JPS622216B2 - - Google Patents

Info

Publication number
JPS622216B2
JPS622216B2 JP14263683A JP14263683A JPS622216B2 JP S622216 B2 JPS622216 B2 JP S622216B2 JP 14263683 A JP14263683 A JP 14263683A JP 14263683 A JP14263683 A JP 14263683A JP S622216 B2 JPS622216 B2 JP S622216B2
Authority
JP
Japan
Prior art keywords
fuel
air
region
combustor
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14263683A
Other languages
Japanese (ja)
Other versions
JPS5944524A (en
Inventor
Rairu Toofu Joeru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Publication of JPS5944524A publication Critical patent/JPS5944524A/en
Publication of JPS622216B2 publication Critical patent/JPS622216B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion

Description

【発明の詳細な説明】 本発明は陸用タービンで使用される燃焼器に関
し、特に、燃料と空気の混合物が触媒燃焼領域に
流入する前に、燃焼器の混合領域における燃料と
空気の混合が実質的に一様であることが必要な触
媒燃焼器に関するものである。 予混合燃焼器における燃料及び空気の予混合
は、適正な燃焼運転温度及び適正な反応を通じて
燃焼器の寿命を延ばし、燃焼器の効率を上げ、放
出物を少なくするために必要である。触媒燃焼器
は、発電用プラントその他の陸上での応用の場合
に、低公害、即ち低NOXで燃焼タービンを運転す
るための、実用的な一つの商業的選択枝であり、
そして適正な触媒燃焼には特に、燃焼器の混合領
域内における燃料と空気の予混合が実質的に一様
であることが要求される。 大抵のエンジン構造における圧縮機のある排気
圧力レベルから考えて、適正な触媒燃焼のために
は、燃料の予混合が多少必要である。触媒燃焼器
は、1次燃焼領域を有し、そしてその後に順番に
先ず2次燃料噴射及び混合領域と、最後に触媒領
域とを有する管状の囲いを具えることができる。
1次燃焼領域は、例えば、運転温度が触媒燃焼を
適正に持続させない始動中に動作する。運転の触
媒燃焼段階中には、2次燃料を混合領域内に噴射
して、そこで燃料を、触媒領域を経て流れチヤン
ネルに運ぶように空気と混合する。 2次燃料噴射装置は混合領域を円周方向に取り
巻くように配置されるのが典型的であつて、該2
次燃料噴射装置は燃料を半径方向の内向きに90゜
或はその他の予め設定した角度で燃焼器の混合領
域内へ注入することができる。また、燃料は触媒
に入る前に好ましくは完全に蒸発させなければな
らず、これは、燃料ノズルが迅速に蒸発しうる非
常に細かい微粒子をつくることを必要とする。微
粒子は、燃料ノズルの圧力降下を非常に大きくす
るか(圧力微粒化)、高エネルギーの微粒化空気
を少量使用するか(空気アシスト)、低エネルギ
ーの微粒化空気を比較的に多量使用する(空気ブ
ラスト)ことにより得ることができる。いずれの
場合も、その結果得られる燃料スプレーの運動量
は非常に大きい。実際に、燃焼器内部の対向流空
気の運動量に関し、燃料スプレーの運動量は非常
に大きいので、燃料は燃焼器の中心(軸心)まで
通り抜けてしまう傾向がある。この作用により燃
料の濃厚な芯ができる、即ち燃空比のプロフイー
ルは燃焼器混合領域の横断面の基準直径両端に唯
1つの中心ピークを有する形状である。 燃空比は燃料噴射面又は噴射領域における軸心
で最も大きく、そして半径方向外向きの方向では
減少する。混合物が混合領域を通つて下流に流れ
るときに、更に混合作用が働いて燃空比を幾分平
滑にする。しかし、一般に噴射領域における燃料
貫入は、軸方向の燃料濃度が高過ぎて下流での混
合を利用して実質的に一様な燃空比分布を触媒入
口面にもたらすことができなかつた。 本発明によれば、軸方向における噴射燃料の偏
向を助成して、燃焼が起こる領域の直ぐ上流にあ
る混合領域における燃料と空気の混合をもつと一
様にする構造によつて、燃焼器、特に触媒燃焼器
において改善された作用が得られる。該構造、空
気流指向装置は、流入する空気流が下流側に傾斜
するように、燃料噴射装置の上流の燃焼器壁に円
周方向に分布された複数の空気孔を含むことが好
ましい。流入する空気流は燃焼器壁における圧力
降下に由来する高速を有し、従つて、内部のガス
流が噴射燃料を軸方向に偏向させて、触媒入口面
において燃空比のプロフイールを実質的に一様に
するのに大きく助力する。 次に本発明の好適な実施例を添付図面について
説明する。 特に、第1図に示された触媒燃焼器10は、代
表的には発電その他の産業プラントで使用される
陸用燃焼タービンのためのものである。 燃焼器10は、燃焼工程で用いられた空気の導
入用の開口即ち孔14,16が順次円周方向の列
になつて存在するほぼ管状の側壁12からなる管
状構造を含んでいる。燃焼器10の頭部18で
は、1次燃料ノズル20が燃料を導入して、運転
条件が触媒燃焼を持続するようになるまで、始動
に必要なエネルギーを発生させるべく1次領域2
2において燃焼させる。また、1次燃料ノズル2
0は、触媒入口面(混合領域出口)24における
ガス温度を効率的な触媒燃焼に必要な温度(即
ち、約982〜1065℃)に維持するに要する予熱を
行なうために、触媒運転中の1次燃焼のため若干
の燃料を供給する。燃焼器の全運転に含まれる1
次燃料の燃焼量は、NOX生成量が環境規準よりも
十分に低いようになつている。 側壁12の外端26は外側に開いて、ハニカム
構造の通常の触媒素子28に接続されている。ま
た、触媒領域の出口30は、高温ガスをタービン
(図示しない)へ導く中間ダクト(図示しない)
に接続されている。 2次燃料は、1次燃焼領域22の下流端におい
て円周方向に隔置された散布装置即ち1組のノズ
ル32により、運転の領域燃焼段階中に燃焼器1
0内に噴射される。ノズルのある位置で空気を燃
焼器10内に入れてもよいし、入れなくてもよ
い。1次領域と触媒素子28との間の燃焼器混合
領域34は、触媒素子28に入る前の2次燃料と
空気の混合に備えている。この領域34は混合領
域と呼ばれており、この領域においては、逆火が
燃焼器及び/又は触媒素子28を損傷させるの
で、燃焼は回避されており起こらない。第2図及
び第4図に関してもつと十分に説明するように、
燃焼器側壁における2次燃料噴射の直ぐ上流で円
周方向の列になつて配設された空気流指向装置即
ち空気孔36は下流方向に空気を入れるべく角度
が付いており、混合領域34における2次燃料と
空気の一様な混合をもたらす。 第2図に拡大して示すように、触媒素子28に
対して実質的に一様な燃料及び空気の混合物をつ
くるべく2次燃料の偏向を助成するように、角度
の付いた筒部37が内部に設けられていて、空気
孔36を通る空気流(ブースター空気流)39に
傾斜を与えている。第2図に示すように、傾斜し
た空気流39は、横流空気41が2次燃料ノズル
32による燃料スプレーを偏向させるのを、明ら
かに助長する。第3図においては、外部にある筒
部33が同様の燃料及び空気の混合作用をする別
の実施例が示されている。 一般に、燃焼器側壁12の両面間の圧力降下を
利用することによつて、燃料と空気の分布が制御
され、中心にピークがくる燃料と空気の混合状況
が回避される。この圧力降下は通常十分に大きい
ので、空気孔から燃焼器10に入る空気の速度は
燃焼器10の内側をすでに流れている空気の速度
よりももつと大きい。従つて、流入空気の運動量
束(単位時間における単位面積当りの運動量)が
もつと大きくなる。燃料スプレーの直ぐ上流に位
置決めされ下流に傾斜した没入空気孔又は筒部で
は、空気孔を通つて入つた空気の高速度が中心に
ピークのある非一様な燃料と空気の混合状況を回
避する根底になる。実際には、空気孔の角度を変
えて、触媒素子28に入る燃料と空気の混合プロ
フイールを制御することができる。 前述したように空気に角度を付けて入れる構成
では、触媒燃焼器に対する燃料の側壁噴射は、触
媒に接近する燃料と空気の混合物に所要の一様性
を与えることができる。 第4図に試験結果を示すように、触媒入口の燃
空比プロフイールを反映する触媒出口温度は、中
心にピークのある先行技術の分布に比較して、本
発明の実施例では比較的に一様な分布曲線44
(即ち、大体において平らな形状)を示す。第5
図は試験の際に先行技術として用いた構造を示し
ており、一方第2図は試験に用いた本発明の構造
を示す。本発明の構造における角度の付いた空気
流が主な改良点である。混合の改良は、もつと有
利な混合場所への傾斜空気流による燃料スプレー
の結果として、若しくは恐らく、2次燃料スプレ
ーが燃焼器に入る領域における、空気でブースト
される乱流運動エネルギーの結果として、起こる
と思われる。 第4図に示した試験に適用できる条件は次の通
りである。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to combustors used in land-based turbines, and more particularly, the present invention relates to combustors for use in land-based turbines, and more particularly, the present invention relates to combustors for use in land-based turbines, and more particularly, the present invention relates to combustors for use in land-based turbines. The present invention relates to a catalytic combustor that is required to be substantially uniform. Premixing of fuel and air in a premix combustor is necessary to extend combustor life, increase combustor efficiency, and reduce emissions through proper combustion operating temperatures and proper reactions. Catalytic combustors are a practical commercial option for operating combustion turbines with low pollution, i.e., low NOx , in power plants and other land-based applications.
Proper catalytic combustion, in particular, requires substantially uniform premixing of fuel and air within the mixing region of the combustor. Given the compressor exhaust pressure levels in most engine designs, some fuel premixing is necessary for proper catalytic combustion. A catalytic combustor may include a tubular enclosure having a primary combustion zone, followed in sequence first by a secondary fuel injection and mixing zone and finally by a catalytic zone.
The primary combustion zone operates, for example, during startup when operating temperatures do not adequately sustain catalytic combustion. During the catalytic combustion phase of operation, secondary fuel is injected into the mixing region where it mixes with air for transport through the catalytic region and into the flow channel. The secondary fuel injector is typically disposed circumferentially surrounding the mixing region, and the secondary fuel injector is
The secondary fuel injector may inject fuel radially inward at 90 degrees or other predetermined angle into the mixing region of the combustor. Also, the fuel must preferably be completely evaporated before entering the catalyst, which requires the fuel nozzle to create very fine particulates that can be quickly evaporated. Particulates can be produced either by creating a very high pressure drop across the fuel nozzle (pressure atomization), by using a small amount of high-energy atomizing air (air assist), or by using a relatively large amount of low-energy atomizing air ( air blast). In either case, the momentum of the resulting fuel spray is very large. In fact, the momentum of the fuel spray is so great with respect to the momentum of the counterflow air inside the combustor that the fuel tends to pass through to the center (axis) of the combustor. This effect creates a rich core of fuel, ie, a fuel-air ratio profile with only one central peak at either end of the nominal diameter of the cross-section of the combustor mixing region. The fuel-air ratio is greatest axially at the fuel injection surface or region and decreases in the radially outward direction. As the mixture flows downstream through the mixing region, additional mixing action takes place to somewhat smooth the fuel-air ratio. However, fuel penetration in the injection region has generally resulted in axial fuel concentrations that are too high to utilize downstream mixing to provide a substantially uniform fuel-air ratio distribution at the catalyst inlet face. In accordance with the invention, a combustor, by means of a structure that aids in the deflection of the injected fuel in the axial direction, resulting in a uniform mixture of fuel and air in a mixing region immediately upstream of the region in which combustion occurs; An improved performance is obtained especially in catalytic combustors. Preferably, the structure, airflow directing device, includes a plurality of circumferentially distributed air holes in the combustor wall upstream of the fuel injector such that the incoming airflow is angled downstream. The incoming airflow has a high velocity due to the pressure drop at the combustor wall, so that the internal gas flow axially deflects the injected fuel to substantially alter the fuel-air ratio profile at the catalyst inlet face. It greatly helps in uniformity. Preferred embodiments of the invention will now be described with reference to the accompanying drawings. In particular, the catalytic combustor 10 shown in FIG. 1 is for land-based combustion turbines, typically used in power generation and other industrial plants. Combustor 10 includes a tubular structure consisting of a generally tubular sidewall 12 having sequential circumferential rows of openings or holes 14, 16 for the introduction of air used in the combustion process. In the head 18 of the combustor 10, a primary fuel nozzle 20 introduces fuel into the primary region 2 to generate the energy required for start-up until operating conditions are such that sustaining catalytic combustion.
Burn it in step 2. In addition, the primary fuel nozzle 2
0 during catalyst operation to provide the preheating necessary to maintain the gas temperature at the catalyst inlet face (mixing zone outlet) 24 at the temperature required for efficient catalytic combustion (i.e., approximately 982-1065°C). Supply some fuel for the next combustion. 1 included in the entire operation of the combustor
The amount of combustion of the following fuel is such that the amount of NOx produced is sufficiently lower than environmental standards. The outer end 26 of the side wall 12 is open to the outside and connected to a conventional catalytic element 28 of honeycomb structure. The outlet 30 of the catalyst region is also connected to an intermediate duct (not shown) that guides the hot gas to a turbine (not shown).
It is connected to the. Secondary fuel is delivered to the combustor 1 during the zone combustion phase of operation by a set of circumferentially spaced sparge devices or nozzles 32 at the downstream end of the primary combustion zone 22.
Injected within 0. Air may or may not be introduced into the combustor 10 at a location of the nozzle. A combustor mixing region 34 between the primary region and the catalytic element 28 provides for mixing of the secondary fuel and air before entering the catalytic element 28 . This region 34 is called the mixing region, in which combustion is avoided and does not occur since flashbacks would damage the combustor and/or the catalytic element 28. As will be fully explained with reference to FIGS. 2 and 4,
Airflow directing devices or holes 36 arranged in a circumferential row immediately upstream of the secondary fuel injection in the combustor sidewall are angled to admit air in a downstream direction, and are angled to admit air in a downstream direction. Provides uniform mixing of secondary fuel and air. As shown enlarged in FIG. 2, an angled tube 37 is provided to assist in deflecting the secondary fuel to create a substantially uniform fuel and air mixture relative to the catalytic element 28. It is provided inside and gives an inclination to the air flow (booster air flow) 39 passing through the air hole 36. As shown in FIG. 2, the angled airflow 39 clearly assists the crossflow air 41 in deflecting the fuel spray by the secondary fuel nozzle 32. In FIG. 3, an alternative embodiment is shown in which an external tube 33 performs a similar fuel and air mixing function. Generally, by utilizing the pressure drop across the combustor sidewalls 12, the fuel and air distribution is controlled and a peaked fuel and air mixing situation is avoided. This pressure drop is typically large enough that the velocity of the air entering the combustor 10 through the air vents is greater than the velocity of the air already flowing inside the combustor 10. Therefore, the momentum flux (momentum per unit area in unit time) of the incoming air increases. A recessed air hole or tube positioned just upstream of the fuel spray and sloped downstream avoids a non-uniform fuel-air mixing situation where the high velocity of air entering through the air hole peaks in the center. Become the root. In practice, the angle of the air holes can be varied to control the mixing profile of fuel and air entering the catalytic element 28. With the angled air entry configuration described above, sidewall injection of fuel into the catalytic combustor can provide the required uniformity of the fuel and air mixture approaching the catalyst. As shown in the test results in FIG. 4, the catalyst outlet temperature, which reflects the fuel-air ratio profile at the catalyst inlet, is relatively uniform in the embodiment of the present invention compared to the prior art distribution with a peak in the center. various distribution curves 44
(i.e., a generally flat shape). Fifth
The figure shows the structure used in the prior art during testing, while FIG. 2 shows the structure of the invention used in testing. The angled airflow in the structure of the present invention is the main improvement. The improvement in mixing may be as a result of spraying the fuel with an angled air stream into a favorable mixing location, or perhaps as a result of air-boosted turbulent kinetic energy in the region where the secondary fuel spray enters the combustor. , seems to happen. The conditions applicable to the test shown in Figure 4 are as follows. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に従つて構成された触媒燃焼器
を一部切り欠いて示す断面図、第2図は第1図の
一部を拡大して示す断面図、第3図は外部に筒部
を有する別の実施例の第2図に相当する断面図、
第4図は本発明を使用して得られた試験結果を先
行技術と比較して示す曲線図、第5図は比較試験
結果を得るのに用いた先行技術の断面図である。 10……タービン燃焼器、12……管状構造の
側壁、14,16……開口、20……1次領域、
24……混合領域の出口(触媒入口面)、32…
…散布装置(ノズル)、34……混合領域、36
……空気流指向装置(空気孔)、33,37……
空気流指向装置(筒部)、39……ブースター空
気流、41……横流空気。
FIG. 1 is a partially cutaway cross-sectional view of a catalytic combustor constructed according to the present invention, FIG. 2 is an enlarged cross-sectional view of a portion of FIG. 1, and FIG. a sectional view corresponding to FIG. 2 of another embodiment having a section;
FIG. 4 is a curve diagram showing test results obtained using the present invention in comparison with the prior art, and FIG. 5 is a cross-sectional view of the prior art used to obtain the comparative test results. 10... Turbine combustor, 12... Side wall of tubular structure, 14, 16... Opening, 20... Primary region,
24... Outlet of mixing region (catalyst inlet surface), 32...
... Spraying device (nozzle), 34 ... Mixing area, 36
...Air flow directing device (air hole), 33, 37...
Air flow directing device (cylindrical part), 39... Booster air flow, 41... Cross flow air.

Claims (1)

【特許請求の範囲】 1 開口のある側壁を具えた管状構造であつて、
下流での燃焼のために燃料と空気の混合物が拡が
る下流側の混合領域と、上流側の1次領域とを有
し、前記開口から空気が該1次領域に入つて下流
の2次噴射燃料に混合する軸方向の1次空気流を
つくる管状構造; 該1次空気流に混合するため、前記混合領域及
び前記1次領域の間の位置で前記側壁を半径方向
の内向きに通して、燃料を迅速に蒸発しやすい微
粒子にして散布する散布装置;及び 前記混合領域の出口における燃料と空気の混合
物の一様性を改良するため、散布された前記燃料
に向かつて、前記1次領域からの横流空気よりも
高速度のブースター空気流を前記管状構造の軸心
に対して所定の角度で下流側に指向させて、燃料
と空気の混合を促進する空気流指向装置; を具える陸用タービン燃焼器。
[Claims] 1. A tubular structure having a side wall with an opening,
a downstream mixing region in which a mixture of fuel and air spreads for downstream combustion; and an upstream primary region, through which air enters the primary region to inject downstream secondary fuel. a tubular structure for creating an axial primary air flow that mixes with the primary air flow; passing radially inwardly through the sidewall at a location between the mixing region and the primary region to mix with the primary air flow; a dispersion device for dispersing fuel in fine particles that are prone to rapid evaporation; and a dispersion device for dispersing fuel in fine particles that are prone to rapid evaporation; an air flow directing device for directing a booster air flow having a higher velocity than the crossflow air downstream at a predetermined angle with respect to the axis of the tubular structure to promote mixing of fuel and air; Turbine combustor.
JP14263683A 1982-08-19 1983-08-05 Turbine combustion device Granted JPS5944524A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40968282A 1982-08-19 1982-08-19
US409682 1982-08-19

Publications (2)

Publication Number Publication Date
JPS5944524A JPS5944524A (en) 1984-03-13
JPS622216B2 true JPS622216B2 (en) 1987-01-19

Family

ID=23621546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14263683A Granted JPS5944524A (en) 1982-08-19 1983-08-05 Turbine combustion device

Country Status (7)

Country Link
EP (1) EP0103159B1 (en)
JP (1) JPS5944524A (en)
AR (1) AR229741A1 (en)
CA (1) CA1209813A (en)
DE (1) DE3368974D1 (en)
IE (1) IE54394B1 (en)
MX (1) MX156751A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6223537B1 (en) * 1997-11-24 2001-05-01 Alliedsignal Power Systems Catalytic combustor for gas turbines
US6908232B2 (en) 2003-03-21 2005-06-21 Agilent Technologies, Inc. Fiber optic connectors and methods of making the same
WO2014173578A1 (en) * 2013-04-25 2014-10-30 Alstom Technology Ltd Sequential combustion with dilution gas
CN115445130A (en) * 2022-08-23 2022-12-09 国网安徽省电力有限公司电力科学研究院 Pipe flow mechanism for fire monitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2579614A (en) * 1944-06-23 1951-12-25 Allis Chalmers Mfg Co Combustion chamber with rotating fuel and air stream surrounding a flame core
FR2221621B1 (en) * 1973-03-13 1976-09-10 Snecma
US3937008A (en) * 1974-12-18 1976-02-10 United Technologies Corporation Low emission combustion chamber
US4118171A (en) * 1976-12-22 1978-10-03 Engelhard Minerals & Chemicals Corporation Method for effecting sustained combustion of carbonaceous fuel

Also Published As

Publication number Publication date
JPS5944524A (en) 1984-03-13
EP0103159B1 (en) 1987-01-07
EP0103159A1 (en) 1984-03-21
CA1209813A (en) 1986-08-19
AR229741A1 (en) 1983-10-31
IE831719L (en) 1984-02-19
DE3368974D1 (en) 1987-02-12
MX156751A (en) 1988-09-29
IE54394B1 (en) 1989-09-13

Similar Documents

Publication Publication Date Title
JP2597785B2 (en) Air-fuel mixer for gas turbine combustor
JP4700834B2 (en) Method and apparatus for reducing combustor emissions with a swirl stabilization mixer
US5251447A (en) Air fuel mixer for gas turbine combustor
US6240731B1 (en) Low NOx combustor for gas turbine engine
US5816049A (en) Dual fuel mixer for gas turbine combustor
US4389848A (en) Burner construction for gas turbines
US4845952A (en) Multiple venturi tube gas fuel injector for catalytic combustor
US4265615A (en) Fuel injection system for low emission burners
CA2155374C (en) Dual fuel mixer for gas turbine combuster
JP4658471B2 (en) Method and apparatus for reducing combustor emissions in a gas turbine engine
US5613363A (en) Air fuel mixer for gas turbine combustor
US3982392A (en) Combustion apparatus
US5596873A (en) Gas turbine combustor with a plurality of circumferentially spaced pre-mixers
US6736338B2 (en) Methods and apparatus for decreasing combustor emissions
US9599343B2 (en) Fuel nozzle for use in a turbine engine and method of assembly
JP2002195563A (en) Method and device for reducing burner emission
US4067190A (en) Catalytic gas turbine combustor with a fuel-air premix chamber
JPH09501486A (en) Fuel injection device and method of operating the fuel injection device
JP2000065355A (en) Combustion chamber
JPH07217451A (en) Fuel injection device
JPH11248159A (en) Premix type combustion chamber for gas turbine
JP2004507700A (en) Annular combustor for use with energy systems
JP3954138B2 (en) Combustor and fuel / air mixing tube with radial inflow dual fuel injector
JPH09166326A (en) Gas turbine combustion device
JP2005344981A (en) Gas turbine combustor, and method for supplying fuel to gas turbine combustor