JPS62223469A - Ignition device for internal combustion engine - Google Patents

Ignition device for internal combustion engine

Info

Publication number
JPS62223469A
JPS62223469A JP6396686A JP6396686A JPS62223469A JP S62223469 A JPS62223469 A JP S62223469A JP 6396686 A JP6396686 A JP 6396686A JP 6396686 A JP6396686 A JP 6396686A JP S62223469 A JPS62223469 A JP S62223469A
Authority
JP
Japan
Prior art keywords
ignition
discharge
spark plug
engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6396686A
Other languages
Japanese (ja)
Inventor
Tatsuo Kobayashi
辰夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6396686A priority Critical patent/JPS62223469A/en
Publication of JPS62223469A publication Critical patent/JPS62223469A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

PURPOSE:To make it possible to prevent a spark plug from smoking with a simple circuit arrangement, by enabling electric discharge for purifying the spark plug at the termination of each intake stroke of an engine during cold operation or the like. CONSTITUTION:A microprocessor 11 delivers a control signal iGt1 with ignition timing during engine starting, hot partial load operation or high load operation, and a purifying electric discharge control signal iGt2 at the termination of each suction stroke during cold operation in accordance with several sensors 7 through 10 for intake-air pressure, rotating angle, water temperature and a starter. These control signals are distributed for distributed signals (a, b; c, d) for first and forth engine cylinders, and second and third engine cylinders through distributing circuits 13, 14, and are then delivered to an ignitor 2 through OR circuits 15, 16 to allow spark plugs 41-44 to perform electrical discharge for firing or purification. Thus, it is possible to prevent the spark plug from smoking without causing the high load characteristic and drivability of the engine during cold operation of the engine to deteriorate. Further, it is not necessary to provide an ignition coil or the like for every spark plug, thereby it is possible to simplify the circuit arrangement.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関の点火装置に関し、特にディストリビ
ュータを除去したディストリビュータレスイグニッショ
ン(DLI)において、吸気行程末期に点火プラグ清浄
用放電を行なうことにより、例えば点火プラグ熱価の変
更による高負荷時特性の悪化、リーン化による低温時の
ドライバビリティの悪化等を来すことなく点火プラグの
くすぶり対策を行った内燃機関のDL1点火装置に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an ignition system for an internal combustion engine, and in particular, in a distributor-less ignition (DLI) in which a distributor is removed, by performing spark plug cleaning discharge at the end of the intake stroke. The present invention relates to a DL1 ignition system for an internal combustion engine that takes measures against spark plug smoldering without causing deterioration of characteristics under high load due to changes in the heat value of the spark plug or deterioration of drivability at low temperatures due to lean conditions.

〔従来の技術及び発明が解決しようとする問題点〕従来
、内燃機関のプレイグニツシヨンあるいは失火対策とし
て点火プラグの熱価を適度に調整する方法がとられてい
る。プレイグニツシヨンは高負荷時において点火プラグ
の温度が上昇したときに起り易く、失火は低温時におい
て過fR?E1合気の燃焼によってカーボンが点火プラ
グに付着し、点火エネルギがそのカーボンを介して漏洩
するために発生する。そこで前述の熱価を調整してこれ
らの対策をとっているが、点火プラグの熱価はプレイグ
ニツシヨンなどによるエンジン破損を避けるために高負
荷時に重点をおき過ぎると、逆に低温時の点火プラグの
くずぷりが問題となる。
[Prior Art and Problems to be Solved by the Invention] Conventionally, as a countermeasure against pre-ignition or misfire in an internal combustion engine, a method has been used to appropriately adjust the heat value of a spark plug. Pre-ignition is likely to occur when the temperature of the spark plug rises under high load, and misfire occurs due to excessive fR at low temperatures. This occurs because carbon adheres to the spark plug due to the combustion of the E1 gas, and ignition energy leaks through the carbon. Therefore, these countermeasures are taken by adjusting the heat value mentioned above, but if too much emphasis is placed on the heat value of the spark plug at high loads to avoid engine damage due to pre-ignition, it may actually cause ignition at low temperatures. Plug crumbling is a problem.

従来、この点火プラグのくすぶりを対策するためには、
低温時のドライバビリティを悪化させるという不利はあ
るがカーボンの発生量を抑えるために混合気を薄くする
方法や点火プラグに付着したカーボンを長時間の放電で
焼き切る方法(例えば、特開昭57−68562)があ
る。後者の方法では放電の開始時期(いわゆる点火時M
)のみを上死点前40″CA付近まで早めて放電持続時
間を長くし放電エネルギによる熱エネルギによってカー
ボンを焼き切っている。この場合始動時には放電時間と
して約25m5ec必要としている。
Conventionally, in order to prevent this spark plug from smoldering,
Although it has the disadvantage of deteriorating drivability at low temperatures, there are methods to thin the air-fuel mixture to suppress the amount of carbon generated, and methods to burn off carbon attached to the spark plug with a long electric discharge (for example, JP-A-57- 68562). In the latter method, the discharge start timing (so-called ignition time M
) is advanced to around 40"CA before top dead center to lengthen the discharge duration and burn off the carbon with the thermal energy of the discharge energy. In this case, about 25 m5ec is required as a discharge time at the time of starting.

一方、前述の方法において点火時期を早めた場合には、
逆に失火率は点火時期を早める程増大する。そのため放
電持続時間を長くすると混合気に着火するタイミングが
大きく変動しトルク変動を招きエンジン回転数が変動す
るためドライバビリティが悪化する不利があった。また
実験によれば着火可能な雰囲気での不必要な長時間の放
電は点火プラグ近傍でのカーボンを生成し易く、このカ
ーボンがビス1−ンの上界と共に点火プラグのボケント
部に押し込まれ碍子部への堆積がさらに進行することが
判明した。さらに、非常に長い放電のために費やされる
電力も増大するためバッテリの消耗が著しく進行すると
いう問題もある。
On the other hand, if the ignition timing is advanced using the method described above,
Conversely, the misfire rate increases as the ignition timing is advanced. Therefore, if the discharge duration is increased, the timing at which the air-fuel mixture is ignited varies greatly, leading to torque fluctuations and engine speed fluctuations, which has the disadvantage of deteriorating drivability. Additionally, experiments have shown that unnecessary long-term discharge in an ignitable atmosphere tends to generate carbon near the spark plug, and this carbon is pushed into the bore of the spark plug along with the upper limit of the bis-bond, forming an insulator. It was found that the deposition in the areas further progressed. Furthermore, there is also the problem that the power consumed for extremely long discharge increases, resulting in a significant progress in battery consumption.

さらに従来の内燃機関では燃費向上の観点から部分負荷
では混合気のリーン化あるいは大量の「排気ガス再循環
」が行われるため点火装置の着火性が問題となる。この
ための対策として火花エネルギの向上(特に放電々流の
増大)が必要となるが、このような火花エネルギを増大
していくと点火プラグの電極消耗が著しくなり、また火
花エネルギを増大するためイグナイタのパワートランジ
スタの発熱も問題となる。
Furthermore, in conventional internal combustion engines, the ignitability of the ignition system becomes a problem because the mixture is made lean or a large amount of "exhaust gas recirculation" is performed under partial load in order to improve fuel efficiency. As a countermeasure for this, it is necessary to improve the spark energy (in particular, increase the discharge current), but increasing the spark energy will cause significant wear on the spark plug electrodes, and will also increase the spark energy. The heat generated by the igniter's power transistor also poses a problem.

〔問題点を解決するための手段および作用〕本発明は上
述の問題点を解消した内燃機関のDLI点火装置であっ
て、エンジンの各運転状態を検出する回転角センサ、吸
気圧力センサ、水温センサ、スタータを有し、これらか
らの検出信号によって各運転状態に応じて着火放電用制
御信号(着火信号)と清浄放電用制御信号(清浄信号)
を演算し出力する電子制御手段としてのマイクロプロセ
ッサと、この2つの制御信号を気筒別に分配する振分回
路と、この振分回路の出力を結合するOR回路と、これ
らのOR回路の出力に基づいて点火プラグに真正を発生
させるため点火コイルの一次電流をスイッチングするパ
ワートランジスタを内蔵したイグナイタにより構成され
、各振分回路により得られた前記着火信号と清浄信号と
を前記イグナイタ入力前にOR結合し、始動時、温間部
分負荷時、及び温間高負荷時には着火時期(圧縮行程末
M)のみイグナイタを作動させ、冷間時には吸気行程末
期にth浄放電を着火時期に着火放電を行うようにした
ことを特徴としている。
[Means and effects for solving the problems] The present invention is a DLI ignition system for an internal combustion engine that solves the above-mentioned problems, and includes a rotation angle sensor, an intake pressure sensor, and a water temperature sensor that detect each operating state of the engine. , a starter, and the detection signals from these generate a control signal for ignition discharge (ignition signal) and a control signal for clean discharge (clean signal) according to each operating state.
A microprocessor as an electronic control means that calculates and outputs a The ignition signal is composed of an igniter with a built-in power transistor that switches the primary current of the ignition coil in order to generate a true current in the ignition plug, and the ignition signal and the clean signal obtained by each distribution circuit are OR-combined before inputting to the igniter. However, during starting, warm partial load, and warm high load, the igniter is operated only at the ignition timing (M at the end of the compression stroke), and when cold, the ignition discharge is performed at the ignition timing with a TH clean discharge at the end of the intake stroke. It is characterized by the fact that

〔実施例〕〔Example〕

第1図は本発明に係る内燃機関の点火装置の一実施例ブ
ロック図である。本実施例は4気筒エンジンの場合であ
り、第1図において、1はエンジンを電子制御するため
のエンジン・コントロール・コンピュータ(E CU)
であり、マイクロプロセッサ11、波形整形回路12、
振分回路13および14、OR回路15および16によ
り構成される。エンジンに取付けられた回転角センサ8
からの検出43号が波形整形回路12を経てマイクロプ
ロセッサ11に、また吸気圧センサ7、水温センサ9、
スタータ10からの検出信号がΔ/Dコンバータ(図示
せず)を介してマイクロプロセッサ11にそれぞれ入力
される。尚、G、、G2は発生電圧の波形整形後の信号
、NEは回転数の信号である。
FIG. 1 is a block diagram of an embodiment of an ignition device for an internal combustion engine according to the present invention. This embodiment is a case of a four-cylinder engine, and in FIG. 1, 1 is an engine control computer (ECU) for electronically controlling the engine.
, a microprocessor 11, a waveform shaping circuit 12,
It is composed of distribution circuits 13 and 14 and OR circuits 15 and 16. Rotation angle sensor 8 installed on the engine
Detection number 43 is sent to the microprocessor 11 via the waveform shaping circuit 12, and also to the intake pressure sensor 7, water temperature sensor 9,
Detection signals from the starter 10 are respectively input to the microprocessor 11 via a Δ/D converter (not shown). Note that G, , G2 are signals after waveform shaping of the generated voltage, and NE is a signal of the rotational speed.

マイクロプロセッサ11では、まず水温センサ9とスタ
ータセンサ10からの検出信号により始動時かあるいは
冷間時か温間時かの判断が、所定のマツプにより行われ
、さらに吸気圧センサ7、回転角センサ8等から軽負荷
であるか高負荷であるか判断され、これらのデータに基
づいて着火放電のタイミングと清浄放電のタイミングを
演算し、着火放電用制御信号(iGt+)と清浄放電用
制御信号(iGtz)を出力する。この制御フローは後
述する第3図に詳細に示される。次にこれらの制御信号
iGt、および1Gt2は振分回路13および14に入
力され、iGt、はN[11,患4気筒用の振分信号a
と、患2、寛3気筒用の振分信号すに分けられ、1Gt
2は同様に寛1、患4および階2、階3用の振分信号C
1dに分けられる。これらの信号aおよびc、bおよび
dはOR回路15および16に入力される。OR回路1
5ではNb、I、Na4グループについてのiGt、で
あるaと、1Gt2であるCがOR結合され、イグナイ
タ2の処理回路21を介してパワートランジスタ23を
駆動し、点火コイル31の1吹型流eをスイッチングし
2次コイルに高電圧を発生させTh1気筒の点火プラグ
4Iと1lh4気筒の点火プラグ44で清浄用と着火用
の放電が行われる。
The microprocessor 11 first determines whether it is starting, cold time, or warm time based on the detection signals from the water temperature sensor 9 and the starter sensor 10, based on a predetermined map, and then determines whether it is starting time, cold time, or warm time based on the detection signals from the water temperature sensor 9 and the starter sensor 10. 8 etc., it is determined whether the load is light or high, and based on these data, the timing of ignition discharge and the timing of clean discharge are calculated, and the control signal for ignition discharge (iGt+) and the control signal for clean discharge ( iGtz). This control flow is shown in detail in FIG. 3, which will be described later. Next, these control signals iGt and 1Gt2 are input to distribution circuits 13 and 14, and iGt is N[11, distribution signal a for the affected four cylinders.
1Gt
Similarly, 2 is the distribution signal C for Hiro 1, Hiro 4, Floor 2, and Floor 3.
It is divided into 1d. These signals a, c, b and d are input to OR circuits 15 and 16. OR circuit 1
5, a which is iGt for the Nb, I, and Na4 groups and C which is 1Gt2 are OR-combined, and the power transistor 23 is driven through the processing circuit 21 of the igniter 2, and the one-blow type flow of the ignition coil 31 is e is switched to generate a high voltage in the secondary coil, and discharge for cleaning and ignition is performed in the spark plug 4I of the Th1 cylinder and the spark plug 44 of the 1lh4 cylinder.

一方、OR回路16では階2、階3気筒用の1Gtl 
と1Gt2が結合され、イグナイタ2の処理回路22を
介してパワートランジスタ24を駆動し、点火コイル3
2を介して寛2気筒と階3気筒の点火プラグ42 、4
3に清浄用放電と着火用放電の両方が交互に繰り返えさ
れる。
On the other hand, in the OR circuit 16, 1Gtl for the floor 2 and floor 3 cylinders is
and 1Gt2 are coupled to drive the power transistor 24 through the processing circuit 22 of the igniter 2, and the ignition coil 3
2 through Hiro 2 cylinder and Hiro 3 cylinder spark plug 42, 4
3, both the cleaning discharge and the ignition discharge are repeated alternately.

第2図は第1図装置の信号タイミングチャートである。FIG. 2 is a signal timing chart of the device shown in FIG.

第2図において、前述の如(iGt、は着火放電用制御
信号、1Gt2は清浄放電用制御信号であり、aおよび
bはiGt、の振分信号、Cおよびdは1Gt2の振分
信号、AはOR回路15の出力、BはOR回路16の出
力、eおよびfはコイル31および32の一次電流波形
である。
In FIG. 2, as described above (iGt is a control signal for ignition discharge, 1Gt2 is a control signal for clean discharge, a and b are distribution signals of iGt, C and d are distribution signals of 1Gt2, A is the output of the OR circuit 15, B is the output of the OR circuit 16, and e and f are the primary current waveforms of the coils 31 and 32.

尚、TDCは各気筒の上死点をあられす。また、各信号
の数字は各気筒番号を示し、斜線のあるパルスは清浄用
放電を示している。前述の如(、信号AはaとCのOR
波形であり、信号BはbとdのOR波形である。−吹型
流eおよびfの波形から明らかな如く、いずれの点火コ
イル31および32においても着火と清浄の両放電が交
互に行われている。すなわち、図から明らかな如く、着
火放電のタイミングは燃焼させるべき気筒の圧縮行程末
期において出力、燃費、排気エミッションなどから総合
的に適した時期として行われる。一方、清浄放電は吸入
行程末期であって本実施例では着火放電のタイミングよ
りも150°CA前に行うことによって演算時間の短縮
を図っている。本装置はDLI点火装置において使用し
ているため上記放電以外の排気行程末期と膨張行程末期
にも放電が行われるが、共に燃焼は終了しているため実
際の燃焼には悪影吉はない。
Note that TDC is the top dead center of each cylinder. Further, the numbers in each signal indicate the respective cylinder numbers, and the pulses with diagonal lines indicate cleaning discharge. As mentioned above (, signal A is the OR of a and C
The signal B is an OR waveform of b and d. - As is clear from the waveforms of blow mold flows e and f, both ignition and cleaning discharges are performed alternately in both ignition coils 31 and 32. That is, as is clear from the figure, the timing of the ignition discharge is set at the end of the compression stroke of the cylinder to be combusted, at a time that is comprehensively suited from the viewpoint of output, fuel consumption, exhaust emissions, etc. On the other hand, the clean discharge is performed at the end of the suction stroke, and in this embodiment, the calculation time is shortened by performing it 150° CA before the timing of the ignition discharge. Since this device is used in a DLI ignition system, discharge is also performed at the end of the exhaust stroke and the end of the expansion stroke other than the above-mentioned discharge, but since combustion has finished in both cases, there is no negative effect on actual combustion.

第3図は本発明に係る点火装置の制御フローチャートで
ある。このルーチンは割込みルーチンであり、まずスタ
ータスイッチ10がオンか否か判別され(ステップ1)
、オンの時は清浄用放電は行われず着火用放電1Gtl
 に入る(ステップ5゜6)。スタータスイッチ10が
オフの場合には温水センサ9によりエンジン冷却水温が
25℃以上か否か判別され(ステップ2)、10℃以上
のときは清浄用放電は行われず着火用放電に入る(ステ
ップ5,6)。水温が25℃以下のときは清浄用放電1
GL2のタイミング演算が行われ(ステップ3)、その
結果が振分回路・OR回路を経てイグナイタに出力され
る(ステップ4)。
FIG. 3 is a control flowchart of the ignition device according to the present invention. This routine is an interrupt routine, and first it is determined whether the starter switch 10 is on or not (step 1).
, when it is on, the cleaning discharge is not performed and the ignition discharge is 1Gtl.
(Steps 5 and 6). When the starter switch 10 is off, the hot water sensor 9 determines whether the engine cooling water temperature is 25°C or higher (Step 2), and if the temperature is 10°C or higher, the cleaning discharge is not performed and the ignition discharge is started (Step 5). , 6). Cleaning discharge 1 when the water temperature is below 25℃
Timing calculation of GL2 is performed (step 3), and the result is output to the igniter via the distribution circuit/OR circuit (step 4).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、内燃機関のDLI点火装置において、
冷間時において、吸気行程末期に点火プラグ清浄用放電
を行なうように制御することにより高負荷時特性の悪化
と低温時のドライバビリティの悪化を来すことなく点火
プラグのくすぶりを防止することができると共に、上記
制御が着火信号とYlfflff重用放電信号グナイタ
入力前でOR結合して行なうようにしたので、点火コイ
ル、パワートランジスタおよびECUを各点火プラグご
とに設ける必要はなくなりさらに逆流阻止用の高圧ダイ
オードが不要となるため大幅にコストダウンが図れる。
According to the present invention, in a DLI ignition device for an internal combustion engine,
By controlling the spark plug cleaning discharge to occur at the end of the intake stroke when the engine is cold, it is possible to prevent the spark plug from smoldering without deteriorating the characteristics at high loads or drivability at low temperatures. In addition, since the above control is performed by ORing the ignition signal and the Ylfflff heavy discharge signal before inputting the igniter, there is no need to provide an ignition coil, power transistor, and ECU for each spark plug, and the high voltage for preventing backflow is eliminated. Since no diode is required, costs can be significantly reduced.

一方、同時コイルにて着火、清浄が行われるため高圧コ
ードをY字結線して並列に設ける必要がないため信頼性
が大幅に向上し、電波障害を低減することができる。
On the other hand, since ignition and cleaning are simultaneously performed in the coil, there is no need to connect high-voltage cords in parallel in a Y-shape, which greatly improves reliability and reduces radio wave interference.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る内燃機関の点火装置の一実施例ブ
ロック図、 第2図は第1図装置の信号タイミングチャート、および
第3図は第1図装置の制御フローチャートである。 (符号の説明) 1・・・エンジン・コントロール・コンピュータ、2・
・・イグナイタ、    7・・・吸気圧センサ、8・
・・回転角センサ、   9・・・水温センサ、10・
・・スタータ、 11・・・マイクロプロセッサ、 12・・・波形整形回路、  13 、14・・・振分
回路、15 、16・・・OR回路、  21 、22
・・・処理回路、31 、32・・・点火コイル、 4
1〜44・・・点火プラグ。 第1図装置の信号タイミングチャート 第2図
FIG. 1 is a block diagram of an embodiment of the ignition system for an internal combustion engine according to the present invention, FIG. 2 is a signal timing chart of the system shown in FIG. 1, and FIG. 3 is a control flowchart of the system shown in FIG. (Explanation of symbols) 1...Engine control computer, 2.
...Igniter, 7.Intake pressure sensor, 8.
...Rotation angle sensor, 9...Water temperature sensor, 10.
...Starter, 11...Microprocessor, 12...Waveform shaping circuit, 13, 14...Distribution circuit, 15, 16...OR circuit, 21, 22
...processing circuit, 31, 32...ignition coil, 4
1-44...Spark plug. Figure 1 Signal timing chart of the device Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、内燃機関の点火装置において、エンジンの各運転状
態を検出する回転角センサ、吸気圧センサ水温センサ、
およびスタータセンサの検出信号に基づいて、冷間時に
あってはまず吸入行程末期に清浄用放電つづいて圧縮行
程末期に着火用放電を行なうように制御し、始動時、温
間部分負荷時および温間高負荷時にあっては圧縮行程末
期に着火用放電のみ行なうように制御する着火用および
清浄用放電制御信号を出力する電子制御手段と、前記着
火用および清浄用制御信号を所定の気筒別に分配する振
分手段と、前記振分手段の出力をOR結合するOR回路
と、前記OR回路の出力に基づいて点火プラグに高圧を
発生させるため点火コイルの一次電流をスイッチングす
るイグナイタとを具備することを特徴とする内燃機関の
点火装置。
1. In the ignition system of an internal combustion engine, a rotation angle sensor, an intake pressure sensor, and a water temperature sensor detect each operating state of the engine.
Based on the detection signal of the starter sensor, control is performed to first perform a cleaning discharge at the end of the suction stroke during cold operation, followed by an ignition discharge at the end of the compression stroke. electronic control means for outputting ignition and cleaning discharge control signals for controlling the ignition discharge only at the end of the compression stroke during high load; and distributing the ignition and cleaning control signals to predetermined cylinders. an OR circuit for ORing the outputs of the distribution means; and an igniter for switching the primary current of the ignition coil to generate high voltage in the spark plug based on the output of the OR circuit. An ignition system for an internal combustion engine characterized by:
JP6396686A 1986-03-24 1986-03-24 Ignition device for internal combustion engine Pending JPS62223469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6396686A JPS62223469A (en) 1986-03-24 1986-03-24 Ignition device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6396686A JPS62223469A (en) 1986-03-24 1986-03-24 Ignition device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS62223469A true JPS62223469A (en) 1987-10-01

Family

ID=13244545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6396686A Pending JPS62223469A (en) 1986-03-24 1986-03-24 Ignition device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS62223469A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997043544A1 (en) * 1996-05-16 1997-11-20 Ngk Spark Plug Co., Ltd. Ignition device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997043544A1 (en) * 1996-05-16 1997-11-20 Ngk Spark Plug Co., Ltd. Ignition device
US6244247B1 (en) 1996-05-16 2001-06-12 Ngk Spark Plug Co., Ltd. Ignition device for internal combustion engines

Similar Documents

Publication Publication Date Title
EP3514359B1 (en) Method to be performed by a control device for an engine, and engine
JP2004245173A (en) Knocking index value calculation device
JP4806998B2 (en) Internal combustion engine
JP2000291519A (en) Ignition device for internal combustion engine
US11802534B2 (en) Control device for internal combustion engine
US5722370A (en) Engine operation control system
JPS63295866A (en) Ignition timing control device for internal combustion engine
JP3090072B2 (en) Fuel injection control device for in-cylinder injection internal combustion engine
JPS62223469A (en) Ignition device for internal combustion engine
JP2006002683A (en) Control device for internal combustion engine
JPH0765558B2 (en) Abnormal combustion detection device and combustion control device for internal combustion engine
JPS61169666A (en) Ignition timing control device in internal-combustion engine
JP6142662B2 (en) Engine catalyst warm-up device and warm-up method
Czekala et al. Matching ignition system multi-spark calibration to the burn-rate of an engine to extend ignitability limits
JP3485838B2 (en) Ignition control device for internal combustion engine
JPS62223470A (en) Ignition device for internal combustion engine
JPS63186965A (en) Ignition timing control method for internal combustion engine
JPS62165577A (en) Ignition device for internal combustion engine
JPH11303721A (en) Ignition device for internal combustion engine
WO2022123861A1 (en) Internal combustion engine control device
JP2000337235A (en) Ignition control device of internal combustion engine
JPH0128308Y2 (en)
JP3525796B2 (en) Ignition control device for internal combustion engine
JP4911135B2 (en) Self-ignition combustion detector
JP2010138720A (en) Ignition control device for engine