JPS62223662A - Gas detecting device - Google Patents

Gas detecting device

Info

Publication number
JPS62223662A
JPS62223662A JP6661886A JP6661886A JPS62223662A JP S62223662 A JPS62223662 A JP S62223662A JP 6661886 A JP6661886 A JP 6661886A JP 6661886 A JP6661886 A JP 6661886A JP S62223662 A JPS62223662 A JP S62223662A
Authority
JP
Japan
Prior art keywords
temperature range
output
gas
carbon monoxide
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6661886A
Other languages
Japanese (ja)
Other versions
JPH06100560B2 (en
Inventor
Shigenori Okamura
繁憲 岡村
Yasunori Ono
靖典 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Osaka Gas Co Ltd
Original Assignee
Figaro Engineering Inc
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc, Osaka Gas Co Ltd filed Critical Figaro Engineering Inc
Priority to JP6661886A priority Critical patent/JPH06100560B2/en
Publication of JPS62223662A publication Critical patent/JPS62223662A/en
Publication of JPH06100560B2 publication Critical patent/JPH06100560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To detect inflammable gas and carbon monoxide at the same time and to shorten the detection time by providing a detecting device with an inflammable gas detecting means, an auxiliary detecting means, a temperature varying means, and a carbon monoxide detecting means. CONSTITUTION:The heating temperature of a gas sensor 2 which uses a metal oxide semiconductor which varies in resistance value according to gas is varied periodically between a high-temperature range and a low-temperature range. Then, the inflammable gas detecting means composed of a comparing circuit 24, a D-FF 26, and an LED 28 detects the inflammable gas from the output of the sensor in the high-temperature range. The auxiliary detecting means composed of a converter 30 and a D-FF 32, on the other hand, serves as the temperature varying means, and detects carbon monoxide with the output of the sensor 2 in the low-frequency range preliminarily to vary the heating temperature into the intermediate temperature between the high-temperature range and low-temperature range. The carbon monoxide detecting means consisting of a converter 34, amplifiers 36 and 38, a D-FF 40, and an LED 42 compensates the output of the sensor 2 in the low-temperature range with the intermediate temperature to detect carbon monoxide selectively.

Description

【発明の詳細な説明】 この発明は、ガス敏感性金属酸化物半導体を用いたガス
検出装置の改良に関し、特に、半導体の温度を高温域と
低温域とに周期的に変化させるガス検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a gas detection device using a gas-sensitive metal oxide semiconductor, and particularly to a gas detection device that periodically changes the temperature of the semiconductor between a high temperature range and a low temperature range. .

この発明は更に詳細には、1つのガスセンサで、メタン
やイソブタン等の可燃性ガスと、一酸化炭素とを同時に
検出するガス検出装置に関する。
More specifically, the present invention relates to a gas detection device that simultaneously detects flammable gases such as methane and isobutane and carbon monoxide using one gas sensor.

[従来技術] 特公昭53−43.320号は、Snow等の金属酸化
物半導体を用いたガスセンサを、高温域と低温域とに交
互に加熱し、低温域の出力から一酸化炭素を選択的に検
出する装置を開示している。発明者は、この装置の高温
域での出力を利用し、メタン等の可燃性ガスを、一酸化
炭素と同時に検出することを検討した。
[Prior art] Japanese Patent Publication No. 53-43.320 discloses that a gas sensor using a metal oxide semiconductor such as Snow is heated alternately to a high temperature range and a low temperature range, and carbon monoxide is selectively extracted from the output in the low temperature range. discloses a device for detecting The inventor considered using the output of this device in a high temperature range to detect flammable gases such as methane at the same time as carbon monoxide.

ところで可燃性ガスに付いては、検出のデッドタイムへ
の制限が有る。例えば都市ガス用ガス漏れ警報器の自主
検定規程は、1000〜12.500ppmのメタンに
対し’lを発すること、及び12,50hpm定してい
る。一方COの人体への影響は緩慢で、例えば100〜
400ppm程度のCOを5分以内に検出すればよい。
However, when it comes to combustible gases, there is a limit to the dead time of detection. For example, the self-inspection regulations for gas leak alarms for city gas stipulate that the alarm must be emitted for 1000 to 12,500 ppm of methane, and 12,50 hpm. On the other hand, the effect of CO on the human body is slow, e.g.
It is sufficient to detect approximately 400 ppm of CO within 5 minutes.

しかしながらセンサの温度を周期的に変化さUる場合、
加熱周期が検出速度の律速となり、検出を速やかに行う
には、周期を短縮する必要が有る。ここで加熱周期を短
縮すると、一酸化炭素と水素との相対感度か低下し、水
素による誤報が生じる。そして通常生じ得る水素の濃度
は11000pp以下である。即ち一酸化炭素の検出に
対する要請は、1100pp程度の一酸化炭素を110
00pp程度の水素と区別して検出することに存る。
However, if the temperature of the sensor is changed periodically,
The heating period determines the detection speed, and in order to perform detection quickly, it is necessary to shorten the period. If the heating period is shortened here, the relative sensitivity between carbon monoxide and hydrogen will decrease, causing false alarms due to hydrogen. The concentration of hydrogen that can normally be produced is 11,000 pp or less. In other words, the requirement for detecting carbon monoxide is to detect approximately 1100pp of carbon monoxide.
The purpose is to detect hydrogen separately from hydrogen of about 00 pp.

[発明の課題] この発明の課題は、 (1) 1つのガスセンサで、メタン、イソブタン等の
可燃性ガスと、一酸化炭素とを検出すること、(2)検
出周期を短縮すること、 (3)一酸化炭素を水素から選択的に検出することに在
る。
[Problems to be solved by the invention] The problems to be solved by this invention are as follows: (1) Detecting flammable gases such as methane and isobutane and carbon monoxide with one gas sensor; (2) shortening the detection period; (3) ) It consists in selectively detecting carbon monoxide from hydrogen.

[発明の構成] この発明のガス検出装置では、ガスにより抵抗値が変化
する金属酸化物半導体を用いたガスセンサの加熱温度を
、高温域と低温域とに交互に周期的に変化させ、高温域
におけるガスセンサの出力から可燃性ガスを検出する。
[Structure of the Invention] In the gas detection device of the present invention, the heating temperature of a gas sensor using a metal oxide semiconductor whose resistance value changes depending on the gas is alternately and periodically changed between a high temperature range and a low temperature range. Detect combustible gas from the output of the gas sensor.

次に低温域でのセンサの出力から、一酸化炭素を予備的
に検出し、その結果によりセンサ温度を高温域と低温域
との中間の温度に変更する。そして低温域の出力を中間
温度での出力により補償し、一酸化炭素を選択的に検出
する。
Next, carbon monoxide is preliminarily detected from the output of the sensor in the low temperature range, and based on the result, the sensor temperature is changed to a temperature intermediate between the high temperature range and the low temperature range. Then, the output in the low temperature range is compensated by the output at intermediate temperatures, and carbon monoxide is selectively detected.

[実施例コ 以下、メタンとCOとを検出対象として実施例を説明す
るが、用いるガスセンサに付いては既に種々の6のが知
られており、装置の各部分に付いて乙公知技術の範囲内
において自由に変更することが出来る。例えばガスセン
サには、金属酸化物半導体中に単一のヒータ兼用電極を
埋設し、この71i極の両端間の抵抗変化からガスを検
出するしのが有る。この場合、気体の吸着による半導体
の抵抗変化は、ヒータ兼用電極の並列抵抗の変化として
作用する。またこの場合、気体の吸着による半導体の熱
伝導度の変化は、センサの温度変化をもたらし、ヒータ
兼用電極の抵抗値を変化させる。
[Example 1] Hereinafter, an example will be explained using methane and CO as detection targets, but various types of gas sensors to be used are already known, and each part of the device is within the range of known technology. You can freely change it within. For example, there is a gas sensor in which a single heater electrode is embedded in a metal oxide semiconductor, and gas is detected from a change in resistance between both ends of this electrode 71i. In this case, a change in the resistance of the semiconductor due to adsorption of gas acts as a change in the parallel resistance of the heater electrode. Further, in this case, a change in the thermal conductivity of the semiconductor due to adsorption of gas causes a change in the temperature of the sensor, which changes the resistance value of the electrode that also serves as a heater.

さらにサーミスタにより、ガスセンサの周囲温度依存性
を補償して乙良い。またガスセンサとほぼ同等の温度依
存性を有する温度補償素子を設け、センサと直列にブリ
ッジ回路に組み込んでも良い。
Furthermore, a thermistor can be used to compensate for the dependence of the gas sensor on the ambient temperature. Furthermore, a temperature compensation element having almost the same temperature dependence as the gas sensor may be provided and incorporated in the bridge circuit in series with the sensor.

「実施例の構成」 図において、(2)はガスセンサ、(4)、(6)はヒ
ータ兼用の電極で、ここでは金属酸化物半導体として5
nOtに少量のPd触媒を添加したものを用いる。セン
サの温度は高温域の定常値で400℃、低温域の定常値
で80℃、中間温度の定常値で250℃である。なお低
温域での温度は室温としても良い。さらにエタノール等
の有機溶剤による誤報が問題となる場合、活性炭等のフ
ィルターを設けても良い。もち勿論半導体は、ZnOや
IntOs等の、他の半導体に代えても良い。
"Configuration of Example" In the figure, (2) is a gas sensor, and (4) and (6) are electrodes that also serve as heaters.
nOt with a small amount of Pd catalyst added is used. The temperature of the sensor is 400°C as a steady value in the high temperature range, 80°C as a steady value in the low temperature range, and 250°C as a steady value in the intermediate temperature range. Note that the temperature in the low temperature range may be room temperature. Furthermore, if false alarms caused by organic solvents such as ethanol are a problem, a filter such as activated carbon may be provided. Of course, the semiconductor may be replaced with other semiconductors such as ZnO or IntOs.

(8)は電源で、その出力(+Vcc)を装置全体の電
源とし、(10)は例えば90秒周期で動作するタイマ
で、最初の30秒間はハイ信号(I()を、次の30秒
間はロウ信号(L)を発し、最後の30秒間はM信号(
M)を発する。タイマ(10)は、ハイ信号(11)の
終了直前に高温域でのサンプリング信号(Sh)を、ロ
ウ信号(I7)の終了直前にサンプリング信号(S 1
)を発し、M信号(M)の期間内、好ましくはその終了
時付近にサンプリング信号(Sm)を発ずろ。なお各サ
ンプリング信号(Sh)、(S l)、(Sm)の発生
時には、信号(1−1)、(I7)、(M)はオフさせ
である。また信号(S l)の発生直後にはリセット信
号(Sl’)を発し、特別の条件がない限りタイマ(■
0)は信号(M)の期間を経由せず、信号(II)へと
戻る。
(8) is a power supply whose output (+Vcc) is used as the power supply for the entire device, and (10) is a timer that operates at a cycle of, for example, 90 seconds. emits a low signal (L), and for the last 30 seconds it emits an M signal (
M) is emitted. The timer (10) outputs the sampling signal (Sh) in the high temperature range immediately before the end of the high signal (11), and the sampling signal (S1) immediately before the end of the low signal (I7).
), and issue a sampling signal (Sm) within the period of the M signal (M), preferably near its end. Note that when the sampling signals (Sh), (Sl), and (Sm) are generated, the signals (1-1), (I7), and (M) are turned off. Immediately after the signal (Sl) is generated, a reset signal (Sl') is issued, and unless there are special conditions, the timer (■
0) returns to signal (II) without passing through the period of signal (M).

(【2)は3値電源からなるヒータ電源で、センサ(2
)を高温域、低温域、およびその中間温度の3つの温度
に加熱するためのものである。なお低温域におけるヒー
タ電源(12)の出力は0としても良い。
([2) is a heater power supply consisting of a three-value power supply, and the sensor ([2]
) to three temperatures: a high temperature range, a low temperature range, and an intermediate temperature. Note that the output of the heater power source (12) in the low temperature range may be 0.

(14)、(16)は2つのヒータ(4)、(6)を共
に加熱ずろためのダイオード、(18)は検出電圧(V
cc)をセンサ(2)に加えるためのアナログスイッチ
で、オア回路(20)を介し、信号(Sh)、(Sl)
、(Sm)により動作ずろ。(22)はアナログスイッ
チで、後述の温度変更信号(F)がない場合に、信号(
Sl’)によりタイマ(10)をリセットするためのら
のである。
(14) and (16) are diodes for heating the two heaters (4) and (6) together, and (18) is a detection voltage (V
cc) to the sensor (2), which connects the signals (Sh) and (Sl) via the OR circuit (20).
, (Sm). (22) is an analog switch, and when there is no temperature change signal (F) described later, the signal (
SL') to reset the timer (10).

(R1)は負荷抵抗(ここではIOKΩ)で、その印加
電圧(Vrl)をセンサ出力とする。センサ出力として
は他に乙、センサの電気伝導度、あるいは電圧(V r
l)や電気伝導度を0.5〜1.4乗、より好ましくは
0.6〜1.2乗程度べき乗したもの、等を用いること
も出来る。しかし負荷抵抗への印加電圧を用いるのが最
も簡易である。
(R1) is a load resistance (IOKΩ here), and its applied voltage (Vrl) is the sensor output. In addition to the sensor output, the electrical conductivity of the sensor or the voltage (V r
l) or electrical conductivity raised to the power of 0.5 to 1.4, more preferably 0.6 to 1.2, or the like can also be used. However, it is easiest to use the voltage applied to the load resistance.

(24)は比較回路、(26)は信号(Sh)により動
作するり、F  F、(28)はメタンの報知用り、E
Dで、これらにより可燃性ガス検出手段を構成する。
(24) is a comparison circuit, (26) is operated by the signal (Sh), F F, (28) is for methane notification, and E
In D, these constitute a combustible gas detection means.

(30)は比較回路、(32)は信号(S 1)により
動作するり、F、Fで、これらにより予備検出手段と、
温度変更手段とを兼用する。またり、F、F(32)の
出力を、温度変更信号(F)として用いる。
(30) is a comparison circuit, (32) is operated by the signal (S1), and F and F are used as preliminary detection means;
It also serves as a temperature change means. Also, the outputs of F and F(32) are used as the temperature change signal (F).

(34)はΔ/D・I)/Δコンバータで、信号(Sl
)時のセンサ出力を記D4゛る。なおコンバータ(34
)は任、はの記録要素に変更できる。(36)は抵抗(
R2)で定まるゲイン(ここでは0.6)を持った増幅
器、(38)はコンバータ(34)と増幅器(36)と
の出力の差を得るための増幅器、(40)はり、F、F
で信号(Sm)により動作する。
(34) is a Δ/D・I)/Δ converter, and the signal (Sl
) Record the sensor output at time D4. Note that the converter (34
) can be changed to the recording element of Ren and Ha. (36) is the resistance (
R2) is an amplifier with a gain (here 0.6), (38) is an amplifier for obtaining the difference in output between converter (34) and amplifier (36), (40) beams, F, F.
It is operated by the signal (Sm).

また(50)はCO報知用のLEDて、これらにより二
酸化炭素検出手段を構成する。
Further, (50) is an LED for CO notification, which constitutes carbon dioxide detection means.

(44)はオア回路、(46)はブザーで、D、F。(44) is an OR circuit, (46) is a buzzer, and D and F.

F(2G)のメタン検出信号や、D、F’、F(40)
の一酸化炭素検出信号により動作する。
Methane detection signal of F (2G), D, F', F (40)
It operates based on the carbon monoxide detection signal.

「センサの特性」 第3図に、400℃でのセンサ(2)の特性を示す。図
は80℃で定常状態に存るセンサを400℃に加熱した
際の、一酸化炭素、メタン、水素、空気への応答を示し
、周囲温度は20℃、湿度は60%である。なおセンサ
(2)には活性炭フィルターを装着し、エタノールの影
響を除いて有る。
"Sensor Characteristics" Figure 3 shows the characteristics of the sensor (2) at 400°C. The figure shows the response to carbon monoxide, methane, hydrogen, and air when a sensor in steady state at 80°C is heated to 400°C, at an ambient temperature of 20°C and humidity of 60%. The sensor (2) is equipped with an activated carbon filter to remove the influence of ethanol.

メタンへの応答は20秒以内に完了し、相対感度ら高い
The response to methane is complete within 20 seconds and has high relative sensitivity.

第4図に、400℃の定常状態から80℃ヘセンサ(2
)を冷却した際の特性を示す。なお測定条件は同様であ
る。
Figure 4 shows the sensor (2
) shows the characteristics when cooled. Note that the measurement conditions are the same.

低温での一酸化炭素や水素に対する応答(よ緩慢で、3
0秒程度の時間では出力は定常値に達tt−1’、一酸
化炭素と水素とを区別出来ない。また出力(ま、(CO
+0.trxt)の0.9〜0.7乗に比例する。
Response to carbon monoxide and hydrogen at low temperatures (slower, 3
In a time of about 0 seconds, the output reaches a steady value tt-1', and carbon monoxide and hydrogen cannot be distinguished. Also, the output (Ma, (CO
+0. trxt) to the 0.9 to 0.7 power.

第5図に、80°Cから250℃へ加熱温度を変更した
際の特性を示す。この温度での出力(よ水素に選択的で
、応答も速く、出力は水素濃度の約0゜8乗に比例する
FIG. 5 shows the characteristics when the heating temperature was changed from 80°C to 250°C. The output at this temperature (it is highly selective to hydrogen, the response is fast, and the output is approximately proportional to the hydrogen concentration to the 8th power).

「実施例の動作」 第2図により、装置の動作を説明する。センづ。“Example operation” The operation of the device will be explained with reference to FIG. Senzu.

(2)はハイ信号(1−Hにより30秒間高温に加熱さ
れ、ロウ信号(I、)により30秒間低温に保持さAt
、ガスが存在しない場合、リセ・ント信号(Sl’)l
こよりリセットされて高温加熱に戻る。
(2) is heated to a high temperature for 30 seconds by a high signal (1-H, and held at a low temperature for 30 seconds by a low signal (I,).
, if no gas is present, reset signal (Sl')l
This resets the temperature and returns to high-temperature heating.

、ノl斗FL/目)7+′−1放712!汁;斤1.−
 L上 イ旨呆(8h)により高温側出力を取り出し、
メタンの検出を行なう。
, Nolto FL/eyes) 7+'-1 release 712! Soup; 1 loaf. −
Take out the high-temperature side output by L top Ai (8h),
Performs methane detection.

次にロウ信号(L)の終了時付近で、信号(S l)に
より低温側出力を取り出し、比較回路(30)の基亭電
位と比較し、一酸化炭素の予備的検出を行う。ここでセ
ンサ出力が大きい場合、信号(F)によりタイマ(10
)のリセットを阻止し、センサ(2)を中間温度に加熱
し、水素濃度を検出する。
Next, near the end of the low signal (L), the low temperature side output is taken out by the signal (Sl) and compared with the base potential of the comparator circuit (30) to perform preliminary detection of carbon monoxide. If the sensor output is large, the timer (10
), the sensor (2) is heated to an intermediate temperature and the hydrogen concentration is detected.

そしてコンバータ(34)に記録した低温域の出力と、
増幅器(36)の中間温度での出力との差を、Vl−0
,6Vm として、増幅器(38)で求める。ここにVlは低温域
での出力、Vmは中温域での出力である。また0、6は
水素へのhli償係数で、第4図、第5図からの理論値
は0.7であるが、ここでは06とした。このようにし
て水素の影響を補償し、一酸化炭素を選択的に検出する
。らら論、補償係数はセンサの特性に応じ、自由に変更
できる。
And the output in the low temperature range recorded in the converter (34),
The difference between the output of the amplifier (36) at the intermediate temperature is Vl-0
, 6Vm, and is determined by the amplifier (38). Here, Vl is the output in the low temperature range, and Vm is the output in the medium temperature range. Further, 0 and 6 are hli compensation coefficients for hydrogen, and although the theoretical value from FIGS. 4 and 5 is 0.7, it is set to 06 here. In this way, the effects of hydrogen are compensated for and carbon monoxide is selectively detected. In general, the compensation coefficient can be changed freely according to the characteristics of the sensor.

ところで2つの出力を用いた場合の補償に付いては、種
々のものが公知であり、差に限るものではない。ここで
差を用いたのは、回路構成が最も簡単であること、及び
比を用いると水素と一酸化炭素との共存時に誤差が生じ
ることとによる。即ち低温域の出力と中温域の出力との
比は、同じCO濃度でも、COのみの場合に比べ、CO
とII、との共存時の方が小さい。また実施例ではセン
サ出力として、負荷抵抗への印加電圧を用いたが、これ
はセンサの電気伝導度等に代えてもよい。
By the way, various types of compensation are known when two outputs are used, and the compensation is not limited to the difference. The difference was used here because the circuit configuration is the simplest and because using the ratio would cause an error when hydrogen and carbon monoxide coexist. In other words, the ratio of the output in the low-temperature range to the output in the medium-temperature range is higher than that in the case of only CO, even at the same CO concentration.
It is smaller when and II coexist. Further, in the embodiment, the voltage applied to the load resistance is used as the sensor output, but this may be replaced by the electrical conductivity of the sensor or the like.

またセンサ出力には、これらの0.5〜1.4乗等のべ
き乗、より好ましくは046〜1.2乗等を用いても良
い。なお第4図、第5図に関して述べたように、センサ
出力はガス濃度の0.8乗等に比例し、べき乗を用いる
とガス濃度に比例した出力を用いて補償を行うことが出
来る。しかし、べき乗を行わない方が、B 単な回路を
用いることができ、かつ高蟲度の水素への補償を制限し
、検出を安全側にシフトさせることができ、好ましい。
Further, the sensor output may be a power of 0.5 to 1.4, more preferably 046 to 1.2. As described with reference to FIGS. 4 and 5, the sensor output is proportional to the gas concentration to the 0.8th power, and when a power is used, compensation can be performed using the output proportional to the gas concentration. However, it is preferable not to perform the exponentiation because a simple circuit can be used, and the compensation for highly sensitive hydrogen can be limited and the detection can be shifted to the safe side.

この実施例では、中温域への温度変更をタイマ(10)
のりセントを利用して行ったが、補助タイマを用いる等
の他の手段でも実施し得る。また中温域への温度変更の
条件は、種々変更できる。さらに中温域での出力をコン
バータ(34)等に記録し、低/話域での出力をアナロ
グのまま用いてム良い。比較回路(24)、(30)に
付いてら、これらを単一のものとし、猜僧電位を切り替
えろようにしても良い。また低温域、中温域、高温域の
各温度や、検出の周期等に付いては、センサの特性に応
じ適宜に変更できる。
In this embodiment, a timer (10) is used to change the temperature to the medium temperature range.
Although this was done using Noricent, other means such as using an auxiliary timer may also be used. Moreover, the conditions for changing the temperature to the intermediate temperature range can be changed in various ways. Furthermore, the output in the medium temperature range can be recorded in a converter (34), etc., and the output in the low/speech range can be used as analog. Regarding the comparator circuits (24) and (30), these may be made into a single circuit and the potentials may be switched. Further, the temperatures in the low temperature range, medium temperature range, and high temperature range, the detection cycle, etc. can be changed as appropriate depending on the characteristics of the sensor.

[発明の効果コ この発明では、メタン、イソブタン等の可燃性ガスと、
一酸化炭素とを同時に検出できると共に、一酸化炭素へ
の選択性を損なうことなく、検出時間を短縮できる。
[Effects of the invention] In this invention, flammable gases such as methane and isobutane,
It is possible to simultaneously detect carbon monoxide and shorten the detection time without impairing selectivity to carbon monoxide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の回路図、第2図はその波形図、第3図
〜第5図は実施例に用いるガスセンサの特性図である。 図に於いて、 (2) ガスセンサ、(4)、(6) ヒータ兼用電極
、(8)電源、 (10)タイマ、 (I2) ヒータ電源、 (24)、(30)比較回路、 (26)、(32)、(40)D、F、F。
FIG. 1 is a circuit diagram of the embodiment, FIG. 2 is a waveform diagram thereof, and FIGS. 3 to 5 are characteristic diagrams of the gas sensor used in the embodiment. In the figure, (2) gas sensor, (4), (6) heater electrode, (8) power supply, (10) timer, (I2) heater power supply, (24), (30) comparison circuit, (26) , (32), (40) D, F, F.

Claims (1)

【特許請求の範囲】[Claims] (1)ガスにより抵抗値が変化する金属酸化物半導体を
用いたガスセンサの加熱温度を、高温域と低温域とに交
互に周期的に変化させるようにしたガス検出装置におい
て、 高温域におけるガスセンサの出力から可燃性ガスを検出
するための、可燃性ガス検出手段と、低温域におけるガ
スセンサの出力から一酸化炭素を予備的に検出するため
の予備検出手段と、予備検出手段の出力により、ガスセ
ンサの加熱温度を高温域と低温域との中間の温度に変更
するための温度変更手段と、 低温域でのガスセンサの出力を中間の温度での出力によ
り補償し、一酸化炭素に選択的な出力を得るための一酸
化炭素検出手段、 とを設けたことを特徴とするガス検出装置。
(1) In a gas detection device in which the heating temperature of a gas sensor using a metal oxide semiconductor whose resistance value changes depending on the gas is alternately and periodically changed between a high temperature range and a low temperature range, the heating temperature of the gas sensor in the high temperature range is A combustible gas detection means for detecting combustible gas from the output, a preliminary detection means for preliminary detection of carbon monoxide from the output of the gas sensor in a low temperature range, and a preliminary detection means for detecting flammable gas from the output of the gas sensor. A temperature changing means for changing the heating temperature to an intermediate temperature between the high temperature range and the low temperature range, a means for compensating the output of the gas sensor in the low temperature range with an output at the intermediate temperature, and a selective output for carbon monoxide. A gas detection device comprising: carbon monoxide detection means for detecting carbon monoxide.
JP6661886A 1986-03-25 1986-03-25 Gas detector Expired - Lifetime JPH06100560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6661886A JPH06100560B2 (en) 1986-03-25 1986-03-25 Gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6661886A JPH06100560B2 (en) 1986-03-25 1986-03-25 Gas detector

Publications (2)

Publication Number Publication Date
JPS62223662A true JPS62223662A (en) 1987-10-01
JPH06100560B2 JPH06100560B2 (en) 1994-12-12

Family

ID=13321060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6661886A Expired - Lifetime JPH06100560B2 (en) 1986-03-25 1986-03-25 Gas detector

Country Status (1)

Country Link
JP (1) JPH06100560B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082083A (en) * 2000-07-03 2002-03-22 Fis Kk Gas detector
JP2005134311A (en) * 2003-10-31 2005-05-26 Fuji Electric Fa Components & Systems Co Ltd Semiconductor type gas sensor, and method for monitoring gas by use of semiconductor type gas sensor
JP2019524337A (en) * 2016-08-15 2019-09-05 ロイヤル・メルボルン・インスティテュート・オブ・テクノロジーRoyal Melbourne Institute Of Technology Gas sensor capsule

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082083A (en) * 2000-07-03 2002-03-22 Fis Kk Gas detector
JP2005134311A (en) * 2003-10-31 2005-05-26 Fuji Electric Fa Components & Systems Co Ltd Semiconductor type gas sensor, and method for monitoring gas by use of semiconductor type gas sensor
JP4585756B2 (en) * 2003-10-31 2010-11-24 富士電機システムズ株式会社 Semiconductor gas sensor and gas monitoring method using semiconductor gas sensor
JP2019524337A (en) * 2016-08-15 2019-09-05 ロイヤル・メルボルン・インスティテュート・オブ・テクノロジーRoyal Melbourne Institute Of Technology Gas sensor capsule

Also Published As

Publication number Publication date
JPH06100560B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
JPS6363857B2 (en)
JPS62223662A (en) Gas detecting device
US3818899A (en) Breath testing system with increased sensitivity
JPS62223661A (en) Gas detecting device
JP4754976B2 (en) Disconnection fault detection device for catalytic combustion type gas sensor
JPS62238452A (en) Gas detector
JPH06764Y2 (en) Gas detector
JP4248126B2 (en) Gas detection method and apparatus
JP2001188056A (en) Gas detector
JPH0532761Y2 (en)
JPH11304746A (en) Gas detecting device
JP2885581B2 (en) Temperature and humidity detection circuit
JP2004061214A (en) Combustible gas detecting apparatus
JPH0325266Y2 (en)
JPH0972872A (en) Contact combustion type composite gas detector
JP2881316B2 (en) CO gas detector
JPH03150454A (en) Ozone detecting device
JPH0648833Y2 (en) Detectors for organic solvent vapors in the semiconductor industry
KR960001746A (en) Gas sensor and its gas detection method
JPH0220682Y2 (en)
JPS61201149A (en) Sensor driving method
JPH02129525A (en) Hot body detecting device
JPH0420854A (en) Gas sensor
JPS6383573A (en) Coagulation preventive device
JPH0241741Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term