「%」と略す)以下のものが
適している。
Any known epoxy resins such as glycidyl ether type epoxy resins such as phenol novolac type and talesol novolac type, alicyclic epoxy resins, and halogenated epoxy resins may be used, but in particular, phenol novolac or cresol novolac type epoxy resins may be used. Preferred for use. Further, among these epoxy resins, those having a chlorine ion content of 10 ppm or less and a hydrolyzable chlorine content of 0.1% by weight or less (hereinafter abbreviated as "%") are suitable.

上記エポキシ樹脂の硬化剤としては、ノボラック型フェ
ノール樹脂(フェノールノボラック、クレゾールノボラ
ック等)、酸無水物系硬化剤(テトラハイドロ無水フタ
ル酸、無水トリメリット酸1無水ベンゾフエノンテトラ
カルボン酸等)、アミン(ジアミノジフェニルメタン、
メタフェニレンジアミン、ジアミノジフェニルエーテル
等)等が用いられる。特に、フェノール樹脂であってフ
ェノール、クレゾール、キシノール、レゾルシノール、
フェニルフェノール、ビスフェノールA等の1種または
2種以上と、ホルムアルデヒド、パラホルムアルデヒド
等とを酸触媒の存在下に反応させて得られるものが好適
である。これらの硬化剤は、前記熱硬化性樹脂の1当量
に対して0.5〜1.0当星の範囲で配合することが好
ましい。
Examples of curing agents for the epoxy resin include novolak type phenolic resins (phenol novolak, cresol novolak, etc.), acid anhydride curing agents (tetrahydrophthalic anhydride, trimellitic anhydride 1 benzophenone tetracarboxylic anhydride, etc.), Amine (diaminodiphenylmethane,
metaphenylene diamine, diaminodiphenyl ether, etc.) are used. In particular, phenolic resins such as phenol, cresol, xynol, resorcinol,
Preferred are those obtained by reacting one or more of phenylphenol, bisphenol A, etc. with formaldehyde, paraformaldehyde, etc. in the presence of an acid catalyst. These curing agents are preferably blended in an amount of 0.5 to 1.0 equivalents per equivalent of the thermosetting resin.

さらに、上記硬化剤とともに、2−エチル−4−メチル
イミダゾール、2−ヘプタデシルイミダヅール、2−メ
チルイミダゾールのような異項型イミダゾール化合物や
、1,8−ジアザ−ビシクロ(5,4,O)ウンデセン
−7およびその塩、l・リフェニルホスフィンのような
有機第三ホスフィン化合物等の硬化促進剤を配合するこ
ともできる。
Furthermore, in addition to the above-mentioned curing agent, heterologous imidazole compounds such as 2-ethyl-4-methylimidazole, 2-heptadecylimidazole, and 2-methylimidazole, and 1,8-diaza-bicyclo(5,4 , O) A curing accelerator such as undecene-7 and its salt, an organic tertiary phosphine compound such as l-riphenylphosphine, etc. can also be blended.

なお、上記組成物には、必要に応じて従来から用いられ
る無機質充填剤、難燃剤、離型剤、顔料等を含有させて
もよい。
Note that the above composition may contain conventionally used inorganic fillers, flame retardants, mold release agents, pigments, etc., as necessary.

この発明に用いる樹脂組成物は、上記のような原料を用
い、例えばつぎのようにして製造することができる。す
なわち、上記に例示した樹脂と硬化剤、顔料その他の添
加剤を適宜配合し、この配合物をミキシングロール機等
の混練機にかけて加熱状態で混練し、半硬化の樹脂組成
物とし、これを室温に冷却したのち、公知の手段によっ
て粉砕し、そのままもしくは必要に応じて打錠すること
により製造される。
The resin composition used in the present invention can be produced using the above-mentioned raw materials, for example, in the following manner. That is, the resin exemplified above, a curing agent, pigment, and other additives are appropriately blended, and this mixture is kneaded in a heated state using a kneading machine such as a mixing roll machine to form a semi-cured resin composition, which is then heated at room temperature. After being cooled to 100%, the powder is pulverized by known means, and produced as is or by tabletting if necessary.

この発明の樹脂封止半導体装置は、上記のような樹脂組
成物と前記シリコーンオイルとを用い、例えばつぎのよ
うにして製造することができる。
The resin-sealed semiconductor device of the present invention can be manufactured using the resin composition as described above and the silicone oil, for example, in the following manner.

すなわち、まず封止すべき半導体素子の表面に対して、
前記シリコーンオイルを吹付け、噴霧し、あるいはシリ
コーンオイルに半導体素子を浸漬することにより、処理
したのち、この半導体素子を、上記樹脂組成物によって
封止することにより得ることができる。上記半導体素子
の封止は特に制限されるものではなく、通常の方法、例
えばトランスファー成形等の公知のモールド方法により
行うことができる。
That is, first, on the surface of the semiconductor element to be sealed,
It can be obtained by spraying, spraying, or immersing a semiconductor element in the silicone oil, and then sealing the semiconductor element with the resin composition. Sealing of the semiconductor element is not particularly limited, and can be performed by a conventional method, for example, a known molding method such as transfer molding.

このようにして得られる樹脂封止半導体装置は、樹脂封
止前のシリコーン処理によって半導体素子表面が(θ水
性と密着性に改質されているため、半導体素子と封止樹
脂の界面に水分が浸入することがない。したがって、半
導体装置の半田浸漬時に、半導体素子と封止樹脂の界面
で高圧蒸気が発生せず、上記界面に隙間が生じたりパッ
ケージにクラックが生じたりすることがない。
In the resin-sealed semiconductor device obtained in this way, the surface of the semiconductor element is modified to have (θ aqueous and adhesive properties) by silicone treatment before resin encapsulation, so that moisture does not form at the interface between the semiconductor element and the encapsulation resin. Therefore, when the semiconductor device is immersed in solder, high-pressure steam is not generated at the interface between the semiconductor element and the sealing resin, and no gaps are generated at the interface or cracks are generated in the package.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の樹脂封止半導体装置は、その
表面がシリコーンオイルで処理されて?8水性と密着性
について改質されている特殊な半導体素子を用いるため
、半導体素子と封止樹脂の界面に水分が浸入することが
なく、半田浸漬後も耐湿性が低下せず、極めて信頌性の
高いものである。
As described above, the surface of the resin-sealed semiconductor device of the present invention is treated with silicone oil. 8.Using a special semiconductor element that has been modified for water resistance and adhesion, moisture does not enter the interface between the semiconductor element and the sealing resin, and the moisture resistance does not deteriorate even after being immersed in solder, making it an extremely reliable product. It is highly sexual.

なお、この発明の樹脂封止半導体装置は、半導体素子と
封止樹脂の界面に水分が浸入することがないため、いず
れの種類の半導体装置に適用しても一定の耐湿性向上の
効果を奏することができるものであるが、特に、表面実
装型の半導体装置に適用することが、従来より問題とな
っていた半田浸漬後の耐湿性低下を解消するため、好適
であるといえる。
Furthermore, since the resin-sealed semiconductor device of the present invention does not allow moisture to enter the interface between the semiconductor element and the encapsulation resin, it has the effect of improving moisture resistance to a certain extent even when applied to any type of semiconductor device. However, it can be said that it is particularly suitable to apply it to a surface-mounted semiconductor device because it eliminates the conventional problem of deterioration in moisture resistance after solder immersion.

つぎに、実施例について、比較例とイ)1せて説明する
Next, Examples will be explained along with Comparative Examples and A)1.

〔実施例1〜8〕 半導体素子としてリニアICを用意し、これの表面に、
下記の一般式(1)および〔II〕で表され、かつ下記
の第1表に従うシリコーンオイルをトルエンで10倍に
希釈した希釈液を吹付けて表面処理を施した。
[Examples 1 to 8] A linear IC was prepared as a semiconductor element, and on its surface,
Surface treatment was performed by spraying a diluted solution prepared by diluting silicone oil represented by the following general formulas (1) and [II] and according to Table 1 below 10 times with toluene.

(余  白  ) (以下余白) なお、上記の表に示すように、実施例1〜6は1種類の
シリコーンオイルで表面処理を行い、実施例7,8は2
種類のシリコーンオイルの混合物で表面処理を行ってい
る。
(Margin) (hereinafter referred to as margin) As shown in the table above, Examples 1 to 6 were surface treated with one type of silicone oil, and Examples 7 and 8 were treated with two types of silicone oil.
The surface is treated with a mixture of different types of silicone oil.

つぎに、上記のようにして表面処理された半導体素子を
、下記の第2表に示す原料を用い、175℃、2分の条
件でトランスファー成形し、8ビン−スモールアウトラ
イン(SOP−8)型の樹脂封止半導体装置とした。
Next, the semiconductor element surface-treated as described above was transfer-molded at 175°C for 2 minutes using the raw materials shown in Table 2 below, and molded into an 8-bin small outline (SOP-8) mold. This resin-sealed semiconductor device was made into a resin-sealed semiconductor device.

L二”  (!1ffi @B ) 〔比較例1〕 上記のシリコーンオイルに代えて下記の一般式%式%(
) [ で示される官能基を持たないシリコーンオイルを使用し
た。それ以外は上記実施例と同様にして樹脂封止半導体
装置を得た。
L2" (!1ffi @B) [Comparative Example 1] In place of the above silicone oil, the following general formula % formula % (
) [ Silicone oil that does not have the functional group shown was used. Other than that, a resin-sealed semiconductor device was obtained in the same manner as in the above example.

〔比較例2〕 シリコーンオイルとして下記の一般式〔■〕R+Si 
OカーR・・・(IV) (OC−1)g−→−0C1)1)2−1で示される封
止樹脂のエポキシ基と反応しない官能基を有するシリコ
ーンオイルを用いた。それ以外は上記実施例と同様にし
て樹脂封止半導体装置を得た。
[Comparative Example 2] The following general formula [■] R+Si was used as silicone oil.
O Car R...(IV) (OC-1)g-→-0C1)1) A silicone oil having a functional group that does not react with the epoxy group of the sealing resin was used. Other than that, a resin-sealed semiconductor device was obtained in the same manner as in the above example.

〔比較例3〕 半導体素子表面に対してシリコーンオイルによる表面処
理を行わなかった。それ以外は上記実施例と同様にして
樹脂封止半導体装置を得た。
[Comparative Example 3] No surface treatment with silicone oil was performed on the surface of the semiconductor element. Other than that, a resin-sealed semiconductor device was obtained in the same manner as in the above example.

このようにして得られた実施測高と比較測高を、80°
C295%R1)の雰囲気中に20時間入れて吸湿させ
たのち、260℃の半田浴に10秒間浸漬した。そして
、半田浸漬後のクラックの有無を調べるとともに、プレ
ッシャー釜による信φ■性テスト(121℃、100%
RHでのPCTテスト)を行った。その結果は下記の第
3表に示すとおりである。
The actual height measurement and comparative height measurement obtained in this way are
After being placed in a C295%R1) atmosphere for 20 hours to absorb moisture, it was immersed in a 260°C solder bath for 10 seconds. In addition to examining the presence or absence of cracks after solder immersion, we conducted a reliability test using a pressure cooker (121°C, 100%
PCT test at RH) was performed. The results are shown in Table 3 below.

(以下余白) 第   3   表− 上記の結果から、実施測高は、比較測高に比べ、半田浸
漬後の耐湿性に著しく優れていることがわかる。
(The following is a margin) Table 3 - From the above results, it can be seen that the actual height measurement is significantly superior in moisture resistance after solder immersion compared to the comparative height measurement.

すなわち、実施測高は、比較測高とは異なり、エポキシ
樹脂やフェノール樹脂と反応しうる官能基を持ったシリ
コーンオイルによる表面処理がなされていることにより
、半田浸漬後も耐湿性が極めて優れていることがわかる
In other words, unlike comparative height measurements, actual height measurements are surface-treated with silicone oil that has functional groups that can react with epoxy resins and phenol resins, so they have extremely high moisture resistance even after being immersed in solder. I know that there is.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体素子が樹脂組成物によつて封止されている
樹脂封止半導体装置であつて、上記半導体素子の表面が
下記の式〔 I 〕で示されるポリオルガノシロキサンお
よび下記の式〔II〕で示されるポリオルガノシロキサン
の少なくとも一方で被覆処理されていることを特徴とす
る樹脂封止半導体装置。 ▲数式、化学式、表等があります▼・・・〔 I 〕 ▲数式、化学式、表等があります▼・・・〔II〕 上記式〔 I 〕、〔II〕において、Rはメチ ル基、R_1は(CH_2)_l(但しl=1〜3の整
数)、Aはアミノ基、エポキシ基、カルボキシル基、水
酸基またはシクロヘキセンオキサイド基、mは1〜30
0の整数でnは0または1〜300の整数(但しm+n
=1〜500の整数)、xは10〜300の整数である
(1) A resin-sealed semiconductor device in which a semiconductor element is encapsulated with a resin composition, wherein the surface of the semiconductor element is a polyorganosiloxane represented by the following formula [I] and a polyorganosiloxane represented by the following formula [II]. ] A resin-sealed semiconductor device characterized by being coated with at least one of the polyorganosiloxanes shown in the following. ▲There are mathematical formulas, chemical formulas, tables, etc.▼...[I] ▲There are mathematical formulas, chemical formulas, tables, etc.▼...[II] In the above formulas [I] and [II], R is a methyl group, and R_1 is a methyl group. (CH_2)_l (where l = an integer of 1 to 3), A is an amino group, epoxy group, carboxyl group, hydroxyl group, or cyclohexene oxide group, m is 1 to 30
An integer of 0 and n is an integer of 0 or 1 to 300 (however, m+n
= an integer of 1 to 500), x is an integer of 10 to 300.
JP61067993A 1986-03-26 1986-03-26 Resin sealed semiconductor device Pending JPS62224051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61067993A JPS62224051A (en) 1986-03-26 1986-03-26 Resin sealed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61067993A JPS62224051A (en) 1986-03-26 1986-03-26 Resin sealed semiconductor device

Publications (1)

Publication Number Publication Date
JPS62224051A true JPS62224051A (en) 1987-10-02

Family

ID=13360996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61067993A Pending JPS62224051A (en) 1986-03-26 1986-03-26 Resin sealed semiconductor device

Country Status (1)

Country Link
JP (1) JPS62224051A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797433A (en) * 1993-08-24 1995-04-11 Siemens Ag Siloxane-containing casting resin system, its production and coating for opto-electric structural element
WO2007121513A1 (en) * 2006-04-20 2007-11-01 Aortech Biomaterials Pty Ltd Gels
US8207245B2 (en) 2004-09-29 2012-06-26 Aortech International Plc Gels

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797433A (en) * 1993-08-24 1995-04-11 Siemens Ag Siloxane-containing casting resin system, its production and coating for opto-electric structural element
US8207245B2 (en) 2004-09-29 2012-06-26 Aortech International Plc Gels
WO2007121513A1 (en) * 2006-04-20 2007-11-01 Aortech Biomaterials Pty Ltd Gels
US8623986B2 (en) 2006-04-20 2014-01-07 Aertech International plc Gels
US9765191B2 (en) 2006-04-20 2017-09-19 Aortech International Plc Gels
US10059807B2 (en) 2006-04-20 2018-08-28 Aortech International Plc Gels
US10597497B2 (en) 2006-04-20 2020-03-24 Aortech International Plc Gels

Similar Documents

Publication Publication Date Title
CN101356643B (en) Semiconductor device
DE4233450C2 (en) Thermosetting resin compositions and their use for encapsulating semiconductor devices
JPS62224051A (en) Resin sealed semiconductor device
JPS63288051A (en) Resin-sealed semiconductor device
JPH01105562A (en) Resin-sealed semiconductor device
JPS62136860A (en) Semiconductor device
JP3004463B2 (en) Epoxy resin composition
JP2537867B2 (en) Resin-sealed semiconductor device
JP2005290111A (en) Resin composition for encapsulation and semiconductor device
JPH03166220A (en) Epoxy resin composition for sealing semiconductor
JP4884644B2 (en) Curing agent composition and use thereof
JP2001270932A (en) Epoxy resin composition and semiconductor device
JPS62115848A (en) Resin-sealed semiconductor device
JP2537868B2 (en) Resin-sealed semiconductor device
JPH01138738A (en) Resin-sealed semiconductor device
JP2892343B2 (en) Epoxy resin composition
JP2899096B2 (en) Semiconductor device
JP3438965B2 (en) Semiconductor device
JPS62210656A (en) Resin sealed semiconductor device
JPH0567704A (en) Semiconductor device
JP2756342B2 (en) Epoxy resin composition for semiconductor encapsulation
JPS62115849A (en) Resin-sealed semiconductor device
JPS63245946A (en) Resin-sealed semiconductor device
JP3005328B2 (en) Epoxy resin composition for sealing
KR100655129B1 (en) Epoxy resin composition for encapsulating semiconductor device