JPS62221593A - Method of writing information into optical information recorder - Google Patents

Method of writing information into optical information recorder

Info

Publication number
JPS62221593A
JPS62221593A JP61066276A JP6627686A JPS62221593A JP S62221593 A JPS62221593 A JP S62221593A JP 61066276 A JP61066276 A JP 61066276A JP 6627686 A JP6627686 A JP 6627686A JP S62221593 A JPS62221593 A JP S62221593A
Authority
JP
Japan
Prior art keywords
thin film
molecules
organic thin
donor
information recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61066276A
Other languages
Japanese (ja)
Inventor
Akira Miura
明 三浦
Koichi Mizushima
公一 水島
Nobuhiro Motoma
信弘 源間
Minoru Azuma
東 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61066276A priority Critical patent/JPS62221593A/en
Priority to EP86309977A priority patent/EP0238759B1/en
Priority to DE8686309977T priority patent/DE3684306D1/en
Publication of JPS62221593A publication Critical patent/JPS62221593A/en
Priority to US07/205,542 priority patent/US4819210A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass

Landscapes

  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)

Abstract

PURPOSE:To provide an information writing method enabling high speed recording with high recording sensibility and excellent storing performance of recorded condition by utilizing a charge moving phenomena between donor molecules and acceptor molecules in an organic film for composing an information recording medium. CONSTITUTION:An information recording medium comprises organic thin films 4, 6 respectively containing donor molecules or organic molecules having high ionization potential which provide electrons to other molecules and easily brought into positively ionized condition and acceptor molecules or organic molecules having high electronic affinity which receive electrons from other molecules and easily brought into negatively ionized condition and an electrode 8 for applying voltage onto said films 4, 6. In order to stably maintain the condition where donor molecules and acceptor molecules are ionized through movement of charges, an electronically inert insulative molecule film 7 is preferably placed between the donor molecule film and the acceptor molecule film. When optical excitation is performed selectively with voltage being applied onto said recording medium, writing can be performed efficiently.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、有機薄膜を用いた光学的情報記録装置に係シ
、特に電子供与体(ドナー性分子)と電子受容体(アク
セプタ性分子)間の電荷移動現象を利用する情報記録装
置の情報書込み方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to an optical information recording device using an organic thin film, and particularly relates to an electron donor (donor-like molecule) and an electron acceptor. The present invention relates to an information writing method for an information recording device that utilizes a charge transfer phenomenon between (acceptor molecules).

(従来の技術) コンピュータ技術の飛躍的な発達、普及に伴って、近年
多量の情報量を高密度に且つ効率よく蓄積し、高速且つ
迅速にこれを処理することがますます重要になっている
。この様な状況の下で各種の情報記録装置の開発が急速
に進展している。
(Conventional technology) With the rapid development and spread of computer technology, it has become increasingly important in recent years to store large amounts of information in a high-density and efficient manner and to process it quickly and efficiently. . Under these circumstances, the development of various information recording devices is progressing rapidly.

中でも、光ディスクによる情報記録装置は、性能および
コストの点から注目を集めており、その開発も盛んであ
る。例えば、無機カルコゲナイド系および有機色素系等
の各種光記録媒体についての研究が近年著しく増加して
いる。一方これらの記録方式とは別に、更に高密度の記
録を行うために、有機分子の微細な振動電子状態を利用
して多重記録を行ういわゆる光化学ホールバーニング記
録等が精力的に研究され始めている。
Among these, information recording devices using optical disks are attracting attention from the viewpoint of performance and cost, and their development is active. For example, research on various optical recording media such as inorganic chalcogenide-based and organic dye-based optical recording media has increased significantly in recent years. On the other hand, in addition to these recording methods, so-called photochemical hole-burning recording, which performs multiple recording using the minute vibrational electronic states of organic molecules, has begun to be actively researched in order to perform even higher-density recording.

しかしながら従来の光学式情報記録方式には、植々の難
点がある。先ず従来の光学式情報記録においては、無機
系、有機系を問わず、その殆どがいわゆるヒートそ−ド
記録媒体と呼ばれるものを用いている。例えば、レーデ
光等の光エネルギーを吸収して、記録媒体が融解、蒸発
することを利用して情報記録を行う。情報読み出しは記
録部位の光学的反射或いは吸収強反の差を読み取ること
により行なわれる。このような方式では、情報記録のた
めに光エネルギー密度を和尚程度高いものとすることが
必要になる。例えば、Toなどの無機カルコゲナイド系
記録媒体を用い、所定の検出レベルの信号を得るために
は、記録用光源のエネルギー密度は少なくとも3〜10
0mJ/−を必要とする。このため、記録速度を十分に
上げることができない。またヒートセード方式と異なシ
、有機分子の構造変化を利用するホトクロミック現象を
用いた光記録法においては、記録部位の特性が分子構造
の著しい変質のために経時的に変化してしまうという欠
点がある。更に、光化学ホールバーニングを利用した新
しい記録方法は、ポルフィリン、フタロシアニンといっ
た分子中のプロトン移動による互変異性を利用している
ため、変換効率および速度が小さく、また極低温でなけ
れば雑音レベルを低減できない等の理由で、その潜在的
な超高密度記録への期待とは裏腹に、実現は困難な状況
にある。
However, the conventional optical information recording method has many drawbacks. First, most conventional optical information recording media, whether inorganic or organic, use what is called a heat-thread recording medium. For example, information is recorded by utilizing the melting and evaporation of a recording medium by absorbing light energy such as Rede light. Information is read out by reading the difference in optical reflection or absorption/reflection of the recording site. In such a system, it is necessary to make the optical energy density as high as that of a monk in order to record information. For example, in order to obtain a signal at a predetermined detection level using an inorganic chalcogenide recording medium such as To, the energy density of the recording light source must be at least 3 to 10
Requires 0 mJ/-. For this reason, the recording speed cannot be increased sufficiently. In addition, unlike the heat shade method, optical recording methods using photochromic phenomena that utilize structural changes in organic molecules have the disadvantage that the characteristics of the recording site change over time due to significant deterioration of the molecular structure. be. Furthermore, new recording methods using photochemical hole burning utilize tautomerism due to proton movement in molecules such as porphyrins and phthalocyanines, resulting in low conversion efficiency and speed, and can reduce noise levels only at extremely low temperatures. Contrary to expectations for the potential of ultra-high-density recording, it is difficult to realize it for several reasons.

ところで近年、有機分子を用いる材料技術の進展により
、新しい機能素子の実現が期待されるようになってきた
。特に、ラングミュア・プロジェ、ト法(LB法)に代
表される有機分子の配向積層化技術が進歩したことによ
って、有機分子の超薄膜化が可能となシ、これを利用し
た新機能素子開発の展望が開けて来た。実際、英国ダー
ラム(Durhram )大学のロパーツ(Rober
ts )等は、LB法で形成した有機薄膜を絶縁膜とし
て用いたMIS型発光発光素子IS凰FETといりた電
子デバイスを報告している。そしてこのLB法による有
機薄膜は、その光応答特性から光学的情報記録媒体とし
ても有望視されるが、未だ実用には供されていない。
However, in recent years, advances in material technology using organic molecules have led to expectations for the realization of new functional elements. In particular, advances in oriented layering technology for organic molecules, such as the Langmuir-Project method (LB method), have made it possible to form ultra-thin films of organic molecules, and this has led to the development of new functional devices. The outlook has opened up. In fact, Robert of Durham University, UK
ts) et al. have reported an electronic device called an MIS type light emitting device IS-FET using an organic thin film formed by the LB method as an insulating film. Organic thin films produced by this LB method are considered promising as optical information recording media due to their photoresponsive properties, but they have not yet been put to practical use.

(発明が屏決しようとする問題点) 以上のように1従来よシ提案されている種々の光学的情
報記録装置ないし方式は、書込み速度や記録状態の保存
性その他の特性において、超高密度記録という光記録の
特徴を生かし得ていない。
(Problems to be resolved by the invention) As described above, various optical information recording devices or methods that have been proposed in the past have a high density of ultra-high density in terms of writing speed, preservation of recorded state, and other characteristics. The characteristics of optical recording are not fully utilized.

本発明は上記の点に鑑みなされたもので、有機薄膜を光
学的情報記録媒体として用いて、高速記録が可能で記録
感度が高く、しかも記録状態の保存特性も優れた情報書
込み方法を提供することを目的とする。
The present invention has been made in view of the above points, and provides an information writing method that uses an organic thin film as an optical information recording medium, enables high-speed recording, has high recording sensitivity, and has excellent recording state preservation characteristics. The purpose is to

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明における情報記録媒体は、ドナー性分子、即ちイ
オン化ポテンシャルが高く他の分子に電子を供給して自
らは正のイオン状態になり易い有機分子と、アクセプタ
性分子、即ち電子親和力が大きく他から電子を受取シ自
らは負のイオン状態になシ易い有機分子とを含む有機薄
膜を用い、これに電圧を印加する電極を形成したもので
ある。
(Means for Solving the Problems) The information recording medium of the present invention consists of a donor molecule, that is, an organic molecule that has a high ionization potential and easily becomes a positive ion state by supplying electrons to other molecules, and an acceptor. In this method, an electrode for applying a voltage is formed using an organic thin film containing organic molecules that have a large electron affinity, accept electrons from others, and easily change into a negative ionic state.

情報記録の原理は、この有機薄膜内でのドナー性分子と
アクセプタ性分子間の電荷移動現象による膜の光学的又
は電気的特性の変化を利用する。そして本発明はこの様
な情報記録媒体を用いて情報記録を行うに際して、有機
薄膜に電圧を印加した状態でドナー性分子を選択的に光
励起して、生成した電子正孔対を外部からの電圧により
効果的に引き離しつつアクセプタ性分子に移動させるよ
うKしたことを特徴としている。
The principle of information recording utilizes the change in the optical or electrical properties of the film due to the charge transfer phenomenon between donor molecules and acceptor molecules within the organic thin film. When recording information using such an information recording medium, the present invention selectively photoexcites donor molecules while applying a voltage to the organic thin film, and the generated electron-hole pairs are exposed to an external voltage. It is characterized by K so that it can be more effectively separated and transferred to acceptor molecules.

とこで記録媒体として用いる有機薄膜は、LB法により
形成したものであることが好ましく、特にドナー性分子
膜とアクセプタ性分子膜の積層構造を利用してこれを繰
返し積層した超格子構造とすることが好ましい。このと
き各ドナー性分子膜およびアクセプタ性分子膜は5〜5
ool、よシ好ましくは5〜100Xの範囲に制御する
。また記録状態即ちドナー性分子とアクセプタ性分子が
電荷移動によりイオン化した状態を安定に保持するため
には、ドナー性分子膜とアクセプタ性分子膜の間に電子
的に不活性な絶縁性分子膜を介在させることが好ましい
。不活性な絶縁性有機分子膜とは例えば、非局在π電子
又は不対n電子の密度が小さい有機分子の膜である。
The organic thin film used as the recording medium is preferably formed by the LB method, and in particular, a superlattice structure in which a layered structure of a donor molecular film and an acceptor molecular film is repeatedly laminated is used. is preferred. At this time, each donor molecular film and acceptor molecular film have 5 to 5
ool, preferably controlled within the range of 5 to 100X. In addition, in order to stably maintain the recording state, that is, the state in which donor molecules and acceptor molecules are ionized by charge transfer, an electronically inactive insulating molecular film is placed between the donor and acceptor molecular films. It is preferable to intervene. The inert insulating organic molecular film is, for example, a film of organic molecules in which the density of delocalized π electrons or unpaired n electrons is low.

ただし原理的には、有機薄膜を、ドナー性分子とアクセ
プタ性分子を共に含む混合薄膜として記録媒体を構成す
ることができる。
However, in principle, the recording medium can be configured as a mixed organic thin film containing both donor molecules and acceptor molecules.

(作用) 本発明の方法によれば、記録媒体を構成する有機薄膜の
ドナー性分子とアクセプタ性分子間の電子遷移を、電圧
を印加しながら選択的に光励起することによって極めて
効率よく且つ高速に行うことができる。即ち高速書込み
が可能で高い記録感度が得られる。また記録媒体を構成
する有機薄膜の材料、およびその構成を選ぶととKよシ
、記録状態即ち電荷移動の状態を安定に保持することが
可能である。また情報は有機薄膜の光学的特性又は電気
的特性の変化として記録される。例えば吸光率の変化を
情報としてこれを光学的に読み出せば、S/Nの高い情
報読み出しが可能である。
(Function) According to the method of the present invention, electronic transition between donor molecules and acceptor molecules in an organic thin film constituting a recording medium is selectively photoexcited while applying a voltage, thereby extremely efficiently and rapidly. It can be carried out. That is, high-speed writing is possible and high recording sensitivity can be obtained. Furthermore, by selecting the material and structure of the organic thin film constituting the recording medium, it is possible to stably maintain the recording state, that is, the state of charge movement. Information is also recorded as changes in the optical or electrical properties of the organic thin film. For example, if changes in absorbance are used as information and read out optically, it is possible to read out information with a high S/N ratio.

本発明において、記録媒体に電圧を印加しなから選択的
に光励起を行うことによって、効率よく書込みが行なわ
れる理由を以下に説明する。
The reason why writing is performed efficiently in the present invention by selectively performing optical excitation without applying a voltage to the recording medium will be explained below.

ドナー性分子膜とアクセプタ性分子膜からなる電荷移動
錯体形成は、通常はそれぞれのイオン化ポテンシャルI
、と電子親和力EAの差きっ抗するか又はこれを上回る
エネルギー的利得がある場合に起こる。ここで、αはM
adslung定数に相当する定数、rは両分子間の平
均距離、〈e〉2は両荷電分子の有する有効電荷を表わ
す。
The formation of a charge transfer complex consisting of a donor molecular film and an acceptor molecular film is usually performed at the ionization potential I of each
This occurs when there is an energetic gain that counteracts or exceeds the electron affinity EA. Here, α is M
A constant corresponding to the adslung constant, r is the average distance between both molecules, and <e>2 represents the effective charge possessed by both charged molecules.

従′って外部から何のエネルギーも与えられない場合、
両分子間の距離によりミ荷移動の割合いがほぼ決まって
しまう。このとき電荷移動状態に基づく安定化エネルギ
ー若しくは吸収帯(CTバンド)は、電荷移動の割合い
を表わす定数をρとして、で表わされることKなる。
Therefore, if no energy is given from outside,
The rate of cargo transfer is almost determined by the distance between both molecules. At this time, the stabilization energy or absorption band (CT band) based on the charge transfer state is expressed by K, where ρ is a constant representing the rate of charge transfer.

一方、ドナー性分子膜とアクセプタ性分子膜の積層構造
に外部電圧を印加した場合においては、上記電荷移動に
要するエネルギーはeφの分だけ低くすることが可能で
ある。更に本発明におけるようにドナー性分子を選択的
に光励起し、これと同期して又は最低励起状態への緩和
時間に相当する遅延時間をもって電圧を印加することに
ょシ、更に情報書込み時の所要エネルギーを低減させる
ことが可能になシ、電荷移動状態を極めて効率よく生起
させることができる。
On the other hand, when an external voltage is applied to the laminated structure of a donor molecular film and an acceptor molecular film, the energy required for the charge transfer can be reduced by eφ. Furthermore, as in the present invention, donor molecules are selectively excited by light, and a voltage is applied in synchronization with this or with a delay time corresponding to the relaxation time to the lowest excited state, and the energy required for writing information is further reduced. It is possible to reduce the charge transfer state, and to generate a charge transfer state extremely efficiently.

以上のことを、更に第3図のエネルギーモデルを参照し
て詳しく説明する。ドナー性分子りが最低励起状態S1
のエネルギーよシ高いか若しくは同等である光エネルギ
ーhνで選択的に励起されると、その励起緩和過程は、
基底状態GDへの無輻射的緩和或いは発光過程(速度定
数に、 )か、或いは他の励起状態(E、)への系間項
差に引き続き基底状態へもどるリン光放射緩和の過程(
速度定数にρを辿る。t/′1まこの緩和過程の進行中
に外部よ#)電界Eが印加されると、励起により生じた
電子−正孔対の状態Eh(速度定数rc、)から一定の
割合いでη(E)で分離した状態C?への遷移がおこ9
、自由な両荷電種は電界によって移動して近傍にあるア
クセプタ性分子Aに電子を、また中性状態のドナー性分
子にホールを移動させた状態(電荷移動状態)が生じる
The above will be further explained in detail with reference to the energy model shown in FIG. The donor molecule is in the lowest excited state S1
When selectively excited with a light energy hν that is higher than or equal to the energy of , the excitation relaxation process is
A non-radiative relaxation or emission process to the ground state GD (with a rate constant of
Trace ρ to the rate constant. When an external electric field E is applied during the progress of the relaxation process at t/'1, η(E ) separated state C? A transition to 9 occurs.
, the free both charged species are moved by the electric field, resulting in a state (charge transfer state) in which electrons are transferred to the nearby acceptor molecule A and holes are transferred to the neutral donor molecule.

この様な電荷移動状態の生成は、外部電界を印加せず、
光励起のみによっても可能であるが、この場合は上記し
たようKEhの状態で電子−正孔対形成後、元の基底状
態(GD及びGA)への緩和(量子収率Φ)が優先的に
起こってしまい、以下の反応スキームによって記録状態
が瞬時に消失してしまう。
This kind of charge transfer state can be generated without applying an external electric field.
Although this is possible by photoexcitation alone, in this case, as mentioned above, after electron-hole pair formation in the KEh state, relaxation (quantum yield Φ) to the original ground state (GD and GA) occurs preferentially. As a result, the recorded state disappears instantaneously using the following reaction scheme.

D0+A0−D0+A0−+[D”A”]*−;D0+
A0hν  * ドナー性分子の励起・緩和過程においてこの量子収率Φ
の値は、バイアス零の場合 で示される。これに対して本発明におけるようにバイア
スを印加すれば、電子−正孔の分離がη(E)の割合い
で起辷るため、量子収率は Φ(E)−CΦ(0)−η(E) )/Φ(0)で示さ
れるように著しく低減される。
D0+A0-D0+A0-+[D"A"]*-;D0+
A0hν * This quantum yield Φ in the excitation/relaxation process of donor molecules
The values of are shown for the case of zero bias. On the other hand, if a bias is applied as in the present invention, the electron-hole separation occurs at a rate of η(E), so the quantum yield is Φ(E) - CΦ(0) - η( E) )/Φ(0).

また光励起なしKE界を印加するだけで電荷移動状態を
誘起することも可能であるが、この場合、電子−正孔対
生成即ち電荷移動の前駆体を形成するに要するエネルギ
ーは、電圧で表わしてV = C(I、−E、)−(e
2/F) )/e程度必要である。従って電荷移動割合
いを十分大きくして情報記録部のコントラストを上げる
ためには、有機薄膜はIOV/3程度の極めて高耐圧な
特性のものが必要となシ、実用上採用できないことにな
る。
It is also possible to induce a charge transfer state simply by applying a KE field without photoexcitation, but in this case, the energy required to generate an electron-hole pair, that is, to form a charge transfer precursor, is expressed in voltage. V = C(I, -E,) - (e
2/F) )/e is required. Therefore, in order to sufficiently increase the charge transfer rate and increase the contrast of the information recording area, the organic thin film must have extremely high breakdown voltage characteristics of about IOV/3, which cannot be used practically.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1図は一実施例における記録媒体の構成である。図に
おいて、1はガラス基板、2はこの上に形成された15
0Xのネサ膜、3は更にこの上に形成された500Xの
8102膜である。この様な基板上に、LB法によ)ド
ナー性分子膜4.絶縁性分子膜5.アクセプタ性分子膜
6の積層構造を繰返しft8M形成して超格子構造とし
、その上にAt電極8を形成している。
FIG. 1 shows the configuration of a recording medium in one embodiment. In the figure, 1 is a glass substrate, 2 is a 15 formed on this
0X Nesa film, and 3 is a 500X 8102 film formed thereon. 4. On such a substrate, a donor molecular film (by LB method) is formed. Insulating molecular film5. A stacked structure of acceptor molecular films 6 is repeatedly formed ft8M to form a superlattice structure, and an At electrode 8 is formed thereon.

LB膜の形成は具体的に説明すると以下の通シである。Specifically, the formation of the LB film is as follows.

ドナー性分子として、 2.2’ 、6.6’−イング
ロビルアミン置換テトラフェニルビピラン−4−イリデ
ンをクロロホルムに溶解してLB膜展開溶液を調製した
。この成膜分子は、15 dyne/儒で固体凝縮膜と
なることが表面圧−分子占有面積曲線から判った。LB
膜形成装置は市販の垂直引上げ方式のものを用い、展開
、累積に先だって水相をpH=6.0、温度23℃、カ
ドミウム濃度0、01 rnMKn定Kた。そしてガラ
ス基板上にネサ膜/ 5102膜を形成した基板をとの
水相に設置し、上記成膜分子を展開して、70μm/(
8)の速度で引上げてドナー性分子膜4を累積した。次
いで同様の方法でアラキン酸からなる絶縁性分子膜5を
表面圧25 dyn・/3で形成し、その上にアクセプ
タ性分子膜6として、テトラシアノキノジメタンとステ
アリン酸を1;1で混合した混合膜をやはり同様の方法
で形成した。これらの操作を順次複数回繰返して、ドナ
ー性分子膜4.絶縁性分子膜5゜アクセプタ性分子膜6
をそれぞれ4,7.4層累積した。これらのLB積層膜
上に、クロロホルムに溶解したポリフェニルアラニン(
分子量12万)を用いて23 dyne7’mの表面圧
で3層累積して絶縁性分子膜7を形成した後、これを真
空蒸着装置に設置し、3 X 10  torrの真空
下でAt電極8を約5001蒸着した。
As a donor molecule, 2.2′,6.6′-inglobilamine-substituted tetraphenylbipyran-4-ylidene was dissolved in chloroform to prepare an LB membrane developing solution. It was found from the surface pressure-molecule occupied area curve that the film-forming molecules formed a solid condensed film at 15 dyne/F. LB
A commercially available vertical pulling type film forming apparatus was used, and the aqueous phase was kept at a pH of 6.0, a temperature of 23° C., and a cadmium concentration of 0 and 01 rnMKn prior to spreading and accumulation. Then, the substrate on which the Nesa film/5102 film was formed on the glass substrate was placed in the water phase of
8) to accumulate the donor molecular film 4. Next, an insulating molecular film 5 made of arachidic acid is formed at a surface pressure of 25 dyn·/3 in the same manner, and then tetracyanoquinodimethane and stearic acid are mixed in a ratio of 1:1 as an acceptor molecular film 6. A mixed film was also formed using the same method. These operations are sequentially repeated multiple times to form a donor molecular film 4. Insulating molecular film 5゜Acceptor molecular film 6
4 and 7.4 layers were accumulated, respectively. Polyphenylalanine dissolved in chloroform (
After forming an insulating molecular film 7 by accumulating three layers with a molecular weight of 120,000 m at a surface pressure of 23 dyne 7'm, this was placed in a vacuum evaporation apparatus, and an At electrode 8 was formed under a vacuum of 3 x 10 torr. Approximately 5,001 times of this were deposited.

このように構成された記録媒体に、At電極8側が正と
なるバイアス電圧を500 n5ecの周期で印加しつ
つ、Hs+ −N@レーザ(λx 633 nm、1 
mW、イー)を1 On裁の周期で位置を変えながらス
ポット状に照射した。レーデ光照射部位即ち記録部位で
は、波長840 nmの吸収が認められた。
While applying a bias voltage such that the At electrode 8 side is positive at a period of 500 n5ec to the recording medium configured in this way, an Hs+ -N@ laser (λx 633 nm, 1
mW, E) was irradiated in a spot shape while changing the position at a period of 1 On. Absorption at a wavelength of 840 nm was observed at the Rede light irradiation site, that is, at the recording site.

第2図は、印加するバイアス電圧を変化させて記録部位
の850 nmの吸収強度ΔAcTを測定した結果であ
る。図から明らかなように、バイアス電圧を大きくする
ことKよシ、吸収強度は著しい増大を示す。従ってバイ
アス電圧を印加しながら光励起を行うことによって高速
且つ高効率の情報記録ができることが分る。
FIG. 2 shows the results of measuring the absorption intensity ΔAcT at 850 nm of the recorded region by varying the applied bias voltage. As is clear from the figure, the absorption intensity significantly increases as the bias voltage increases. Therefore, it can be seen that information can be recorded at high speed and with high efficiency by performing optical excitation while applying a bias voltage.

またとのようにして光吸収特性の差として記録された情
報の保持特性は安定で、しかも光学的KS/Nよく読み
出せることが確認された。
It was also confirmed that the retention characteristics of information recorded as a difference in light absorption characteristics as in the above are stable and that the optical KS/N can be read out with good accuracy.

本発明におけるドナー性分子膜に用いるドナー性分子と
しては、以下に示すようなものが挙げられる。
Examples of donor molecules used in the donor molecule membrane of the present invention include those shown below.

(1)以下のような構造式をもつフルバレン型ドナS@
−8・ ここでφはフェニル基を表わす。
(1) Fullvalene type donor S with the following structural formula
-8. Here, φ represents a phenyl group.

(3)  以下のような構造式をもつアミン型ドナー(
4)以下のような構造式をもつ金属化合物型ドナーリ9
・1a−・1す (5)以下のような構造式をもつシアニン色素ドナーR
R (6)以下のような構造式をもっ含N複素環型ドナー(
7)以下のような構造式をもつ?リマー型ドナーーーー
ン″\ジ2ゝ□−一−ポリアセチレン(1)から(7)
IC示したドナー性分子はその構造式のままでも、ある
いはそれを骨格として、(n及びp+q+4は8以上)
からなる疎水基を有した誘導体でも、あるいは−〇〇O
H、−OH。
(3) An amine-type donor (
4) Metal compound type donary 9 with the following structural formula
・1a-・1su (5) Cyanine dye donor R having the following structural formula
R (6) N-heterocyclic donor having the following structural formula (
7) Does it have the following structural formula? Remer-type donor ``\di2ゝ□-1-polyacetylene (1) to (7)
The donor molecule shown in IC can be used as its structural formula or with it as a backbone (n and p+q+4 are 8 or more).
Even derivatives with a hydrophobic group consisting of -〇〇O
H, -OH.

−8o、H、−C0OR’ 、−NH2,−N■(R’
)3Y−(Yはハロゲン)からなる親水基を有する誘導
体でも、あるいはどれら疎水基と親水基を共に有する誘
導体でもよい。
-8o, H, -C0OR', -NH2, -N■(R'
)3Y- (Y is halogen) having a hydrophilic group, or any derivative having both a hydrophobic group and a hydrophilic group.

アクセプタ性分子としては、以下に示すような分子を用
いることができる。
As the acceptor molecule, the following molecules can be used.

(8)以下のような構造式をもつクアノ化合物型アクセ
グタ (9)以下のような構造式をもつキノン型アクセプタC
N    CN α1 以下のような構造式をもつニトロ化合物型アクセ
プタ (8)から勾に示したアクセプタ性分子はその構造式の
ままでも、あるいはそれを骨格として、CH,(CH2
+n、 CH,4CH2−)+CH2=CH2+−+c
H2)、(n及q びP+q+tは8以上)からなる疎水基を有した誘導体
でも、あるいは−COOH、−OH、−8o3H。
(8) Quano compound type acceptor having the following structural formula (9) Quinone type acceptor C having the following structural formula
N CN α1 From the nitro compound type acceptor (8) with the following structural formula, the acceptor molecules shown in the graph can be used as they are, or with this as a backbone, CH, (CH2
+n, CH,4CH2-)+CH2=CH2+-+c
H2), (n and q and P+q+t are 8 or more), or -COOH, -OH, -8o3H.

−COOR’ 、−NH2,−N■(R’ )、Y−(
Yはハロゲン)からなる親水基を有する誘導体でも、あ
るいはこれら疎水基と親水基を共に有する誘導体でもよ
い。
-COOR', -NH2, -N■(R'), Y-(
Y may be a derivative having a hydrophilic group consisting of halogen) or a derivative having both a hydrophobic group and a hydrophilic group.

本発明でのドナー性分子膜やアクセプタ性分子膜におい
て、ドナー性分子やアクセプタ性分子と混合して用いら
れる絶縁性分子、あるいは絶縁性分子膜に用いられる絶
縁性分子としては、以下のような分子が用いられる。
In the donor molecule film and acceptor molecule film in the present invention, the insulating molecules used in combination with the donor molecule and acceptor molecule, or the insulating molecules used in the insulating molecule film, are as follows. molecules are used.

0])下記一般式で表わされる置換可能な飽和及び不飽
和炭化水素誘導体 −X ここで、Rは置換可能なCH,(CH2) n−あるい
はCH,+OH2++CH2−CH2÷+CH2+L(
但し、n及びpp          q +q+tは8以上)からなる疎水基である。またXは親
水基を表わし、 −COOH、−OH、−8o、H。
0]) Substitutable saturated and unsaturated hydrocarbon derivatives -X represented by the following general formula, where R is substitutable CH, (CH2) n- or CH, +OH2++CH2-CH2÷+CH2+L(
However, n and pp q + q + t are 8 or more hydrophobic groups. Moreover, X represents a hydrophilic group, -COOH, -OH, -8o, H.

−COOR’ 、−Nf(2,−N■(R’ )、Y−
(Yはハロダン)などが挙げられる。
-COOR', -Nf(2, -N■(R'), Y-
(Y is halodan), etc.

(6)種々の重合性分子 例えば、置換可能なアクリレート、メタクリレート、ビ
ニルエーテル、スチレン、ビニルアルコール、アクリル
アミド、アクリルなどのビニル重合体。あるいは、アラ
ニン、グルタメート、アスパルテート、などのα−アミ
ノ酸、ε−アミノカプロン酸等のα−アミノ酸以外のア
ミノ酸。ヘキサメチレンジアミン等のジアミンと、ヘキ
サメチレンジカルボン酸等のジカルがン酸1:1混合物
よシなるポリアミド重合体。
(6) Various polymerizable molecules, such as vinyl polymers such as substitutable acrylates, methacrylates, vinyl ethers, styrene, vinyl alcohols, acrylamides, and acrylics. Alternatively, α-amino acids such as alanine, glutamate, aspartate, etc., and amino acids other than α-amino acids such as ε-aminocaproic acid. A polyamide polymer consisting of a 1:1 mixture of a diamine such as hexamethylene diamine and a dicarboxylic acid such as hexamethylene dicarboxylic acid.

これらの分子はそれ自身累積が可能な場合は単線性分子
と混合して用いる。
These molecules are used in combination with unilinear molecules if they can be accumulated by themselves.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、有機薄膜のドナー性
分子とアクセプタ性分子間の電荷移動現象を利用する情
報記録縁体を構成して、効率のよい情報書込みを行うこ
とができる。従って本発明によれば、従来にない超高密
度の優れた特性の光学式情報記録装置を実現することが
できる。
As described above, according to the present invention, it is possible to construct an information recording frame that utilizes the charge transfer phenomenon between donor molecules and acceptor molecules in an organic thin film, and to perform efficient information writing. Therefore, according to the present invention, it is possible to realize an optical information recording device with unprecedented ultra-high density and excellent characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の情報記録媒体を示す図、泥
2図はその情報書込み特性を示す図、第3図は本発明に
おける情報書込み法の原理を説明するだめの図である。 1・・・ガラス基板、2・・・ネサ膜、3・・・S10
□膜、4・・・ドナー性分子膜、5,7・・・絶縁性分
子膜、6・・・アクセプタ性分子膜、8・・・AL電極
。 出願人代理人  弁理士 鈴 江 武 彦第1図
Fig. 1 is a diagram showing an information recording medium according to an embodiment of the present invention, Fig. 2 is a diagram showing its information writing characteristics, and Fig. 3 is a diagram for explaining the principle of the information writing method in the present invention. . 1... Glass substrate, 2... Nesa film, 3... S10
□Membrane, 4... Donor molecular film, 5, 7... Insulating molecular film, 6... Acceptor molecular film, 8... AL electrode. Applicant's agent Patent attorney Takehiko Suzue Figure 1

Claims (8)

【特許請求の範囲】[Claims] (1)電子供与体と電子受容体を含む有機薄膜の両側に
電極を設けて情報記録媒体とし、前記電子供与体と電子
受容体間の電荷移動に伴う有機薄膜の光学的又は電気的
特性の変化を情報として記録する装置において、前記有
機薄膜の両側の電極間に電圧を印加した状態で前記電子
供与体を光照射により選択的に励起して電子遷移を行わ
せることを特徴とする光学的情報記録装置の情報書込み
方法。
(1) Electrodes are provided on both sides of an organic thin film containing an electron donor and an electron acceptor to form an information recording medium, and the optical or electrical properties of the organic thin film are controlled by charge transfer between the electron donor and electron acceptor. An optical device for recording changes as information, characterized in that the electron donor is selectively excited by light irradiation while a voltage is applied between electrodes on both sides of the organic thin film to cause electron transition. A method for writing information into an information recording device.
(2)前記有機薄膜は、電子供与体を含む第1の有機薄
膜と電子受容体を含む第2の有機薄膜の積層構造を有す
る特許請求の範囲第1項記載の光学的情報記録装置の情
報書込み方法。
(2) Information of the optical information recording device according to claim 1, wherein the organic thin film has a laminated structure of a first organic thin film containing an electron donor and a second organic thin film containing an electron acceptor. How to write.
(3)前記有機薄膜は、電子供与体を含む第1の有機薄
膜と電子受容体を含む第2の有機薄膜を絶縁性分子膜を
介して積層した構造を繰返し積層して構成した特許請求
の範囲第1項記載の光学的情報記録装置の情報書込み方
法。
(3) The organic thin film is constructed by repeatedly laminating a structure in which a first organic thin film containing an electron donor and a second organic thin film containing an electron acceptor are laminated via an insulating molecular film. An information writing method for an optical information recording device according to scope 1.
(4)前記有機薄膜は、電子供与体と電子受容体を共に
含む混合薄膜からなる特許請求の範囲第1項記載の光学
的情報記録装置の情報書込み方法。
(4) The information writing method for an optical information recording device according to claim 1, wherein the organic thin film is a mixed thin film containing both an electron donor and an electron acceptor.
(5)前記有機薄膜は、ラングミュア・プロジェット法
により形成されたものである特許請求の範囲第1項記載
の光学的情報記録装置の情報書込み方法。
(5) The information writing method for an optical information recording device according to claim 1, wherein the organic thin film is formed by a Langmuir-Prodgett method.
(6)前記光励起に用いる光源の波長は、前記有機薄膜
に含まれるドナー性分子の最低励起一重項エネルギーに
相当する波長より短い特許請求の範囲第1項記載の光学
的情報記録装置の情報書込み方法。
(6) Information writing in the optical information recording device according to claim 1, wherein the wavelength of the light source used for optical excitation is shorter than the wavelength corresponding to the lowest excited singlet energy of donor molecules contained in the organic thin film. Method.
(7)前記有機薄膜は、透明電極が形成された光透過性
を有する基板上に形成されている特許請求の範囲第1項
記載の光学的情報記録装置の情報書込み方法。
(7) The information writing method for an optical information recording device according to claim 1, wherein the organic thin film is formed on a light-transmitting substrate on which a transparent electrode is formed.
(8)前記有機薄膜と上下両側電極との間に絶縁性を有
する有機分子層もしくは酸化シリコン層を介在させるこ
とを特徴とする特許請求の範囲第1項記載の光学的情報
記録装置の情報書込み方法。
(8) Information writing in the optical information recording device according to claim 1, characterized in that an insulating organic molecular layer or silicon oxide layer is interposed between the organic thin film and the upper and lower electrodes. Method.
JP61066276A 1986-03-25 1986-03-25 Method of writing information into optical information recorder Pending JPS62221593A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61066276A JPS62221593A (en) 1986-03-25 1986-03-25 Method of writing information into optical information recorder
EP86309977A EP0238759B1 (en) 1986-03-25 1986-12-19 Optical information writing method
DE8686309977T DE3684306D1 (en) 1986-03-25 1986-12-19 METHOD FOR RECORDING OPTICAL INFORMATION.
US07/205,542 US4819210A (en) 1986-03-25 1988-06-06 Optical information writing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61066276A JPS62221593A (en) 1986-03-25 1986-03-25 Method of writing information into optical information recorder

Publications (1)

Publication Number Publication Date
JPS62221593A true JPS62221593A (en) 1987-09-29

Family

ID=13311152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61066276A Pending JPS62221593A (en) 1986-03-25 1986-03-25 Method of writing information into optical information recorder

Country Status (1)

Country Link
JP (1) JPS62221593A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872929A (en) * 1981-10-28 1983-05-02 Toshiba Corp Optical conversion element
JPS615987A (en) * 1984-06-20 1986-01-11 Toshiba Corp Information-recording medium
JPS615985A (en) * 1984-06-20 1986-01-11 Toshiba Corp Optical recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872929A (en) * 1981-10-28 1983-05-02 Toshiba Corp Optical conversion element
JPS615987A (en) * 1984-06-20 1986-01-11 Toshiba Corp Information-recording medium
JPS615985A (en) * 1984-06-20 1986-01-11 Toshiba Corp Optical recording medium

Similar Documents

Publication Publication Date Title
US4819210A (en) Optical information writing method
Dvornikov et al. Two-photon three-dimensional optical storage memory
US6272038B1 (en) High-density non-volatile memory devices incorporating thiol-derivatized porphyrin trimers
CA2022930C (en) Substrate for recording medium, recording medium, method for preparing the same, recording and reproducing device, and recording, reproducing and erasing method by use of such recording medium
JP2000232232A (en) Electronic element and formation of electronic structure
JPS61101404A (en) Generation of singlet oxygen and solid phase sensitizer therefor
US4627029A (en) Information holding device
EP0077135B1 (en) Information holding device comprising a multi-layer langmuir-blodgett film
JPS62221593A (en) Method of writing information into optical information recorder
JPS62284785A (en) Optical information recorder
JP2509566B2 (en) Optical information recording device
JPS63140434A (en) Optical information recording medium
JPH0568016B2 (en)
JPS63204531A (en) Reproducing device
Kondo et al. Effect of electrical double layers on photoinduced electron transfer quenching of an amphiphilic Ru (II)(bpy) 2+ 3 derivative in Langmuir—Blodgett films
JPS61117537A (en) Light recording medium
JPH0483242A (en) Molecular associate thin film forming method
Scher et al. Electric-Field-Assisted Triplet-Exciton Annihilation in Molecularly Doped Polymers
JPH0443572B2 (en)
JPH0434140B2 (en)
JPH05139040A (en) Phb optical recording medium
JP2658372B2 (en) Manufacturing method of optical recording medium
JPH0396941A (en) Optical memory medium
Tsmioka et al. Two-photon absorption in photochromic layer with highly localized coherent photons
JPH0427959B2 (en)