JPS62223012A - Porous carbon article - Google Patents

Porous carbon article

Info

Publication number
JPS62223012A
JPS62223012A JP61065420A JP6542086A JPS62223012A JP S62223012 A JPS62223012 A JP S62223012A JP 61065420 A JP61065420 A JP 61065420A JP 6542086 A JP6542086 A JP 6542086A JP S62223012 A JPS62223012 A JP S62223012A
Authority
JP
Japan
Prior art keywords
graphite
porous carbon
expanded graphite
expanded
article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61065420A
Other languages
Japanese (ja)
Inventor
Kazuo Muramatsu
一生 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61065420A priority Critical patent/JPS62223012A/en
Publication of JPS62223012A publication Critical patent/JPS62223012A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a porous carbon article containing expanded graphite as an aggregate, having high electrical conductivity and mechanical strength and suitable as electrode material of fuel cell, secondary battery, etc., and absorbent having high adsorptivity. CONSTITUTION:An interlaminar graphite compound of sulfuric acid, nitric acid, alkali metal-orgranic molecule, etc., is synthesized e.g. from natural graphite or artificial graphite having high crystallinity. The interlaminar compound is quickly heated to a high temperature (about 1,000 deg.C) to obtain expanded graphite, which is used as an aggregate of the objective porous carbon article. The expanded graphite is preferably the one expanded >=10 times along the direction of C-axis of graphite and the content of the expanded graphite in the article is preferably 5-95wt%. The article has high electrical conductivity, strength and adsorptivity and suitable as an electrode material for fuel cell, secondary battery, etc., and an adsorbent.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多孔質炭素製品に関し、特に燃料電池、二次
電池等の電極材及び吸着材として使用するに好適な多孔
質)5素製品に係る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to porous carbon products, particularly porous carbon products suitable for use as electrode materials and adsorbents for fuel cells, secondary batteries, etc. Pertains to.

[従来の技術] 従来の多孔質炭素製品としては、次のものが知られてい
る。
[Prior Art] The following are known as conventional porous carbon products.

■炭素mIaをパルプ、バインダーと共に抄紙した炭素
lamペーパーや、炭素繊維製造用有機繊維を抄紙した
シートを樹脂含侵後、不活性ガス中で加熱炭化させたも
の(特開昭8O−122711)■熱硬化性樹脂に炭素
フィラー、有機発泡材を混合、加熱硬化成形した後、非
酸化性雰囲気下で焼成したもの(特開昭6O−3631
6)表1に従来法からの多孔質炭素製品の物性の一例を
示した。
■Carbon lam paper made from carbon mIa together with pulp and binder, or sheets made from organic fiber for manufacturing carbon fibers, which are impregnated with resin and then heated and carbonized in an inert gas (Japanese Patent Application Laid-open No. 8 O-122711) A thermosetting resin mixed with a carbon filler and an organic foam material, heated and cured, and then fired in a non-oxidizing atmosphere (Japanese Patent Application Laid-Open No. 6O-3631)
6) Table 1 shows an example of the physical properties of porous carbon products produced by the conventional method.

[発明が解決しようとする問題点] しかし、従来のかかる多孔?j炭素製品には次のような
欠点がある。
[Problems to be solved by the invention] However, what about the conventional porosity? j Carbon products have the following disadvantages.

■■とも炭素vanが多量に使用されている為高価であ
る。
Both ■ and ■ are expensive because they use a large amount of carbon vanes.

■■とも電気比抵抗が高い。■■Both have high electrical resistivity.

多孔質炭素製品を特に燃料電池、金属−ハロゲン電池の
電極として使用する場合、強度、通気性もさる事ながら
、高電気伝導性が要求される。上記従来品の前者の場合
、骨材である炭素繊維自身、結晶子サイズが小さいので
電気抵抗が大きい、その主繊維間、繊維−マトリックス
間の接触抵抗も犬きく、多孔質板としての固有電気抵抗
は、to−2Ω・cm程度である。
When porous carbon products are used particularly as electrodes for fuel cells and metal-halogen batteries, they are required to have not only strength and air permeability but also high electrical conductivity. In the former case of the above conventional products, the carbon fiber itself, which is the aggregate, has a small crystallite size, so it has a high electrical resistance, and the contact resistance between the main fibers and between the fibers and the matrix is also very low, and the inherent electrical resistance of the porous plate The resistance is about to-2 Ω·cm.

■の場合も、10−2Ω・cmの値は得られるが、30
00’ c近い温度での黒鉛化処理が必要である。
In the case of ■, a value of 10-2 Ω・cm can also be obtained, but 30
Graphitization treatment at a temperature close to 00'C is required.

■は連続孔が少ない為、通気性に乏しく、機械的強度が
小さく、電気比抵抗も大きい。
(2) has few continuous pores, so it has poor air permeability, low mechanical strength, and high electrical resistivity.

又、■■ともにその多孔質炭素製品を吸着材として用い
る場合、吸着能も不充分であった。
Furthermore, when the porous carbon product in both cases was used as an adsorbent, the adsorption capacity was insufficient.

[問題点を解決するための手段] 本発明者は前記従来技術の欠点を解消すべく種々の検討
を加えた結果、多孔質炭素製品に膨張黒鉛を含有させる
ことにより、従来の多孔質炭素製品の持つ欠点をことご
とく解消した高電気伝導性で機械的強度も大きく、又吸
着材として用いた場合高張″1ffEを有する多孔質炭
素製品を得ることができるとの知見にもとづき本発明を
完成したものである。
[Means for Solving the Problems] As a result of various studies in order to eliminate the drawbacks of the above-mentioned prior art, the present inventor has found that by incorporating expanded graphite into porous carbon products, the conventional porous carbon products can be improved. The present invention was completed based on the knowledge that it is possible to obtain a porous carbon product that has high electrical conductivity, high mechanical strength, and has a high tensile strength of 1ffE when used as an adsorbent, eliminating all the drawbacks of carbon. It is.

本発明は、膨張黒鉛を骨材として含有することを特徴と
する多孔質炭素製品である。炭、長粒を、H2S Oa
 、 HN 03 、 フル力り金属−有機分子等の黒
鉛層間化合物とし、これを1000”0程度に急熱した
もので、熱分解により、黒鉛C軸方向に無数のクラック
を生じ、原寸の300倍程度に膨張化した物であり、黒
鉛のC軸方向に沿って無数のクラックを生じたハニカム
構造を有している。加工比重は0.1以下であり、炭素
繊維等に比べて電気伝導性も大きい。
The present invention is a porous carbon product characterized by containing expanded graphite as an aggregate. Charcoal, long grains, H2S Oa
, HN 03, a fully stressed graphite intercalation compound of metal-organic molecules, etc., which is rapidly heated to about 1000"0. Due to thermal decomposition, countless cracks occur in the direction of the graphite C axis, and the size is 300 times the original size. It has a honeycomb structure with countless cracks along the C-axis direction of graphite.The processing specific gravity is less than 0.1, and it has higher electrical conductivity than carbon fiber etc. It's also big.

膨張黒鉛を用いることにより、成形体中に黒鉛のC軸方
向に沿って無数のクラックを生じたハニカム構造による
空隙ができること、膨張黒鉛自体も電気伝導性が良好な
こととあいまって前述したような高電気伝導性で且つ高
強度の高吸着能の多孔I!1炭素製品が得られるものと
推定される。
By using expanded graphite, voids are formed in the compact due to the honeycomb structure with countless cracks along the C-axis direction of the graphite, and the expanded graphite itself has good electrical conductivity, which leads to the above-mentioned problems. Porous I with high electrical conductivity, high strength and high adsorption capacity! It is estimated that a 1 carbon product will be obtained.

本発明において用いられる膨張黒鉛は、膨張黒鉛であれ
ば特に限定されないが、例えば天然黒鉛、キッシュ黒鉛
、及び結品性の良好な人造黒鉛を原料として、H2S0
a  、HNO3、FeCl3  。
The expanded graphite used in the present invention is not particularly limited as long as it is expanded graphite.
a, HNO3, FeCl3.

アルカリ金属−有機分子等の黒鉛層間化合物を合成し、
これを300〜3000℃の高温で急熱することにより
得られる膨張黒鉛等が供される。
Synthesize graphite intercalation compounds such as alkali metal-organic molecules,
Expanded graphite etc. obtained by rapidly heating this at a high temperature of 300 to 3000°C is provided.

又、本発明者が種々検討した結果、膨張の度合について
は黒鉛のC軸方向に沿って原寸の10倍以上に膨張した
ものを用いることが望ましいとの結論に達した。従って
、本発明においては骨材として膨張黒鉛を用いるが、膨
張黒鉛として膨張率10倍以上のものを用いることが望
ましい、vM張の度合が10倍に満たない膨張黒鉛を用
いた場合、多孔質製品として必要とされる多孔度が不充
分となり、多孔質製品として具備すべき他の特性b1そ
こなわれる傾向にあるので、多孔度を上げるための何ら
かの手段を講する必要があり、工程等の増加によるコス
トアップになり実用的でない。
Further, as a result of various studies conducted by the present inventors, the inventor has come to the conclusion that it is desirable to use graphite that has expanded to 10 times or more of its original size along the C-axis direction of the graphite. Therefore, in the present invention, expanded graphite is used as the aggregate, but it is preferable to use expanded graphite with an expansion rate of 10 times or more. The porosity required for the product will be insufficient, and other characteristics b1 that porous products should have will tend to be damaged. Therefore, it is necessary to take some measures to increase the porosity, and the process etc. This increase in cost increases and is not practical.

なお、1彫張黒鉛は5〜95重量%の範囲で含有するこ
とが好ましい、このように好ましい範囲の上限を95重
量%とじたのは、成型体としての構造を保つために5重
量%のマトリックス成分が必要な為である。
In addition, it is preferable to contain 1-carved graphite in the range of 5 to 95% by weight.The reason why the upper limit of the preferable range is set at 95% by weight is to maintain the structure of the molded product. This is because a matrix component is required.

なお、40重量%以上とする場合には、気孔率、ヨウ素
吸着能が一層向上するのでこの範囲がより好ましい。
Note that when the content is 40% by weight or more, the porosity and iodine adsorption ability are further improved, so this range is more preferable.

なお、増粘剤は公知の有機増粘材を用いればよい、たと
えば、メチルセルロース、カルボキンメチルセルロース
、カルボキシメチルスターチ、ヒドロキシプロピルセル
ローズ、リグニンスルホン酸ナトリウム、リグニンスル
ホン酸カルシウム、ポリビニルアルコール、ポリアクリ
ル酸エステル、ポリメタクリル酸エステル、グアーガム
、アルギン酸塩を用いればよい。
Note that known organic thickeners may be used as the thickener, such as methyl cellulose, carboxyl methyl cellulose, carboxymethyl starch, hydroxypropyl cellulose, sodium lignin sulfonate, calcium lignin sulfonate, polyvinyl alcohol, polyacrylic ester. , polymethacrylic acid ester, guar gum, and alginate may be used.

なお1本発明の製造は、たとえば、膨張率10倍以上の
膨張黒鉛と、熱硬化性樹脂、増粘剤とを混練し、所要形
状に成形硬化処理・焼成を行なえばよい。
Note that the present invention can be manufactured by, for example, kneading expanded graphite with an expansion rate of 10 times or more, a thermosetting resin, and a thickener, and then molding, hardening, and baking the mixture into a desired shape.

ここに、所要形状とは電極棒等の炭素製品形状である。Here, the required shape is the shape of a carbon product such as an electrode rod.

炭素製品の形状としても特に限定されず、たとえば電極
として用いる場合棒状、板状等使用目的にあわせ適宜選
択すれば良い、吸着材として用いる場合も同様でハニカ
ム状、糸状集積体、ペレット状等適宜選択すれば良い。
The shape of the carbon product is not particularly limited, and for example, when used as an electrode, it may be appropriately selected according to the purpose of use, such as a rod shape or a plate shape, and when used as an adsorbent, it may be suitably selected such as a honeycomb shape, a thread-like aggregate, a pellet shape, etc. All you have to do is choose.

焼成条件としては、昇温速度は5〜b hrが望ましく、焼成温度は700〜1500℃が望ま
しい。
As for the firing conditions, the heating rate is preferably 5 to 1500C, and the firing temperature is preferably 700 to 1500C.

本発明において多孔質炭素製品としての性能を更に高め
るため必要に応じ更に、炭素m維、カーボンブラック、
金属炭化物(たとえば炭化ケイ素、炭化チタン、炭化タ
ングステン)等を適宜添加することもできる。
In the present invention, in order to further improve the performance of the porous carbon product, carbon fibers, carbon black,
Metal carbides (for example, silicon carbide, titanium carbide, tungsten carbide), etc. can also be added as appropriate.

[発明の実施例] 以下本発明を実施例にもとづいて説明する。[Embodiments of the invention] The present invention will be explained below based on examples.

(実施例1) 第1表に示す配合に混練し、EI板に成型後、硬化処理
を行い、100℃/ h rの昇温速度で1200℃(
試料No、1〜5)と1000℃(試料No6〜8)に
焼成した。
(Example 1) The composition shown in Table 1 was kneaded, and after being molded into an EI board, it was hardened and heated to 1200°C at a heating rate of 100°C/hr.
Samples Nos. 1 to 5) and 1000° C. (samples Nos. 6 to 8) were fired.

得られた多孔質炭素板中の膨張黒鉛量(重量%)を第1
表に併記する。
The amount of expanded graphite (wt%) in the obtained porous carbon plate was
Also listed in the table.

なお、用いた膨張黒鉛はいずれも黒鉛のC較方向に沿っ
て原寸の300倍に膨張したものである。
The expanded graphite used was expanded to 300 times its original size along the C direction of graphite.

得られた多孔質炭素板(寸法1000 m m XLO
OOmmXl、5mm厚さ)についての性能調査結果を
第2表に示す。
The obtained porous carbon plate (dimensions 1000 mm XLO
Table 2 shows the performance investigation results for OOmmXl, 5mm thickness).

なお、I2吸着能テストはJISK1474−1975
に従って行なった。すなわち1、試料0.5gを100
m1のメスフラスコに入れ、水を加えて100m1とし
、これにl/Nヨウ素溶液50 m !;Lを加え15
分間振とう後、上ズミ液を1/1 ONチオ硫酸ソーダ
溶液で滴定し、試料1g出り何mgのヨウ素が吸着され
たかを算出する。
The I2 adsorption capacity test is based on JISK1474-1975.
I followed the instructions. That is, 1, 0.5g of sample is 100
ml volumetric flask, add water to make 100 ml, and add 50 ml of l/N iodine solution to this! ;Add L and 15
After shaking for a minute, titrate the upper filtrate with 1/1 ON sodium thiosulfate solution and calculate how many mg of iodine is adsorbed in 1 g of sample.

焼成後の多孔質炭素板中に含まれる膨張黒鉛の重量比が
10〜95wt%の範囲で、従来品と比較して電気抵抗
で1/10、ヨウ素吸着能で7倍以上の性能が得られた
When the weight ratio of expanded graphite contained in the porous carbon plate after firing is in the range of 10 to 95 wt%, performance is obtained that is 1/10 in electrical resistance and more than 7 times in iodine adsorption capacity compared to conventional products. Ta.

特に試料No4.5は、天然黒鉛を添加しているため電
気抵抗が更に低くなっている。
In particular, sample No. 4.5 has an even lower electrical resistance due to the addition of natural graphite.

試料No6.7で得られた多孔質炭素板中には、ナトリ
ウムが非常に均一に分散して存在しており、この影響で
高いヨウ素吸着能が得られた。
In the porous carbon plate obtained in sample No. 6.7, sodium existed in a very uniformly dispersed manner, and due to this influence, a high iodine adsorption capacity was obtained.

試料No8で得られた多孔質炭素板中には白金が、試料
No6.7と同様に均一に分散しており平均粒子径は2
0Å以下であった。
Platinum was uniformly dispersed in the porous carbon plate obtained in sample No. 8, similar to sample No. 6.7, and the average particle size was 2.
It was 0 Å or less.

試料No2の多孔質炭素板の写真の一例を第1図から第
3図に示した。膨張黒鉛の持つハニカム構造を空隙間と
して有効に利用していることがわかる。
Examples of photographs of the porous carbon plate of sample No. 2 are shown in FIGS. 1 to 3. It can be seen that the honeycomb structure of expanded graphite is effectively used as voids.

(実施例2) 実施例1の試料NO12の配合について膨張黒鉛の膨張
度合の異なるものを用いて混練し、薄板に成形後硬化処
理を行い、100℃/ h rの昇温速度で1200℃
に焼成した。
(Example 2) Regarding the formulation of sample No. 12 of Example 1, expanded graphite with different degrees of expansion was kneaded, and after being formed into a thin plate, a hardening treatment was performed, and the mixture was heated to 1200°C at a heating rate of 100°C/hr.
It was fired.

膨張黒鉛の膨張度および得られた多孔質炭素板について
の性能調査結果を第3表に示す。
Table 3 shows the expansion degree of expanded graphite and the performance investigation results for the obtained porous carbon plate.

第3表から明らかなように膨張度が大きくなると工2吸
着旋は上がり、曲げ強度は下がる傾向にある。吸着能、
気孔率(ガス透過性)の而からは膨張度100倍以1が
望ましい。
As is clear from Table 3, as the degree of expansion increases, the adsorption rotation of the steel tends to increase and the bending strength tends to decrease. adsorption capacity,
From the viewpoint of porosity (gas permeability), the degree of expansion is preferably 100 times or more.

又、強度を考慮した場合には膨張度400倍程度以下と
することが望ましい。
Further, when considering strength, it is desirable that the degree of expansion is about 400 times or less.

[用途] 本発明に係わる多孔質炭素製品の用途は特に限定されな
いが、その特性を生かして燃料電池や二次電池等の電極
材や、吸着材として好適である。
[Application] The use of the porous carbon product according to the present invention is not particularly limited, but by taking advantage of its characteristics, it is suitable as an electrode material for fuel cells, secondary batteries, etc., and as an adsorbent.

■燃料電池、二次電池等の電極として使用する場合、電
極の電気抵抗によるジュール熱損は下式%式% Q=i2RQ:ジュール熱損[J] i:電流    [A] R:抵抗値   [Ω] 故に本発明で得られた多孔質炭素板を電極として使用す
る場合、従来品と比較してジュール熱損は1/10に低
下させることができる。
■When used as an electrode for fuel cells, secondary batteries, etc., the Joule heat loss due to the electrical resistance of the electrode is calculated using the following formula (%): Q=i2RQ: Joule heat loss [J] i: Current [A] R: Resistance value [ [Ω] Therefore, when the porous carbon plate obtained by the present invention is used as an electrode, the Joule heat loss can be reduced to 1/10 compared to the conventional product.

■通常品と比較して、例えば水中でのI2  。■Compared to regular products, for example, I2 in water.

C12等の吸着能が格段に優れている。Na−黒鉛−T
HF層間化合物からの膨張黒鉛を使用した多孔質炭素板
は、特に吸着衡が優れている。(実流側INO,6,7
) ■実施例8で得られた多孔質炭素板中には、非常に微少
径の白金が分散して存在している。
The adsorption ability of C12 etc. is extremely excellent. Na-graphite-T
Porous carbon plates using expanded graphite from HF intercalation compounds have particularly good adsorption balance. (Actual flow side INO, 6, 7
) (2) In the porous carbon plate obtained in Example 8, platinum with extremely small diameters exists dispersedly.

リン酸型燃料電池の電極には、多孔質炭素板の片面に触
媒として白金の微粒子を塗布した物が使われているが、
実際に長時間電池を運転する間に白金粒子が凝集化し、
触媒使が失活するといった問題点がある0本発明品中で
は白金が、微粒(20A以下)かつ、均一に分散して存
在しており、長期の電池作動中にも凝集化することなく
、触媒簡が維持される。
The electrodes of phosphoric acid fuel cells use porous carbon plates coated with fine platinum particles as a catalyst on one side.
In fact, while operating a battery for a long time, platinum particles aggregate,
There is a problem that the catalyst is deactivated.In the product of the present invention, platinum is present in fine particles (20A or less) and uniformly dispersed, and does not agglomerate even during long-term battery operation. Catalyst strips are maintained.

[発明の効果] 本発明は以上のように構成したので、高電気伝導性、高
強度、かつ吸着剤として使用可能な多孔質の炭素製品を
提供することができる。
[Effects of the Invention] Since the present invention is configured as described above, it is possible to provide a porous carbon product that has high electrical conductivity, high strength, and can be used as an adsorbent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第3図までは多孔質炭素製品のミクロ組織写
真である。 第1図 ×50 ε”i′;2図 第3図 x”000
Figures 1 to 3 are microstructure photographs of porous carbon products. Figure 1 x 50 ε”i′; Figure 2 Figure 3 x”000

Claims (3)

【特許請求の範囲】[Claims] (1)膨張黒鉛を骨材として含有することを特徴とする
多孔質炭素製品。
(1) A porous carbon product characterized by containing expanded graphite as an aggregate.
(2)含有される膨張黒鉛の膨張率が10倍以上である
特許請求の範囲第(1)項記載の多孔質炭素製品。
(2) The porous carbon product according to claim (1), wherein the expanded graphite contained has an expansion coefficient of 10 times or more.
(3)含有される膨張黒鉛の比率が5〜95重量部であ
る特許請求の範囲第(1)項又は第(2)項記載の多孔
質炭素製品。
(3) The porous carbon product according to claim (1) or (2), wherein the proportion of expanded graphite contained is 5 to 95 parts by weight.
JP61065420A 1986-03-24 1986-03-24 Porous carbon article Pending JPS62223012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61065420A JPS62223012A (en) 1986-03-24 1986-03-24 Porous carbon article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61065420A JPS62223012A (en) 1986-03-24 1986-03-24 Porous carbon article

Publications (1)

Publication Number Publication Date
JPS62223012A true JPS62223012A (en) 1987-10-01

Family

ID=13286546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61065420A Pending JPS62223012A (en) 1986-03-24 1986-03-24 Porous carbon article

Country Status (1)

Country Link
JP (1) JPS62223012A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913949A (en) * 1987-07-29 1990-04-03 Basf Aktiengesellschaft Planar, multilayered, laser-optical recording material
JP2004244311A (en) * 2003-02-13 2004-09-02 Samsung Electronics Co Ltd Carbon molecular sieve and its producing method
JP2005071635A (en) * 2003-08-26 2005-03-17 Ibiden Co Ltd Porous graphite plate, manufacturing method of porous graphite plate, and separator for polyelectrolyte fuel cell
US7185511B2 (en) * 2000-09-23 2007-03-06 Chemviron Carbon Limited Composition and apparatus for transferring heat to or from fluids
WO2014148649A1 (en) * 2013-03-22 2014-09-25 新日鉄住金マテリアルズ株式会社 Carbon plate, and composite carbon plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673612A (en) * 1979-11-14 1981-06-18 Hitachi Chem Co Ltd Manufacture of carbon material
JPS59154771A (en) * 1983-02-24 1984-09-03 Toshiba Corp Fuel cell
JPS59169077A (en) * 1983-03-17 1984-09-22 Toshiba Corp Fuel cell
JPS6012672A (en) * 1983-06-30 1985-01-23 Hitachi Chem Co Ltd Separating plate for fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673612A (en) * 1979-11-14 1981-06-18 Hitachi Chem Co Ltd Manufacture of carbon material
JPS59154771A (en) * 1983-02-24 1984-09-03 Toshiba Corp Fuel cell
JPS59169077A (en) * 1983-03-17 1984-09-22 Toshiba Corp Fuel cell
JPS6012672A (en) * 1983-06-30 1985-01-23 Hitachi Chem Co Ltd Separating plate for fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913949A (en) * 1987-07-29 1990-04-03 Basf Aktiengesellschaft Planar, multilayered, laser-optical recording material
US7185511B2 (en) * 2000-09-23 2007-03-06 Chemviron Carbon Limited Composition and apparatus for transferring heat to or from fluids
JP2004244311A (en) * 2003-02-13 2004-09-02 Samsung Electronics Co Ltd Carbon molecular sieve and its producing method
US7718570B2 (en) 2003-02-13 2010-05-18 Samsung Sdi Co., Ltd. Carbon molecular sieve and method for manufacturing the same
JP4585773B2 (en) * 2003-02-13 2010-11-24 三星エスディアイ株式会社 Carbon molecular body and method for producing the same
JP2005071635A (en) * 2003-08-26 2005-03-17 Ibiden Co Ltd Porous graphite plate, manufacturing method of porous graphite plate, and separator for polyelectrolyte fuel cell
WO2014148649A1 (en) * 2013-03-22 2014-09-25 新日鉄住金マテリアルズ株式会社 Carbon plate, and composite carbon plate
JP6058786B2 (en) * 2013-03-22 2017-01-11 新日鉄住金マテリアルズ株式会社 Carbon plate and composite carbon plate
US9718688B2 (en) 2013-03-22 2017-08-01 Nippon Steel & Sumikin Materials Co., Ltd. Carbon plate and composite carbon plate

Similar Documents

Publication Publication Date Title
KR101963139B1 (en) Producing method of carbon aerogel and carbon aerogel made by the same
Murugan et al. Recent trends in the applications of thermally expanded graphite for energy storage and sensors–a review
JP5826405B2 (en) Nanosilicon carbon composite material and method for preparing the same
JP5351228B2 (en) Silica-carbon composite porous body and method for producing the same
Al Ja’farawy et al. A review: the development of SiO 2/C anode materials for lithium-ion batteries
JP2005516879A (en) Method for producing self-supporting activated carbon structure
CN106783230A (en) A kind of titanium carbide growth in situ CNTs three-dimensional composite materials and preparation method thereof
CN108039465A (en) Combination electrode material and its preparation method and application
CN105161310A (en) Graphene-based composite electrode material and preparation method thereof
CN108217648A (en) A kind of compound porous Carbon Materials and preparation method and application
CN108336317A (en) A kind of Silicon-carbon composite material for lithium ion battery and preparation method thereof
CN111668453A (en) Flexible self-supporting positive electrode material and preparation method and application thereof
CN106115697B (en) A kind of preparation method of active carbon of the surface rich in petal-shaped graphene
CN107742583A (en) A kind of wooden based combined electrode material and preparation method thereof
CN107903878B (en) Fused salt graphite composite material and preparation method thereof
Yuan et al. Polyacrylonitrile-based gel polymer electrolyte filled with Prussian blue forhigh-performance lithium polymer batteries
JPS62223012A (en) Porous carbon article
JP3616255B2 (en) Separator member for polymer electrolyte fuel cell and method for producing the same
WO2016169034A1 (en) Porous conductive graphene/carbon nanohorn composite material, preparation method and use thereof
CN113066984A (en) Conductive paste and preparation method and application thereof
CN108630917A (en) A kind of Si@C@fibrous carbon@C composites and its preparation method and application
JP2004214072A (en) Carbon fiber sheet and its manufacturing method
JPH05103979A (en) Molded adsorbent and its production
Molenda et al. Morphology and electrical conductivity of carbon nanocoatings prepared from pyrolysed polymers
JPH11147707A (en) Activated carbon honeycomb structure and its production