JPS62222161A - Flaw detector by means of plane wave - Google Patents
Flaw detector by means of plane waveInfo
- Publication number
- JPS62222161A JPS62222161A JP61064884A JP6488486A JPS62222161A JP S62222161 A JPS62222161 A JP S62222161A JP 61064884 A JP61064884 A JP 61064884A JP 6488486 A JP6488486 A JP 6488486A JP S62222161 A JPS62222161 A JP S62222161A
- Authority
- JP
- Japan
- Prior art keywords
- probe
- wave
- plate
- waves
- plate wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000523 sample Substances 0.000 claims abstract description 36
- 238000001514 detection method Methods 0.000 claims abstract description 30
- 230000007547 defect Effects 0.000 claims description 38
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 9
- 238000002592 echocardiography Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 4
- 238000010408 sweeping Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 21
- 238000010586 diagram Methods 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000011326 mechanical measurement Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000033458 reproduction Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
〔浬業上の利用分野〕
この発明は、板波(薄い板状の弾性体中を伝搬する波)
を用いて薄板の欠陥を非破壊的に検量する板波探傷装置
に関するものである。[Detailed description of the invention] [Field of application in the field of transportation] This invention is directed to plate waves (waves propagating in a thin plate-shaped elastic body).
The present invention relates to a plate wave flaw detection device that non-destructively measures defects in thin plates using .
第5図は、従来の板波探傷装置を示すブロック図である
。図において、(1)は被検材、(5)は可変角探触子
、(2)、[3)、(4)シュ可変角探触子(5)を構
成する圧電素子、可動シュー、固定ン・ニー、(6)は
可変角探触子(5)の圧電素子(2)を電気的に駆動す
るためのパルサ、(7)は圧電素子(2ンが検出し、電
気に変換した信号を増幅する増幅器、(8)は増幅器(
7)の出力信号を検波する検波器、(9)は検波器(8
)で検波された信号を表示する表示器、Fは被検材1内
の欠陥。FIG. 5 is a block diagram showing a conventional plate wave flaw detection device. In the figure, (1) is the material to be tested, (5) is the variable angle probe, (2), [3), (4) the piezoelectric element constituting the variable angle probe (5), the movable shoe, The fixed knee, (6) is a pulser for electrically driving the piezoelectric element (2) of the variable angle probe (5), and (7) is the piezoelectric element (detected by the piezoelectric element (2) and converted into electricity. An amplifier that amplifies the signal, (8) is an amplifier (
7) is a detector that detects the output signal of the detector (9) is a detector that detects the output signal of the detector (8).
), F is a defect in the material to be inspected 1.
θiは板波Wの入射角、θtは屈折角である。θi is the incident angle of the plate wave W, and θt is the refraction angle.
次に動作について説明する。可変角探触子(5)は、固
定シュー(4)、可動シュー(3)と圧電素子(2)と
から成り、圧電素子(2)は可動ンユー(3)に接着さ
れていて、固定シュー(4)と音響的に結合(例えば接
触面に油を浸入)されたま一回転できるようになってい
る。Next, the operation will be explained. The variable angle probe (5) consists of a fixed shoe (4), a movable shoe (3) and a piezoelectric element (2), the piezoelectric element (2) is glued to the movable tube (3), and the fixed shoe (4) and is acoustically coupled (for example, by infiltrating the contact surface with oil) so that it can rotate once.
バルブ(6)は、一定周期毎にパルスを発生し、圧電素
子(2)に、高電圧パルスを与え、圧電素子(2)の有
する固有周波数で振動させる。この振動は、超音波とし
て可動シェー(3)を通り固定シュー(4)に伝わって
行く。固定シュー(4)と、被検材(1)とは、水ある
いは油の膜で音響的に結合されているので、固定シュー
(4)から、被検材(1)へ超音波が入って行く。この
時、一般に被検材(1)は、固定シュー(4)と材質が
異るので、その境界で、超音波は屈折される。図のよう
に入射角をθi、屈折角をθtとし、固定シュー(4)
中の音速をC+、i横材(1)中の音速をC1とすると
、矢の関係がある。The valve (6) generates pulses at regular intervals, applies high voltage pulses to the piezoelectric element (2), and vibrates at the natural frequency of the piezoelectric element (2). This vibration is transmitted as an ultrasonic wave through the movable shoe (3) to the fixed shoe (4). The fixed shoe (4) and the material to be tested (1) are acoustically coupled by a film of water or oil, so ultrasonic waves enter the material to be tested (1) from the fixed shoe (4). go. At this time, since the material to be inspected (1) and the fixing shoe (4) are generally different from each other, the ultrasonic waves are refracted at the boundary thereof. As shown in the figure, the angle of incidence is θi, the angle of refraction is θt, and the fixed shoe (4)
Assuming that the sound speed inside is C+ and the sound speed inside i-crosspiece (1) is C1, there is an arrow relationship.
一般に板の中を伝わる弾性波には、いろいろなモード〔
例えば縦波、横波1表面波、板波(対称Sモートカ、板
波(斜対称Aモード少第7図参照ンがあり、各々の伝播
速度および位相速度(Cp)(phase v61oc
it丼i続した正弦波の波動が進む速度、縦波、横波1
丁周波数によって位相速度が変化しないが、板波シ;変
化する。)は板の材質、板の厚さ、超音波の周波数など
によって異る。そして、上記の方法であるモードの板波
(4)を発生させるには式(1)の値が、そのモードの
板波(5)の位相速度(Cp)に等しいこと、即ち
C!
廁ot p ・・・(2)とな
るようにしなげればならない。In general, there are various modes of elastic waves that propagate through a plate.
For example, there are longitudinal waves, transverse waves, surface waves, plate waves (symmetrical S mode), and plate waves (obliquely symmetrical A mode).
speed of continuous sine wave waves, longitudinal waves, transverse waves 1
The phase velocity does not change depending on the frequency, but it does change with the plate wave. ) varies depending on the board material, board thickness, ultrasonic frequency, etc. In order to generate the plate wave (4) of the mode in the above method, the value of equation (1) must be equal to the phase velocity (Cp) of the plate wave (5) of that mode, that is, C! It must be done so that (2) is satisfied.
そこで可変角探触子(5)の可動シェー(3)の入射角
(θi)を調節することにより、(2)式を実現する。Therefore, by adjusting the incident angle (θi) of the movable shade (3) of the variable angle probe (5), equation (2) is realized.
そうすると、被検材(1)中に、所定のモードの板波(
4)が発生して伝播する。被検材(1)中に、欠陥(ト
)があると、板波(4)は一部反射され、可変角探触子
(5)の方向へ戻って来る。この波は発生の場合と逆の
動作により、可動シュー(3)が調節されている入射角
(θ1)VC対応したモードの板波(5)が検出される
、検出された1ε号は、増幅器(7)で増巾、検波器(
8)で検波された後、表示器(9)で表示される。賢示
器(9)には、パルサ(6)より圧電素子(2)を駆動
する時刻と同期した信号が、時間掃引トリガ信号として
与えられ、第6図のように表示される。図において、(
tlは駆動信号の増巾器(7)側へのもれこ入信号、(
f)は欠陥(F′)による反射信号であるうσ)は、圧
電素子(2)を駆動してから、欠陥(F)により反射信
号(flが戻って来て、圧電素子(2)により検出され
るまでの時間、Aは欠陥(Flで反射された信号の大き
さを示している。この表示より、所定のモードの板波(
4)を反射する欠陥(杓の有無1位置即ち時間(T)、
犬ぎさく〜を知ることができる。欠陥(F)の有無は1
反射信号(f)の有無により、欠陥(F)の位置ハ、使
用したモードの板波(イ)の伝搬速度が予め知れている
ので。Then, a plate wave of a predetermined mode (
4) occurs and propagates. If there is a defect (g) in the material to be tested (1), part of the plate wave (4) will be reflected and return toward the variable angle probe (5). The movable shoe (3) adjusts the incident angle (θ1) by the reverse operation of this wave, and a plate wave (5) in a mode corresponding to VC is detected. (7) is used to amplify the amplification and detector (
After being detected by 8), it is displayed on a display (9). A signal synchronized with the time when the piezoelectric element (2) is driven by the pulser (6) is given to the indicator (9) as a time sweep trigger signal, and is displayed as shown in FIG. In the figure, (
tl is the leakage input signal of the drive signal to the amplifier (7) side, (
f) is the reflected signal due to the defect (F'). σ) is the reflected signal (fl) returned by the defect (F) after driving the piezoelectric element (2), and is reflected by the piezoelectric element (2). In the time until detection, A indicates the magnitude of the signal reflected by the defect (Fl). From this display, it can be seen that the plate wave (
4) Defects that reflect (the presence or absence of a ladle 1 position, that is, time (T),
You can learn about Inugisaku. Presence or absence of defect (F) is 1
Based on the presence or absence of the reflected signal (f), the position of the defect (F) (c) and the propagation speed of the plate wave (a) of the mode used are known in advance.
その値と、時間(Tlより求まるう
また、欠陥(F)の犬ササは、それが反射信号(flの
犬ぎさくA)と相関があるとの前提で推定できる。From that value and time (calculated from Tl), the width of the defect (F) can be estimated on the premise that it has a correlation with the reflected signal (flag A of fl).
ところで、板et(ト)は、欠陥(F)の厚さ方向の位
置や、形状により反射特注が異り、それらの闇の関係は
モードによって違う。また、あるモードの板波(5)が
欠陥(F)に当ると、全エスルキが同一モードで反射す
るのではなく反射波はいろいろなモードに分散的に変換
されている。これらのことは、日本非破壊検査協会雑誌
「非破壊検査J VOI、 22. A4−pI)20
6〜208(井元:「板波探傷と205小委員会」)、
同誌PP214〜220 (足止:「板波探傷の展望」
)に詳しく述べられている。By the way, the reflection customization of the plate et (g) differs depending on the position and shape of the defect (F) in the thickness direction, and the relationship between the darkness differs depending on the mode. Furthermore, when a plate wave (5) in a certain mode hits a defect (F), the reflected wave is not reflected in the same mode by all the esulki, but is dispersedly converted into various modes. These matters are described in the Japanese Nondestructive Inspection Association magazine “Nondestructive Inspection J VOI, 22. A4-pI) 20
6-208 (Imoto: “Itanami Flaw Detection and 205 Subcommittee”),
The same magazine PP214-220 (Standing: “Prospects of plate wave flaw detection”)
) is described in detail.
上記のことを考慮すると特定のモードの板波(4)だゆ
では正確に、欠陥の有無の判定、欠陥(F)の犬ぎさく
A)及び厚さ方向の位置の評価などを行なうことはでき
ない。Considering the above, it is not possible to accurately determine the presence or absence of defects, evaluate the sharpness A) of defects (F), and the position in the thickness direction for plate waves (4) in a specific mode. Can not.
また、上記の説明では、被検材(1)での板波(ホ)の
位相速度(Cp)が知れた上で、式(2)を満足するよ
うに屈折角(θりを調節するように述べたが、実際には
、被検材(1)中での位相速度(Cp)は正確にわから
ないので1被検材(1)の端部からのエコーを観測しな
がら、その大ぎさが最大となるように屈折角(九)を調
節することKなり、多くの手間な装する。In addition, in the above explanation, the phase velocity (Cp) of the plate wave (E) in the test material (1) is known, and the refraction angle (θ) is adjusted so as to satisfy Equation (2). However, in reality, the phase velocity (Cp) in the test material (1) is not known accurately, so while observing the echo from the edge of the test material (1), its magnitude can be determined. It is necessary to adjust the refraction angle (9) so that it is the maximum, which requires a lot of effort.
従来の板波探傷装置は、μ上のように構成されているの
で、一つのモードでの欠陥からのエコーしか知ることが
できず、正確な評価ができな(・とい5問題があった。Conventional plate wave flaw detection equipment is configured as shown on μ, so it can only detect echoes from defects in one mode, making accurate evaluation impossible.
また、この問題解決のために。Also, to solve this problem.
いくつかのモードで、遂仄データをとることも考えられ
るが、モード変更時の調節が、大変わずられしく、実用
性に欠けるという問題があった。又屈折角を調節する方
法においても、一つのモードから他のモードに変換され
る様子を観測することはできなかった。It is conceivable to collect performance data in some modes, but there is a problem that adjustment when changing modes is very cumbersome and lacks practicality. Also, in the method of adjusting the refraction angle, it was not possible to observe the conversion from one mode to another.
この発明は、上記のような問題点を解消するためになさ
れたもので、いろいろなモードの板波を順次発生、検出
でさ、それら各モードでの欠陥の反射エコーの位置、強
さを測定する′と共に、それらを統合化して視覚的に知
ることができ、欠陥な正しく評価できる板波探傷装置を
得ることを目的とする。This invention was made to solve the above-mentioned problems, and involves sequentially generating and detecting plate waves in various modes, and measuring the position and intensity of the reflected echo of the defect in each mode. The purpose of the present invention is to obtain a plate wave flaw detection device that can visually detect defects by integrating them, and accurately evaluate defects.
C問題点な解決するだめの手段〕
この発明に係る板波探傷装置は、板波の発生検出の条件
を#A矢変更して行さ、その条件な一部に。[Means for Solving Problem C] The plate wave flaw detection device according to the present invention is performed by changing the condition for detecting the occurrence of plate waves to #A, and some of the conditions are as follows.
検出した信号の時間的立直を、別の一軸に、つまり2欠
元座標系に、検出した信号の強さを輝度または色に対応
させて表示するようにしたもの、換言すれば超音波を薄
板の中に導入し、この薄板内にある欠陥からの反射波を
表示器に表示して上記欠陥の位置と大きさを計測する装
置において、計測条件設定装置とこの計測条件設定装置
よりの指令によりパルス信号を発生して上記計測条件設
定装置内の可変探触子に板波を発生させると共に時間掃
引信号発生回路にトリガなかけるバパルサと上記時間掃
引信号発生回路の出力と上記計測条件設定装置の他の出
力と上記可変角探触子の検出信号を入力とする増巾器と
この増巾器の出力を人力とする検波器の出力によって動
?’¥jる表示器によって構成されたものである。The temporal rectification of the detected signal is displayed on another axis, that is, on a two-dimensional coordinate system, and the intensity of the detected signal is displayed in correspondence with the brightness or color. In other words, the ultrasonic wave is displayed on a thin plate. In a device that measures the position and size of the defect by displaying the reflected wave from the defect in the thin plate on a display, a measurement condition setting device and a command from the measurement condition setting device A vapulsar that generates a pulse signal to generate a plate wave in the variable probe in the measurement condition setting device and triggers the time sweep signal generation circuit, the output of the time sweep signal generation circuit, and the measurement condition setting device. Is it activated by the output of an amplifier that receives the other outputs and the detection signal of the variable angle probe as input, and a detector that uses the output of this amplifier as input? It consists of a display device.
〔作用〕
この発明においては、角度・周波数I’制御装置とパル
サからの人力によって動作する可変角探触子を被検材の
我直に接触させ超音波を入射すれば板波を生じ、この板
波は被検材の中を移動する。もし被検材の甲に欠陥があ
ればこの板波の一部は反射され再び可変角探触子にもど
って来る。この板に送られる。−万表示器には角度・周
波数PJII御装置主装置射角度(θt)の信号が、又
パルサより時間掃引信号発生回路を介して時間(1)の
信号が人力され、この6つの信号が表示器(ブラウン管
)の上に例えばスポットライトの輝度又は色とt−θを
座標(直交座標−として表示される。[Operation] In this invention, when the angle/frequency I' control device and the variable angle probe operated by human power from the pulser are brought into direct contact with the material to be examined and ultrasonic waves are incident, plate waves are generated. The plate waves move through the material being tested. If there is a defect in the shell of the material to be inspected, a portion of this plate wave will be reflected and return to the variable angle probe again. Sent to this board. -The 10,000-meter display receives the angle/frequency PJII control device main device radiation angle (θt) signal, and the time (1) signal from the pulser via the time sweep signal generation circuit, and these six signals are displayed. For example, the luminance or color of a spotlight and t-θ are displayed as coordinates (orthogonal coordinates) on a device (a cathode ray tube).
第1図はこの発明の一実施例を示てブロック図である。 FIG. 1 is a block diagram showing one embodiment of the present invention.
図において、(1)は被検材、(5)は被検材(1)の
表面に設置した可変角探触子、αOはこの可変角探触子
(5)の入射角01を順次変更すると共に後述て検出の
条件Yll1次変更でる手段、即ち計測条件設定装置!
tCL5である。(6)ハ角度・周波数制御装置αOよ
りの指令により、可変角探触子(5)より板波hv発生
すべく駆動するパルサ、(7)は可変角探触子(5)が
検出した欠陥(F+の反射信号(fl Y #!幅する
増幅器、(8)は増幅器(7)の出力信号を検波fる検
波器、αDはパルサ(6)が可変角探触子(5)y駆動
するタイミングに合せてのこぎり波を発生する時間掃引
信号発生回路、(9a)&j内角度周波数制御装置αO
よつ出力されろ入射角θiに対応した電圧により第1軸
(横軸)の座標が決められ時間掃引信号発生回路α℃の
出力信号により第2軸(縦軸)の座標が決められ、その
点に、検波器(8)の出力信号で輝度変調表示すろ表示
器である、
第2図は上記表示器(93)のパターンσ)−例を示て
表示例図である。図において、柳軸lヱ可変角探触子(
5)から被検材(1)へ超音波が入る時の彷横材(1)
側での屈折角θt(第5図参照)で、0″から91fの
範囲?もっている。In the figure, (1) is the material to be tested, (5) is the variable angle probe installed on the surface of the material to be tested (1), and αO is the incident angle 01 of this variable angle probe (5) that is sequentially changed. At the same time, there is a means for primary changing the detection conditions Yll, which will be described later, that is, a measurement condition setting device!
It is tCL5. (6) C The pulser is driven by the variable angle probe (5) to generate a plate wave hv according to the command from the angle/frequency controller αO, and (7) is the defect detected by the variable angle probe (5). (F+ reflected signal (fl Y #! width amplifier, (8) is a detector that detects the output signal of amplifier (7), αD is a pulser (6) that drives variable angle probe (5) Time sweep signal generation circuit that generates a sawtooth wave in accordance with the timing, (9a) &j angular frequency control device αO
The coordinates of the first axis (horizontal axis) are determined by the output voltage corresponding to the incident angle θi, and the coordinates of the second axis (vertical axis) are determined by the output signal of the time sweep signal generation circuit α℃. In particular, the output signal of the detector (8) is used as a luminance modulation display. FIG. 2 is a display example diagram showing an example of the pattern σ) of the display (93). In the figure, a Yanagi-shaku lッ variable angle probe (
5) Wandering material (1) when ultrasonic waves enter the material to be tested (1)
The refraction angle θt at the side (see Fig. 5) ranges from 0'' to 91f.
先ず、角度・周波数制御装置α(hKより、可変角探触
子(5)が制御され、θt=Qと設定されろ。次に、角
度・周波数制御装置αOは、パルサ(6)に指令を出し
、それによりパルスが発生し、可変角探触子(5)より
、被検材(1)中に板波Wを発生させる。−万、バルブ
(6)からそのパルス発生と共に時間掃引信号発生回路
α刀に、トリガ信号が与えられ、時間掃引信号発生回路
αDから時間に比例した電圧の信1号が発生され、表示
器(9a)に与えられ、表示器(9a)上で、輝点が縦
軸にそって図中のAのように移動てろ。その輝点の輝度
は、発生された板波尚が被検材(1)中を伝搬し、欠陥
(nにより反射され、可変角探触子(5)で検出され、
増幅器(7)により増幅され、検波器(8)で検波され
た信号により変調がかけられる。従って、欠陥iFlか
らのエコーが大きげれば明る(、エコーが小さければ暗
(表示される。First, the angle/frequency controller α (hK) controls the variable angle probe (5) and sets θt=Q. Next, the angle/frequency controller αO issues a command to the pulser (6). This generates a pulse, which causes the variable angle probe (5) to generate a plate wave W in the material to be tested (1). A trigger signal is given to the circuit α, and a voltage signal 1 proportional to time is generated from the time sweep signal generation circuit αD, and is given to the display (9a), and a bright spot appears on the display (9a). moves along the vertical axis as indicated by A in the figure.The brightness of the bright spot is determined by the generated plate wave propagating through the material to be inspected (1), reflected by the defect (n), and changing the brightness at a variable angle. Detected by the probe (5),
The signal is amplified by an amplifier (7) and detected by a detector (8), and then modulated. Therefore, if the echo from the defect iFl is large, the display will be bright (displayed), and if the echo is small, the display will be dark (displayed).
この時間掃引が終ると、角度・周波数制御装置αdはθ
tY1°に設定し、同様の動作7行なう。θ1=1°で
の時間掃引が終ると、θtて変更されまk、同じ動作が
(つかえされる。この動作は、順次θt=9[]’にな
るまでくりカ・えされた後、θt=Qの状態に戻り、上
記動作がくりかえされる。その結果、例えば被検材(1
)が板厚2.3鵡の鉄板(spaりで、上下に貫通した
穴状欠陥がある場合、第2図のfst。When this time sweep is completed, the angle/frequency controller αd is changed to θ
Set tY1° and perform 7 similar operations. When the time sweep at θ1=1° is completed, θt is changed, and the same operation is carried out. This operation is repeated in sequence until θt=9[]', and then θt = Q state is returned, and the above operation is repeated. As a result, for example, the specimen material (1
) is a steel plate with a thickness of 2.3 mm (spa) and there is a hole-shaped defect that penetrates the top and bottom, fst in Figure 2.
fs1+ fklのような像が得られる。これらは各々
S、モード、SIモート°、A1モードの板波故を欠陥
(8に当てたときの反射エコーのうち同じ欠陥fFlの
煉である。各モードは、各々、約2f、sf、sfで1
発生、検出条件が整うが、現実には図のJ5に点ではな
く、その前後に広がる。An image like fs1+fkl is obtained. These are the reproductions of the same defect fFl among the reflected echoes when the plate waves of S mode, SI mode °, and A1 mode are applied to the defect (8).Each mode is about 2f, sf, sf, respectively. de1
The conditions for occurrence and detection are in place, but in reality, it is not a point at J5 in the diagram, but spreads out before and after it.
この表示結果より、各モードの板波Wが、同一欠陥(F
′lに対して、どのように反射されるかを知ることがで
きる。From this display result, it can be seen that the plate wave W of each mode has the same defect (F
'l can be seen how it is reflected.
第6図はこの発明に係る表示器(9a)の他の欠陥(F
+を示す表示例図である。図においてfS!l fs1
1f/Jは第2図の場合と同保の板波(ロ)のモードに
よる像であるがこの図は、欠陥が上下用通していない例
の一つでfs、の像がうてい。欠陥CF+の厚さ方何の
位置によってfs、が出にくかったり、fA、がでVこ
(かったつ変化でることを示している。従って、欠陥に
対応させてこれらの像を得ておけば、It’Y見ること
により、欠陥の類別が可能である。FIG. 6 shows another defect (F) of the display device (9a) according to the present invention.
It is a display example figure showing +. In the figure fS! l fs1
1f/J is an image in the same plate wave (b) mode as in Figure 2, but this figure is one of the examples where the defect does not pass through the upper and lower directions, and the image of fs is clearly visible. This shows that depending on the position of the thickness of the defect CF+, it is difficult to obtain fs, and the value of fA varies depending on the position. Therefore, if these images are obtained in accordance with the defect, Defects can be classified by looking at 'Y'.
第4[’a+−z、:σ)発明の他の実施例〉示すブロ
ック図である。図において、(11,(5a)〜(至)
及び苗。FIG. 4 is a block diagram showing another embodiment of the fourth ['a+-z,:σ) invention]; In the figure, (11, (5a) to (to)
and seedlings.
fFl 、げ)は第1図の例と同−又は相当部分を示し
ているが、可変角探触子(5a)と検出用可変角探触子
(5b〕とに分離し、発生は一つのモード乞選択し、検
出は順次屈折角(θt)乞変更(第5図錠照りして行く
ようにした。この様にすると欠陥(F′lの形状とモー
ド変換とに関する情報が得られ、欠陥(jの類別、評価
が更に正確になる。fFl, ridge) shows the same or equivalent part as the example in Fig. 1, but it is separated into a variable angle probe (5a) and a variable angle detection probe (5b), and the generation is only one. The mode was selected, and the detection was carried out by sequentially changing the refraction angle (θt) (Fig. (The classification and evaluation of j will become more accurate.
また、上記実施例では、機械式の可変角探触子(5a)
、 (5h)で板波発生、板波検出の条件を変更Y ;
L 5 VCgl 明シたが、微小超音波エレメント
を並べたアレイ型探触子を用いても良い。Further, in the above embodiment, a mechanical variable angle probe (5a)
, Change the conditions for plate wave generation and plate wave detection in (5h) Y;
L 5 VCgl However, an array type probe in which minute ultrasonic elements are arranged may also be used.
このようにすると、条件の高速変更、一つの探触子によ
り発生、検出の条件を独立に変更できるなど優れた点が
あり、本発明の効果tより大きくできる。By doing so, there are advantages such as rapid changes in conditions and the ability to independently change conditions for generation and detection using one probe, and the effect of the present invention can be greater than t.
また、座標系ン直交座標系で示したが、別の座標系にし
ても、何ら、本発明の効果のさまたげにならない。例え
ば、極座標系にして、角度方向乞、前述のθt、あるい
は、θ1IK−てることにより、可変角探触子(5)と
の物理的対応がつきゃて(なる。Further, although the coordinate system and the orthogonal coordinate system are shown, the effects of the present invention will not be hindered in any way even if a different coordinate system is used. For example, by using a polar coordinate system and determining the angular direction, the aforementioned θt, or θ1IK-, the physical correspondence with the variable angle probe (5) can be established.
さらに、上記では板波の発生、検出条件の変数としてO
tχ用い1こが、位相速度(Cp)Y用いても良(、ま
た、アレイ型探触子(5)を用いろ場合には、エレメン
ト間の位相差(あるいは時間差)ン用いても良い。Furthermore, in the above, O is used as a variable for plate wave generation and detection conditions.
Instead of tχ, the phase velocity (Cp) and Y may be used (or, if an array type probe (5) is used, the phase difference (or time difference) between the elements may be used).
また、上記実施例では、エコーの大きさ即ち反射波(f
lで、表示の輝度ン変y4てろ例ン示し1こが、エコー
の大きさに対応した色で表示させても艮い。Furthermore, in the above embodiment, the magnitude of the echo, that is, the reflected wave (f
It is also possible to change the brightness of the display by pressing l, 4, or 1.
さらにまた、上記実施例では、座標軸の一つ7時間的に
掃引′fろように示したが、各モード毎に群速度(実際
の板波伝搬速度つと、時間とから距離ン求め、これによ
って掃引しても良い。Furthermore, in the above embodiment, one of the coordinate axes was shown to be swept over time, but for each mode, the group velocity (distance) is determined from the actual plate wave propagation velocity and time. You can also sweep it.
また、上記実施例では、板波の発生条件を角度1°毎に
変(ヒさせているが、何度でも良く、ま1こ、一定間隔
に限らず選択的に決定しても良いことは言うまでもない
。In addition, in the above embodiment, the conditions for generating plate waves are changed at every 1° angle, but it may be determined as many times as necessary, or may be determined selectively, not just at regular intervals. Needless to say.
以上のように、この発明によれば、板波の発生検出ある
いは検出の条件を順次変更し、欠陥からのエコーを得、
検出の条件(Ol)と、エコー検出時間[tlとで構成
される二次元座標系に、エコーの大きさを輝度あるいは
色で衣わてようにしたので、欠陥の類別もでき、正確な
探傷が可能なものが得られろ効果がある。As described above, according to the present invention, the conditions for detecting the occurrence or detection of plate waves are sequentially changed to obtain echoes from defects.
The two-dimensional coordinate system consists of the detection condition (Ol) and the echo detection time [tl], and the size of the echo is determined by brightness or color, so it is possible to classify defects and ensure accurate flaw detection. If you can get something that is possible, it will be effective.
第1図はこの発明の一実施例による板波探傷装置It?
示すブロック図、第2図を工この発明による表示例図、
第3図はこの発明による他の表示例図、第4図1はこの
発明の他の実施例を示すブロック図。
第5図は、従来の板波探傷装置を示すブロック図、第6
図は、従来のものによる表示例図、第7図(at〜(e
lは広義の板波の七−ドン示す説明図である。
図において、(1)は被検材、(5)は可変探噛子、(
6)(ユパルサ、(7)は増幅器、(8)は検波器、(
9a)、 (9b)は表示器、αOは角度・周波数制御
装置、■は時間掃引信号発生回路、用工計測条件設定装
置である。
なお各図中、同一符号は同−又は相当部分Z示す。FIG. 1 shows a plate wave flaw detector It? according to an embodiment of the present invention.
The block diagram shown in FIG. 2 is a display example diagram according to the present invention,
FIG. 3 is a diagram showing another display example according to the present invention, and FIG. 4 1 is a block diagram showing another embodiment of the present invention. Fig. 5 is a block diagram showing a conventional plate wave flaw detection device;
The figure shows an example of a conventional display.
1 is an explanatory diagram showing seven dongs of a plate wave in a broad sense. In the figure, (1) is the material to be tested, (5) is the variable probe, (
6) (Yuparsa, (7) is an amplifier, (8) is a detector, (
9a) and (9b) are display devices, αO is an angle/frequency control device, ■ is a time sweep signal generation circuit, and a mechanical measurement condition setting device. In each figure, the same reference numerals indicate the same or corresponding parts Z.
Claims (4)
陥からの反射波を表示器に表示して上記欠陥の位置と大
きさを計測する装置において、計測条件設定装置とこの
計測条件設定装置よりの指令によりパルス信号を発生し
て上記計測条件設定装置内の可変探触子に板波を発生さ
せると共に時間掃引信号発生回路にトリガをかけるパル
サと上記時間掃引信号発生回路の出力と上記計測条件設
定装置の他の出力と上記可変角探触子の検出信号を入力
とする増巾器とこの増巾器の出力を入力とする検波器の
出力によつて動作する表示器によつて構成されたことを
特徴とする板波探傷装置。(1) In a device that measures the position and size of the defect by introducing ultrasonic waves into a thin plate and displaying reflected waves from defects in the thin plate on a display, the measurement condition setting device and the measurement A pulser that generates a pulse signal according to a command from the condition setting device to generate a plate wave in the variable probe in the measurement condition setting device and triggers the time sweep signal generation circuit, and the output of the time sweep signal generation circuit. and an amplifier that receives the other outputs of the measurement condition setting device and the detection signal of the variable angle probe as inputs, and a display that operates based on the output of a wave detector that receives the output of this amplifier as input. A plate wave flaw detection device characterized by being configured as follows.
ているか又は各々独立した構成であることを特徴とする
特許請求の範囲第1項記載の板波探傷装置。(2) The plate wave flaw detection apparatus according to claim 1, wherein the variable probe uses generation and detection of ultrasonic waves in combination, or has an independent configuration.
位置と大きさを表示できることを特徴とする特許請求の
範囲第1項記載の板波探傷装置。(3) The plate wave flaw detection apparatus according to claim 1, wherein the display device is capable of displaying the position and size of the defect using orthogonal coordinates or polar coordinates.
探触子であることを特徴とする特許請求の範囲第1項記
載の板波探傷装置。(4) The plate wave flaw detection apparatus according to claim 1, wherein the variable probe is a mechanical variable probe or an array type probe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61064884A JPH0754318B2 (en) | 1986-03-25 | 1986-03-25 | Plate wave flaw detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61064884A JPH0754318B2 (en) | 1986-03-25 | 1986-03-25 | Plate wave flaw detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62222161A true JPS62222161A (en) | 1987-09-30 |
JPH0754318B2 JPH0754318B2 (en) | 1995-06-07 |
Family
ID=13270977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61064884A Expired - Fee Related JPH0754318B2 (en) | 1986-03-25 | 1986-03-25 | Plate wave flaw detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0754318B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007004574A1 (en) * | 2005-07-04 | 2007-01-11 | Independent Administrative Institution Japan Aerospace Exploration Agency | Ultrasonic testing method and ultrasonic testing device using this |
CN112051329A (en) * | 2020-08-31 | 2020-12-08 | 四川云卓创新科技有限公司 | Automatic ultrasonic plate wave detection method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS571966A (en) * | 1980-06-06 | 1982-01-07 | Hitachi Ltd | Indicator for ultrasonic sectional view |
-
1986
- 1986-03-25 JP JP61064884A patent/JPH0754318B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS571966A (en) * | 1980-06-06 | 1982-01-07 | Hitachi Ltd | Indicator for ultrasonic sectional view |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007004574A1 (en) * | 2005-07-04 | 2007-01-11 | Independent Administrative Institution Japan Aerospace Exploration Agency | Ultrasonic testing method and ultrasonic testing device using this |
US8024975B2 (en) | 2005-07-04 | 2011-09-27 | Independent Administrative Institution Japan Aerospace Exploration Agency | Ultrasonic testing method and ultrasonic testing device using this |
CN112051329A (en) * | 2020-08-31 | 2020-12-08 | 四川云卓创新科技有限公司 | Automatic ultrasonic plate wave detection method |
Also Published As
Publication number | Publication date |
---|---|
JPH0754318B2 (en) | 1995-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4221132A (en) | Ultrasonic nondestructive testing apparatus | |
US7933027B1 (en) | Processing waveform-based NDE | |
US11692810B2 (en) | Photoacoustic excitation sensing enhanced by cross-correlated unfocused speckle images | |
JP3664826B2 (en) | Ultrasonic flaw detector | |
JPS5817363A (en) | Ultrasonic rail inspecting method and ultrasonic analyzer | |
JPH04328460A (en) | Ultrasonic graphic device | |
US6823737B2 (en) | Non-contact inspection system for large concrete structures | |
KR20160139915A (en) | Apparatus and method for full-field pulse-echo laser ultrasonic propagation imaging | |
JPH0518942A (en) | Ultrasonic sound speed measuring device according to v(z) characteristic and ultrasonic microscope using the same | |
JPS62222161A (en) | Flaw detector by means of plane wave | |
JP2001208729A (en) | Defect detector | |
JP2002243703A (en) | Ultrasonic flaw detector | |
JP3497984B2 (en) | Ultrasonic flaw detector | |
Ginzel et al. | A Study of Time-of-Flight Diffraction Technique Using Photoelastic Visualisation | |
Alers et al. | Visualization of surface elastic waves on structural materials | |
JPH11211706A (en) | Ultrasonic inspection apparatus of fan shape scanning type | |
JPH03102258A (en) | Method and apparatus for ultrasonic inspection | |
Morokov et al. | Lateral resolution of acoustic microscopy in the visualization of interfaces inside solid materials | |
JPS61266907A (en) | Detector for surface condition | |
JPH0587784A (en) | Method and apparatus for estimation for quantification of defect | |
ALMALLAH et al. | AUTOMATED DETECTION AND VISUALIZATION OF DEFECTS USING CONSTANT PHASE DATA FROM AIR-COUPLE IMPACT ECHO TESTING | |
JPH0440360A (en) | Ultrasonic flaw detecting method for composite material | |
Courouble et al. | Evaluation of ultrasonic techniques by visualization of ultrasound in water and in transparent solids | |
JPH0317550A (en) | Ultrasonic apparatus for inspection | |
EP0203994A1 (en) | Low frequency acoustic microscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |