JPS62222132A - Wavelength detecting method - Google Patents

Wavelength detecting method

Info

Publication number
JPS62222132A
JPS62222132A JP6634786A JP6634786A JPS62222132A JP S62222132 A JPS62222132 A JP S62222132A JP 6634786 A JP6634786 A JP 6634786A JP 6634786 A JP6634786 A JP 6634786A JP S62222132 A JPS62222132 A JP S62222132A
Authority
JP
Japan
Prior art keywords
wavelength
filter
light
receiver
spectroscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6634786A
Other languages
Japanese (ja)
Inventor
Shiro Otake
史郎 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6634786A priority Critical patent/JPS62222132A/en
Publication of JPS62222132A publication Critical patent/JPS62222132A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength

Abstract

PURPOSE:To make it possible to detect the wavelength of monochromatic light simply with good accuracy, by respectively alternately placing a first filter and a second filter on the light path between a spectroscopic machine and a light receiver for a spectrophotometry. CONSTITUTION:At first, a first filter 11 is placed on the light path between a spectroscopic machine and a light receiver 10 for spectrophotometry and output value (a) from the light receiver 10 for spectral photometry at this time is measured. Next, the first filter 11 is removed from the light path to place a second filter 12, which has spectral transmittance different in the ratio from that of the first filter 11 for each wavelength within a range desired to detect a wavelength, on the light path and the output value (b) from the light receiver 10 for spectrophotometry is measured. Next, the ratio a/b of measured values is calculated. On the basis of functional relation at this time, a wavelength can be detected from the ratio a/b. By this method, by reading the output value from the light receiver for spectrophotometry while wavelength feed is performed by the spectroscopic machine 9, the wavelength of monochromatic light can be detecting simply with good accuracy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、分光機器における単色光の波長を検知するた
めの方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a method for detecting wavelengths of monochromatic light in spectroscopic instruments.

従来の技術 照明用光源で照明された物体の色を予測するためには、
光源の分光分布や物体の分光反射率を正確に測定する必
要がある。このためには、たとえ−はプリズムモノクロ
メータや回折格子モノクロメータなどの分光機器が用い
られている。
Conventional techniquesIn order to predict the color of an object illuminated by a lighting source,
It is necessary to accurately measure the spectral distribution of a light source and the spectral reflectance of an object. For this purpose, spectroscopic instruments such as a prism monochromator or a diffraction grating monochromator are used.

これらの分光機器を用いた測定において、いま測定して
いる単色光の波長を正確に検知することが重要であった
。回折格子モノクロメータを例にとると、測定している
波長は、入射してくる被測定光の光軸と回折格子の面と
がなす傾き角と対応していることから、傾き角から波長
を算出している。このとき、(1)傾き角から波長を算
出する機構の機械的な摩耗等による誤差、(2)測定範
囲を変えるため回折格子を交換したことなどの原因によ
り、この回折格子の傾き角と波長との間の関係が変化す
ることがあるため、単色光を入射し、その波長と回折格
子の傾き角を校正する作業を頻繁に行なう必要があった
。通常、この校正には、高圧水銀ランプなど、発光特性
が既知の光源で波長がかわっている輝線の一つを回折格
子モノクロメ−タに入射し、出射口には受光器を置き、
受光器出力が最大となるときの回折格子の傾きから算出
される波長を読み取シ、この値が輝線の波長と一致する
まで、回折格子の傾き角から波長を算出する機構を調整
しており、大変手間のかかるものであった。
In measurements using these spectroscopic instruments, it was important to accurately detect the wavelength of the monochromatic light being measured. Taking a diffraction grating monochromator as an example, the wavelength being measured corresponds to the angle of inclination between the optical axis of the incident light to be measured and the surface of the diffraction grating, so the wavelength can be determined from the angle of inclination. It is being calculated. At this time, due to (1) errors due to mechanical wear of the mechanism that calculates the wavelength from the tilt angle, (2) the diffraction grating was replaced to change the measurement range, the tilt angle of the diffraction grating and the wavelength Because the relationship between the diffraction grating and the diffraction grating may change, it was necessary to frequently calibrate the wavelength and tilt angle of the diffraction grating by inputting monochromatic light. Normally, for this calibration, one of the emission lines of a light source with known emission characteristics, such as a high-pressure mercury lamp, whose wavelength has changed, is incident on a diffraction grating monochromator, and a light receiver is placed at the exit port.
The wavelength calculated from the inclination of the diffraction grating when the receiver output is maximum is read, and the mechanism that calculates the wavelength from the inclination angle of the diffraction grating is adjusted until this value matches the wavelength of the emission line. It was very time-consuming.

このだめ、従来から菌2図に示すようなブロック構成の
波長検知装置により、分光機器から出力される光の波長
を検知していた。第2図において、1は第1の受光器、
2は第2の受光器、3は第1の演算部、4は第2の演算
部、5は表示部である。
To avoid this, the wavelength of light output from a spectroscopic device has conventionally been detected using a wavelength detection device with a block configuration as shown in Figure 2. In FIG. 2, 1 is a first light receiver;
2 is a second light receiver, 3 is a first calculation section, 4 is a second calculation section, and 5 is a display section.

以下、第2図にしたがって、従来からの波長検知装置の
動作を説明する。
The operation of the conventional wavelength detection device will be described below with reference to FIG.

測定対象とする単色光を第1の受光器1および第2の受
光器2で受光する。第1の演算部3では、第1の受光器
1からの信号と第2の受光器2からの信号とを入力し、
それらの比に対応する信号を出力する。第3図に、第1
の受光器1の分光感度(曲線A)および第2の受光器の
分光感度(曲線B)の−例を示す。これらのうち、第1
の受光部の分光感度曲線Aの形状は任意であるが、第2
の受光器の分光感度曲線Bの形状は、測定対象とする単
色光の波長域において、第1の受光器の分光感度の値に
対して、同じ比例関係にならないような分光感度の値を
もつものとする。第2の演算部4ではあらかじめもとめ
ておいだ、第1の受光器1の信号と第2の受光器2から
の信号との比と、単色光の波長との関数関係にもとづい
て、測定対象の単色光の波長を算出する。第2の演算部
4に入力しておく関係の一例を第4図に示す。表示部5
では、第2の演算部4の内容を表示する。
A first light receiver 1 and a second light receiver 2 receive monochromatic light to be measured. The first calculation unit 3 inputs the signal from the first light receiver 1 and the signal from the second light receiver 2,
Output a signal corresponding to those ratios. In Figure 3, the first
An example of the spectral sensitivity of the photoreceiver 1 (curve A) and the spectral sensitivity of the second photoreceiver (curve B) of FIG. Of these, the first
Although the shape of the spectral sensitivity curve A of the light receiving section is arbitrary, the shape of the second
The shape of the spectral sensitivity curve B of the receiver has a spectral sensitivity value that does not have the same proportional relationship to the spectral sensitivity value of the first receiver in the wavelength range of the monochromatic light to be measured. shall be taken as a thing. The second calculation unit 4 determines the measurement target based on the ratio of the signal from the first photoreceiver 1 and the signal from the second photoreceiver 2, which has been determined in advance, and the functional relationship between the wavelength of the monochromatic light. Calculate the wavelength of monochromatic light. FIG. 4 shows an example of the relationship input to the second calculation unit 4. Display section 5
Now, the contents of the second calculation section 4 will be displayed.

従来からの波長検知装置の使用方法の一例を第6図に示
す。第5図において、6は分光機器、7は本発明による
波長検知装置、8は分光測光用受光器である。通常の分
光測光を行なっているときは、分光機器6からの光は分
光測光用受光器8で受け、その出力値を測定値としてい
る。分光機器6の波長校正のとき、分光測光用受光器8
の置かれていた位置に本発明による波長検知装置7を置
き、表示部5に示される値と分光機器60波長目盛で示
される値とが一致するように分光機器6の機構部等を調
整する。
An example of how to use a conventional wavelength detection device is shown in FIG. In FIG. 5, 6 is a spectroscopic device, 7 is a wavelength detection device according to the present invention, and 8 is a spectrophotometric photoreceiver. When performing normal spectrophotometry, light from the spectroscopic device 6 is received by the spectrophotometer photoreceiver 8, and its output value is used as the measured value. When calibrating the wavelength of the spectroscopic device 6, the spectrophotometric receiver 8
The wavelength detection device 7 according to the present invention is placed in the position where the spectroscopic device 6 was placed, and the mechanical parts of the spectroscopic device 6 are adjusted so that the value shown on the display section 5 matches the value shown on the wavelength scale of the spectroscopic device 60. .

ところが、第5図で示されるような使用方法では、波長
検知装置と分光測光用受光器とを交互に分光機器の光軸
上に設定しなければ良い精度が得られず、その設定は手
間のかかるものであった。
However, in the usage method shown in Figure 5, good accuracy cannot be obtained unless the wavelength detection device and the spectrophotometric receiver are set alternately on the optical axis of the spectroscopic instrument, and this setting is time-consuming. This was the case.

発明が解決しようとする問題点 上記のように、従来例では波長検知装置と分光測光用受
光器とを交互に、分光機器の光軸上に精度良く設定する
のに手間がかかるものであった。
Problems to be Solved by the Invention As mentioned above, in the conventional example, it took time and effort to alternately set the wavelength detection device and the spectrophotometric receiver on the optical axis of the spectroscopic device with high accuracy. .

問題点を解決するだめの手段 任意の分光透過率をもつ第1のフィルタと、波長を検知
しようとする範囲内で前記フィルタの分光透過率との比
が波長ごとに異なるような分光透過率をもつ第2のフィ
ルタとをそれぞれ交互に分光機器と分光測光用受光器と
の間の光路に置く。
A means to solve the problem is to use a first filter having an arbitrary spectral transmittance and a spectral transmittance such that the ratio of the spectral transmittance of the filter is different for each wavelength within the range in which the wavelength is to be detected. and second filters are placed alternately in the optical path between the spectroscopic instrument and the spectrophotometric receiver.

作  用 第1のフィルタを前記光路に置いたときの分光測光用受
光器からの出力と第2のフィルタを前記光路に置いたと
きの分光測光用受光器からの出力との比を算出し、この
比の値をもとに分光機器から出力された光の波長を算出
する。
Calculating the ratio of the output from the spectrophotometric photoreceptor when the first filter is placed in the optical path and the output from the spectrophotometric photoreceptor when the second filter is placed in the optical path, The wavelength of light output from the spectroscopic device is calculated based on the value of this ratio.

実施例 本発明による波長検知方法に基づ〈実施例を第1図をも
とに説明する。第1図において、9は分光機器、10は
分光測光用受光器、11は第1のフィルタ、12は第2
のフィルタである。
Embodiment An embodiment based on the wavelength detection method according to the present invention will be described with reference to FIG. In FIG. 1, 9 is a spectroscopic device, 10 is a spectrophotometric receiver, 11 is a first filter, and 12 is a second filter.
This is a filter.

第1図において、まず、分光機器9と分光測光用受光器
1oとの間の光路に第1のフィルタ11を置き、このと
きの分光測光用受光器1oがらの出力値aを測定する。
In FIG. 1, first, the first filter 11 is placed on the optical path between the spectroscopic device 9 and the spectrophotometric photoreceptor 1o, and the output value a from the spectrophotometric photoreceptor 1o at this time is measured.

第1のフィルタ11を前記光路から除いた後、第2のフ
ィルタ12を前記光路に置き、このときの分光測光用受
光器1oがらの出力値すを測定する。なお、第1のフィ
ルタfの分光透過率、および第2のフィルタ12の分光
透過率曲線の一例としては、それぞれ第3図に示された
曲線Aおよび曲線Bがある。もちろん、第1のフィルタ
11を分光機器の光路に置いたときの分光測光用受光器
1oからの信号と第2のフィルタ12を前記光路に置い
たときの分光測光用受光器10からの信号とできまり、
測定対象とする波長域において同じ値とならない関数(
たとえば、単調増加もしくは単調減少関数)に基づいて
第1のフィルタ11の分光透過率および第2のフィルタ
の分光透過率を決定し、この関数関係をもとに波長を算
出しても同様な効果が得られることはいうまでもない。
After removing the first filter 11 from the optical path, the second filter 12 is placed in the optical path, and the output value from the spectrophotometric photoreceptor 1o at this time is measured. Note that examples of the spectral transmittance curves of the first filter f and the spectral transmittance curves of the second filter 12 include curves A and B shown in FIG. 3, respectively. Of course, the signal from the spectrophotometric receiver 1o when the first filter 11 is placed in the optical path of the spectroscopic device and the signal from the spectrophotometric receiver 10 when the second filter 12 is placed in the optical path. As a result,
Functions that do not have the same value in the wavelength range to be measured (
For example, the same effect can be obtained by determining the spectral transmittance of the first filter 11 and the spectral transmittance of the second filter based on a monotonically increasing or decreasing function, and calculating the wavelength based on this functional relationship. Needless to say, you can obtain

前記測定の後、測定値の比a/b  を算出する。After the measurement, the ratio a/b of the measured values is calculated.

この値は、分光測光用受光器1oの分光感度にかかわら
ず、従来からの波長検知装置において、第1の演算部3
からの出力値と同様である。
Regardless of the spectral sensitivity of the spectrophotometric photoreceiver 1o, this value is determined by the first calculation unit 3 in the conventional wavelength detection device.
It is similar to the output value from .

第4図に示された関数関係をもとに、測定値の比a/b
 から波長を検知することができる。
Based on the functional relationship shown in Figure 4, the ratio of measured values a/b
The wavelength can be detected from

分光機器9と分光測光用受光器10の間の光路にばND
フィルタ以外のものは置かず、分光機器9で波長送りを
しながら分光測光用受光器1Qからの出力値を読むこと
により、通常の分光測光ができる。このため、従来から
の波長検知装置を使用した後のように、分光測光用受光
器を分光機器の光軸に合わせる必要はない。
ND in the optical path between the spectroscopic device 9 and the spectrophotometric receiver 10
Ordinary spectrophotometry can be performed by not placing anything other than a filter and reading the output value from the spectrophotometer photoreceiver 1Q while transmitting the wavelength using the spectrometer 9. For this reason, there is no need to align the spectrophotometric receiver with the optical axis of the spectroscopic instrument, as would be the case after using a conventional wavelength detection device.

また本発明は、分光機器の校正に用いる波長検知方法と
して説明したが、一般に分光機器から出力される単色光
の波長の検知方法としても用いることができる。この方
法を分光機器から出力される単色光の波長の表示装置と
して用いることにより、たとえば回折格子モノクロメー
タにおいて、従来は、回折格子を回転させる機構の遊び
による誤差(バックラッシュ)のため、分光測光は分光
機器から出力される波長を上昇もしくは下降のいずれか
の方向でしか行なうことができなかった点が解消され、
分光測光を迅速に行なうことができる。
Furthermore, although the present invention has been described as a wavelength detection method used for calibrating a spectroscopic device, it can also be used as a method for detecting the wavelength of monochromatic light generally output from a spectroscopic device. By using this method as a display device for the wavelength of monochromatic light output from a spectroscopic device, for example, in a diffraction grating monochromator, it is possible to avoid spectrophotometric measurements due to errors (backlash) caused by play in the mechanism that rotates the diffraction grating. This solves the problem that the wavelength output from a spectroscopic device could only be adjusted in either an ascending or descending direction.
Spectrophotometry can be performed quickly.

発明の効果 本発明により、分光測光用受光器を分光機器の光路から
除く手間がなく、単色光の波長を検知することができる
Effects of the Invention According to the present invention, the wavelength of monochromatic light can be detected without the need to remove the spectrophotometric light receiver from the optical path of the spectroscopic device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による波長検知方法の説明図、第2図は
従来からの波長検知装置のブロック構成図、第3図は従
来からの波長検知装置における第1の受光器の分光感度
と第2の受光器の分光感度の一例を示す図、第4図は従
来からの波長検知装置における第2の演算部にあらかじ
め入力しておく関数の一例を示す図、第5図は従来から
の波長検知装置の使用例の一例を示す図である。 9・・・・・分光機器、10・・・・・−分光測光用受
光器、11・・・・・・第1のフィルタ、12・・・・
・・第2のフィルタ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第3図 第41     恨 撮 −文条 第5図
FIG. 1 is an explanatory diagram of the wavelength detection method according to the present invention, FIG. 2 is a block diagram of a conventional wavelength detection device, and FIG. Figure 4 is a diagram showing an example of the spectral sensitivity of the optical receiver of No. 2, Figure 4 is a diagram showing an example of the function that is input in advance to the second calculation section of a conventional wavelength detection device, and Figure 5 is a diagram showing an example of the spectral sensitivity of the conventional wavelength detection device. It is a figure showing an example of the example of use of a detection device. 9... Spectroscopic equipment, 10... - Spectrophotometric receiver, 11... First filter, 12...
...Second filter. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3 Figure 41 Grudge shooting - Bunjo Figure 5

Claims (1)

【特許請求の範囲】[Claims] 任意の分光透過率をもつ第1のフィルタと、波長を検知
しようとする範囲内で前記フィルタの分光透過率との比
が波長ごとに異なるような分光透過率をもつ第2のフィ
ルタとをそれぞれ交互に分光機器と分光測光用受光器と
の間の光路に置き、第1のフィルタを前記光路に置いた
ときの分光測光用受光器からの出力と第2のフィルタを
前記光路に置いたときの分光測光用受光器からの出力と
の比を算出し、この比の値をもとに分光機器から出力さ
れた光の波長を算出することを特徴とした波長検知方法
A first filter having an arbitrary spectral transmittance and a second filter having a spectral transmittance such that the ratio of the spectral transmittance of the filter to the spectral transmittance of the filter differs for each wavelength within the range in which the wavelength is to be detected. Alternately placed in the optical path between the spectroscopic instrument and the spectrophotometric receiver, the output from the spectrophotometric receiver when the first filter is placed in the optical path and the output from the spectrophotometric receiver when the second filter is placed in the optical path. 1. A wavelength detection method comprising: calculating a ratio between the output from a spectrophotometric photoreceptor and calculating the wavelength of light output from a spectroscopic device based on the value of this ratio.
JP6634786A 1986-03-25 1986-03-25 Wavelength detecting method Pending JPS62222132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6634786A JPS62222132A (en) 1986-03-25 1986-03-25 Wavelength detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6634786A JPS62222132A (en) 1986-03-25 1986-03-25 Wavelength detecting method

Publications (1)

Publication Number Publication Date
JPS62222132A true JPS62222132A (en) 1987-09-30

Family

ID=13313232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6634786A Pending JPS62222132A (en) 1986-03-25 1986-03-25 Wavelength detecting method

Country Status (1)

Country Link
JP (1) JPS62222132A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0426104A2 (en) * 1989-10-30 1991-05-08 Mitsui Petrochemical Industries, Ltd. Laser wavelength measuring device
JP2010261885A (en) * 2009-05-11 2010-11-18 Shimadzu Corp Control unit for spectrophotometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0426104A2 (en) * 1989-10-30 1991-05-08 Mitsui Petrochemical Industries, Ltd. Laser wavelength measuring device
JP2010261885A (en) * 2009-05-11 2010-11-18 Shimadzu Corp Control unit for spectrophotometer

Similar Documents

Publication Publication Date Title
CA1059338A (en) Textile color analyzer calibration
US3817628A (en) Reflectometer for on-line analysis of granular powders
JP3702889B2 (en) Spectrometer and spectroscopic device correction method
JPS617445A (en) Oxidizing degree judging apparatus of copper oxide film
JPS62222132A (en) Wavelength detecting method
JP2689707B2 (en) Spectrometer with wavelength calibration function
EP0091535A2 (en) Spectrophotometer with wavelength calibration
JPH0789084B2 (en) Spectroscopic measurement method
JP2000111472A (en) Device for measuring birefringence and device for measuring orientation of film
GB2119086A (en) Reduction of measuring errors in spectrophotometers
JPS62222133A (en) Wavelength detector
JPH0777492A (en) Absorption photometer and self-diagnostic method for the absorption photometer
JPS63243822A (en) Data processing method for array type detector
JP2002206967A (en) Photometer and colorimeter
JPH1194735A (en) Quantitative analyzer for sample characteristic using spectrophotometry and multivariate analysis and analysis method using it
JPH08122246A (en) Spectral analyzer
JPS63234125A (en) Optical temperature measuring instrument
JPH04148829A (en) Absorbance measuring apparatus
SU1550378A1 (en) Method of determining the index of refraction of transparent media
JPS61233328A (en) Colorimetric color difference meter
JPS63273023A (en) Spectrophotometer
JPH08159876A (en) Spectrometric apparatus
JPH0953988A (en) Apparatus for measuring coloring of liquid
JP2005274143A (en) Method for analyzing multicomponent aqueous solution
JP2751734B2 (en) Spectrophotometer