JPS62221836A - Structure of iron core for rotary motor - Google Patents

Structure of iron core for rotary motor

Info

Publication number
JPS62221836A
JPS62221836A JP6070886A JP6070886A JPS62221836A JP S62221836 A JPS62221836 A JP S62221836A JP 6070886 A JP6070886 A JP 6070886A JP 6070886 A JP6070886 A JP 6070886A JP S62221836 A JPS62221836 A JP S62221836A
Authority
JP
Japan
Prior art keywords
magnetic flux
slots
caulking
iron core
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6070886A
Other languages
Japanese (ja)
Inventor
Kiyomi Takeda
清美 武田
Toji Kawamura
川村 統治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP6070886A priority Critical patent/JPS62221836A/en
Publication of JPS62221836A publication Critical patent/JPS62221836A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress cogging phenomenon by arranging caulking portions half in number of slots and by posting them equi-distantly to an iron core. CONSTITUTION:A stator core 1 is formed ring-shapedly and a rotor shaft is inserted rotatably inside the core. On the internal surface of the stator core 1, slots 6, into which coils are inserted, are formed at equal intervals in 18 spots between tees. V caulkings are arranged at an equal angular interval of 40 deg. on 9 spots, i.e. half in the number of slots 6. Thus the flux is kept constantly to a predetermined value while a rotor is rotating, so that the cogging torque becomes constant and the cogging phenomenon can be suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は回転電動機の固定子コア、回転コア等の鉄心に
係り、特に薄鉄板をカシメ結合によって所定厚さとなる
にうに積層されてなる鉄心構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an iron core for a stator core, rotating core, etc. of a rotating electric motor, and particularly to an iron core formed by laminating thin iron plates to a predetermined thickness by caulking them together. Regarding structure.

〔従来の技術〕[Conventional technology]

回転電機の固定子コア等に使用される鉄心は、一般に、
薄鉄板を打ち抜き加工によってリング状に形成し、この
薄鉄板を複数枚積層して所定厚さとなるように組み立て
られる。この積層の際には、薄鉄板にVカシメ等のカシ
メ部を形成して隣接積層される薄鉄板のカシメ部に1■
め込むことで薄鉄板を相互に結合している。しかしなが
ら、このようなカシメ部を形成すると鉄心を流れる磁束
が減少して磁束流のバランスが乱れ回転電動機の作動中
にコギング現象が生じる。
Iron cores used in stator cores of rotating electric machines are generally
A thin iron plate is formed into a ring shape by punching, and a plurality of these thin iron plates are stacked to form a predetermined thickness. During this lamination, a caulking part such as a V caulking is formed on the thin iron plate, and a 1 inch
The thin iron plates are connected to each other by being inlaid. However, when such a caulked portion is formed, the magnetic flux flowing through the iron core is reduced, the balance of the magnetic flux flow is disturbed, and a cogging phenomenon occurs during operation of the rotary motor.

第6図はカシメ部が形成されていない鉄心を固定子コア
に適用した場合の正面図、第7図がカシメ部に形成され
た鉄心を同」7に適用した場合の正面図である。これら
の図において、固定子コア1はリング状に形成され、内
部に回転軸2が回転可能に挿入されている。回転軸2の
外周部にはN極マグネット3 d3 にびS極マグネッ
ト4が取り付けられている。固定子コア1の内面にはコ
イルが挿入されるスロワI〜6がティース5の間に等間
隔で形成され、コイルに通電することで回転軸2を回転
させる磁界が発生するようになっている。この場合、ス
ロット6は同一円周上に18個所、等分に配設されてい
る。又、第7図においては、固定子コア1を組付()る
ためのVカシメ7が6箇所に等分配置で形成されている
。各図において、磁束は破線で示すように流れ、カシメ
部が形成されていない第6図の磁束をA点で示すN極マ
グネット3とS極マグネット4との境界部e観察すると
、N4aiマグネツト3から出た磁束は隣接づるS極マ
グネット4に100%の確率で戻るようになっている。
FIG. 6 is a front view of an iron core without a caulked portion applied to the stator core, and FIG. 7 is a front view of the iron core formed with a caulked portion applied to the stator core. In these figures, a stator core 1 is formed into a ring shape, into which a rotating shaft 2 is rotatably inserted. An N-pole magnet 3 d3 and a S-pole magnet 4 are attached to the outer periphery of the rotating shaft 2 . Throwers I to 6, into which coils are inserted, are formed on the inner surface of the stator core 1 at equal intervals between the teeth 5, and by energizing the coils, a magnetic field that rotates the rotating shaft 2 is generated. . In this case, the slots 6 are equally distributed at 18 locations on the same circumference. Further, in FIG. 7, V crimps 7 for assembling the stator core 1 are formed in six equally spaced locations. In each figure, the magnetic flux flows as shown by the broken line, and when the magnetic flux in FIG. 6, where no caulked part is formed, is observed at the boundary e between the N-pole magnet 3 and the S-pole magnet 4, indicated by point A, the N4ai magnet 3 The magnetic flux emitted from the magnet returns to the adjacent S-pole magnet 4 with a 100% probability.

従って、全ての境界部での磁束の総和は、φ1+φ2+
φ3+φ4+φ5+φ6−Φどなっている。この磁束の
総和は回転軸2が回転してマグネット3./lが移動し
ても各位置ぐ同じ1lrI(Φ)であり、磁束は回転軸
2の回転中、すべでの位j行でバランスされコギング現
象を生じることがない。
Therefore, the total magnetic flux at all boundaries is φ1+φ2+
φ3+φ4+φ5+φ6-φ. The sum of this magnetic flux is generated by the rotation of the rotating shaft 2 and the magnet 3. Even if /l moves, the same 1lrI(Φ) is maintained at each position, and the magnetic flux is balanced at all positions j rows during the rotation of the rotating shaft 2, and no cogging phenomenon occurs.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このJ、うなカシメ部のない鉄心構造に対し、Vカシメ
7が形成された第7図の鉄心の場合には磁束が■カシメ
7を通過する場合と、Vカシメ7を通過しない場合とで
大ぎさがWなる。これににす、回転軸2の回転角度によ
っては他の磁束よりも磁束が小さい部分が生じ、第8図
に示ずにうにコギングトルクが変化してコギング現象が
生じる。
In contrast to the core structure without J and U swage parts, in the case of the core shown in Fig. 7 where V swage 7 is formed, the magnetic flux is large depending on ■ cases where it passes through swage 7 and cases where it does not pass through V swage 7. Gisa becomes W. In addition, depending on the rotation angle of the rotary shaft 2, there may be a portion where the magnetic flux is smaller than other magnetic fluxes, and the cogging torque changes as shown in FIG. 8, resulting in a cogging phenomenon.

本発明は、Vカシメのようなカシメ部が形成された場合
のコギング現象を抑制して回転電動機の円滑な駆動を行
なうことができる鉄心構造を提供することを、その目的
とする。
An object of the present invention is to provide an iron core structure capable of suppressing the cogging phenomenon when a caulked portion such as a V caulking is formed, thereby allowing smooth driving of a rotating electric motor.

(問題点を解決するための手段〕 本発明は鉄心に流れる磁束を全体として均一化したもの
であり、カシメ結合を行なうカシメ部の数をスロットの
総数の半数とし、且つ等分に配置したことを特徴としC
いる。
(Means for Solving the Problems) The present invention uniformizes the magnetic flux flowing through the iron core as a whole, and the number of caulked parts for caulking connection is half of the total number of slots, and they are arranged equally. C
There is.

〔作 用〕[For production]

コギング現象は磁束がカシメ部を通過する際に減少し、
カシメ部を通過しない場合にりも小ざくなる。しかしな
がら、このカシメ部での減少率はカシメ部が一定形状、
一定の人ぎさぐあれば略−−3一 定(1t1である。本発明においては、カシメ部が等分
に配置されているから鉄心全体で均一に減少し、偏りが
なくなる。又、本発明Cはカシメ部がスロットのず数と
なるように形成されており、カシメ部を通過する磁束の
数とカシメ部を通過しない磁束の数とが等しくなる。従
って、本発明の構成により鉄心を流れる磁束は全体どし
て均一化され、コギング現象が抑制される。
The cogging phenomenon decreases when the magnetic flux passes through the caulking part,
If it does not pass through the caulking part, the glue will be small. However, the reduction rate at this caulking part is due to the fact that the caulking part has a constant shape.
If there is a certain amount of force, it is approximately -3 constant (1t1).In the present invention, since the caulked portions are arranged equally, the decrease is uniform throughout the core, and there is no deviation.In addition, the present invention C is formed so that the number of caulked portions is the same as that of the slot, and the number of magnetic fluxes passing through the caulking portion is equal to the number of magnetic fluxes not passing through the caulking portion. Therefore, with the configuration of the present invention, the magnetic flux flowing through the iron core is is made uniform throughout, and the cogging phenomenon is suppressed.

〔実施例〕〔Example〕

以下、本発明を図示する実施例につき、さらに具体的に
説明づる。
Hereinafter, embodiments illustrating the present invention will be described in more detail.

まず、18のスロット数に対してVカシメ部7が3分の
1r:ある6箇所に等分配置された従来の磁束量を計算
する。回転軸2のN極マグネット3から固定子コア1の
各ティース5を通過する磁束量をTとし、■カシメ7を
通過する磁束量をT/2とするど、各ティース5から流
れる磁束は左右に2等分されるから、第9図の状態では
各Vカシメ7での磁束φ 、φ2.φ3.φ4.φ5.
φ6は以下のようになる。
First, the amount of magnetic flux in a conventional case where the V-caulking portions 7 are equally distributed at 1/3 r: six locations with respect to 18 slots is calculated. The amount of magnetic flux passing through each tooth 5 of the stator core 1 from the N-pole magnet 3 of the rotating shaft 2 is T, and the amount of magnetic flux passing through the caulking 7 is T/2.The magnetic flux flowing from each tooth 5 is divided into left and right directions. Therefore, in the state shown in FIG. 9, the magnetic fluxes φ, φ2, . φ3. φ4. φ5.
φ6 is as follows.

=  4 − φ −φ2・−φ3−φ4−φ5−φ6 (丁子T/2
)/ 2 よって、これらを加算した全磁束量は(T + T/2
)/2x6=(9/2)■どなる。
= 4 − φ −φ2・−φ3−φ4−φ5−φ6 (Clove T/2
)/2 Therefore, the total magnetic flux amount by adding these is (T + T/2
)/2x6=(9/2) ■Howler.

次に、回転軸2が回転して1テイ一ス分移動した第10
図の状態では、 φ1−φ3−φ5=T+T/2 /2=T+T/4φ 
−φ4−φ(’+ =T+T/2 =T+T/2よって
全体の磁束量は(33//l)Tとなる。
Next, the rotating shaft 2 rotates and moves by one step.
In the state shown in the figure, φ1-φ3-φ5=T+T/2/2=T+T/4φ
-φ4-φ('+ =T+T/2 =T+T/2 Therefore, the total amount of magnetic flux is (33//l)T.

さらに、回転軸2が回転しIζ第10図の状態から1テ
イ一ス分移動した第11図の状態では、φ 1− φ 
3− φ 5 =T  −ト T/2φ2=φ4−・φ
6= 1− 十T/2 / 2であるから、全磁束量は
(33/4)Tとなる。従って、磁束の最大値((33
/4)T)ど最小値((9/2)T )との差は(15
/40ぐあり、回転軸2の各回転位置における磁束は、
この(15/4)’rの範囲で変化するからコギング現
象が生じる。
Furthermore, in the state shown in FIG. 11 where the rotating shaft 2 rotates and moves by one step from the state shown in FIG. 10, φ 1− φ
3-φ5 =T-T/2φ2=φ4-・φ
Since 6=1-10T/2/2, the total amount of magnetic flux is (33/4)T. Therefore, the maximum value of magnetic flux ((33
/4)T) The difference from the minimum value ((9/2)T) is (15
/40 degrees, the magnetic flux at each rotational position of the rotating shaft 2 is
Since it changes within this range of (15/4)'r, a cogging phenomenon occurs.

これに対して、本発明の一実施例である第1図によって
全磁束量を4算する。第1図は、固定子コア1にスロッ
ト6が18箇所に等分成形されており、■カシメ7がス
ロット6の半数である9箇所に40麿の離隔角度で等分
配置されている。同図における磁束を計算すると、 φ −φ3−φs = T +T/2 / 2φ 2−
 φ 4− φ 6  〈 T 十 丁/2)/2であ
り、全磁束量は6Tとなる。次に、回転軸2が回転して
マグネットが1テイ一ス分移動した第2図の状態では、
各磁束は φ1−φ3−φ5(T + T/ 2) / 2φ −
φ4−φ6= T + T/2 / 2であるから、全
磁束は6Tとなる。さらに、マグネットが1テイ一ス分
移動した第3図の状態では、φ1−φ3−φ5= T 
+ T/2 / 2φ −φ4−φ6  (T +T/
2 ) / 2となり、全磁束量は6丁となる。回転軸
2の回転ににる磁束は以上の繰り返しであるから、回転
子2の各位置での磁束量は6丁と一定であり、これによ
り磁束は回転子の回転中に常に一定値に維持され、コギ
ングトルクが一定となり、コギング現象を抑制すること
ができる。
On the other hand, the total amount of magnetic flux is calculated by 4 according to FIG. 1, which is an embodiment of the present invention. In FIG. 1, slots 6 are formed in a stator core 1 in 18 equal parts, and crimps 7 are equally arranged in nine places, which is half of the slots 6, at a separation angle of 40 mm. Calculating the magnetic flux in the same figure, φ −φ3−φs = T + T/2 / 2φ 2−
φ 4 − φ 6 (< T 10/2)/2, and the total amount of magnetic flux is 6T. Next, in the state shown in Fig. 2 where the rotating shaft 2 rotates and the magnet moves by one tooth,
Each magnetic flux is φ1-φ3-φ5 (T + T/2) / 2φ −
Since φ4-φ6=T+T/2/2, the total magnetic flux is 6T. Furthermore, in the state shown in Fig. 3 where the magnet has moved by one tooth, φ1-φ3-φ5=T
+ T/2 / 2φ −φ4−φ6 (T +T/
2) / 2, and the total amount of magnetic flux is 6 teeth. Since the magnetic flux generated by the rotation of the rotating shaft 2 is repeated as described above, the amount of magnetic flux at each position of the rotor 2 is constant at 6 teeth, and as a result, the magnetic flux is always maintained at a constant value during the rotation of the rotor. Therefore, the cogging torque becomes constant, and the cogging phenomenon can be suppressed.

第4図おにび第5図は本発明の別の実施例を示す正面図
でi3つる。これらは3相モータに使用される実施例で
あり、これらの図では固定子コア1にスロット6が12
箇所に等分で配置されている。
Figures 4 and 5 are front views showing another embodiment of the present invention. These are embodiments used for three-phase motors, and in these figures the stator core 1 has 12 slots 6.
They are evenly distributed in different locations.

ここで、第4図々示のものは、固定子コア1内で回転す
る回転@2にはN極マグネット3.S極マグネット4が
それぞれ1個ずつ取り付りられている。かかる構造でス
ロット6の半数で等分配置されるVカシメ7はいずれb
ティース7の根元部分に形成される。又、第5図々示の
ものは、NVMマグネット3およびS極マグネット4が
回転軸2にそれぞれ2個ずつ取りイ4りられでおり、こ
の(14造ではVカシメ7はス1]ツ1−6の底部に形
成される。
Here, the one shown in FIG. 4 has an N-pole magnet 3. One S-pole magnet 4 is attached to each. In such a structure, the V caulking 7, which is equally distributed in half of the slots 6, will eventually become b
It is formed at the root portion of the teeth 7. In addition, in the one shown in Figure 5, two NVM magnets 3 and two S-pole magnets 4 are each mounted on the rotating shaft 2. -6 is formed at the bottom.

なお、以上の実施例では鉄心を固定子コアに適用した場
合を示したが、直流電動機では回転子に適用することが
できる。又、本発明では、カシメ部はカシメ結合を行な
えばにいから、Vカシメと同様なカシメ効果を有する丸
い半抜きカシメでもよく、ビンをかしめるための穴であ
ってもよい。
In addition, although the above embodiment shows the case where the iron core is applied to the stator core, it can also be applied to the rotor of a DC motor. Further, in the present invention, since the caulking portion does not need to be connected by caulking, it may be a round half-open caulking having a caulking effect similar to a V caulking, or it may be a hole for caulking a bottle.

〔発明の効果〕〔Effect of the invention〕

以上のとおり本発明によると、カシメ部をスロット数の
半分とし、且つ鉄心に等分配置して磁束の均一化を図っ
たから、コギング現象を効果的に抑制することができる
As described above, according to the present invention, the number of caulked portions is half the number of slots, and the number of caulked portions is equal to the number of slots, and the magnetic flux is made uniform by equally distributing the caulked portions on the iron core, so that the cogging phenomenon can be effectively suppressed.

【図面の簡単な説明】 第1図は本発明の一実施例の正面図、第2図および第3
図は作動状態の正面図、第4図および第5図は本発明の
別の実施例の正面図、第6図はカシメ部が形成されてい
ない従来例の正面図、第7図はカシメ部が形成された従
来例の正面図、第8図コギングトルクの特性図、第9図
、第10図、第11図は第7図の作動状態を示す正面図
である。 1・・・固定子コア(鉄心)、2・・・回転軸、3・・
・Nff1マグネツト、4・・・S極マグネット、5・
・・ティース、6・・・スロット、7・・・Vカシメ(
カシメ部)。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a front view of one embodiment of the present invention, FIG.
4 and 5 are front views of another embodiment of the present invention. FIG. 6 is a front view of a conventional example in which a caulking portion is not formed. FIG. 7 is a front view of a conventional example in which a caulking portion is not formed. FIG. 8 is a characteristic diagram of cogging torque, and FIGS. 9, 10, and 11 are front views showing the operating state of FIG. 7. 1... Stator core (iron core), 2... Rotating shaft, 3...
・Nff1 magnet, 4...S pole magnet, 5・
...teeth, 6...slot, 7...V caulking (
caulking part).

Claims (1)

【特許請求の範囲】 ティースを介して複数のスロットが定間隔で形成された
薄鉄板をカシメ結合により積層してなる鉄心において、 前記カシメ結合を行なうカシメ部が前記スロットの総数
の半分の数で等分配置されていることを特徴とする回転
電動機の鉄心構造。
[Claims] In an iron core formed by laminating thin iron plates in which a plurality of slots are formed at regular intervals through teeth by caulking, the number of caulked portions for performing the caulking is half of the total number of slots. An iron core structure for a rotating electric motor characterized by being equally spaced.
JP6070886A 1986-03-20 1986-03-20 Structure of iron core for rotary motor Pending JPS62221836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6070886A JPS62221836A (en) 1986-03-20 1986-03-20 Structure of iron core for rotary motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6070886A JPS62221836A (en) 1986-03-20 1986-03-20 Structure of iron core for rotary motor

Publications (1)

Publication Number Publication Date
JPS62221836A true JPS62221836A (en) 1987-09-29

Family

ID=13150056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6070886A Pending JPS62221836A (en) 1986-03-20 1986-03-20 Structure of iron core for rotary motor

Country Status (1)

Country Link
JP (1) JPS62221836A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016583A1 (en) * 2008-08-07 2010-02-11 ダイキン工業株式会社 Stator, motor, and compressor
WO2012046275A1 (en) * 2010-10-06 2012-04-12 三菱電機株式会社 Fan motor and air conditioner provided with same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224532A (en) * 1982-06-22 1983-12-26 Mitsubishi Electric Corp Apparatus for fixing laminated core in electric equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224532A (en) * 1982-06-22 1983-12-26 Mitsubishi Electric Corp Apparatus for fixing laminated core in electric equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016583A1 (en) * 2008-08-07 2010-02-11 ダイキン工業株式会社 Stator, motor, and compressor
JP2010063351A (en) * 2008-08-07 2010-03-18 Daikin Ind Ltd Stator, motor and compressor
CN102113196A (en) * 2008-08-07 2011-06-29 大金工业株式会社 Stator, motor, and compressor
US8410655B2 (en) 2008-08-07 2013-04-02 Daikin Industries, Ltd. Stator, motor, and compressor
WO2012046275A1 (en) * 2010-10-06 2012-04-12 三菱電機株式会社 Fan motor and air conditioner provided with same

Similar Documents

Publication Publication Date Title
JP3131403B2 (en) Stepping motor
JP6700596B2 (en) Rotor for axial gap motor and axial gap motor
JP2005012920A (en) Three-phase synchronous reluctance motor
JP3084220B2 (en) Hybrid type step motor
JPH11313451A (en) Motor
JP2002058184A (en) Rotor construction and motor
JP2536882Y2 (en) Rotating electric machine
JPS62221836A (en) Structure of iron core for rotary motor
JP2013038858A (en) Rotor
JP2881459B2 (en) Induction motor cage rotor core
JP2019041551A (en) Axial gap motor
JPH02254954A (en) Slot motor
JP2739332B2 (en) 4-phase hybrid type stepping motor
JP2000125533A (en) Motor
JPS63171150A (en) Brushless dc motor
US11418098B2 (en) Rotor, motor, and driving apparatus
JP2607517Y2 (en) Brushless motor
JP2619674B2 (en) Permanent magnet type stepping motor
JPH027270B2 (en)
JPS61116952A (en) Synchronous motor
JP3138628B2 (en) Driving method of hybrid type step motor
JP3109022B2 (en) Inductor type electric motor
JP3138627B2 (en) Driving method of hybrid type step motor
JPS6331455A (en) Motor
JPH0127422Y2 (en)