JPH0434140B2 - - Google Patents

Info

Publication number
JPH0434140B2
JPH0434140B2 JP60127414A JP12741485A JPH0434140B2 JP H0434140 B2 JPH0434140 B2 JP H0434140B2 JP 60127414 A JP60127414 A JP 60127414A JP 12741485 A JP12741485 A JP 12741485A JP H0434140 B2 JPH0434140 B2 JP H0434140B2
Authority
JP
Japan
Prior art keywords
optical recording
recording medium
light
recording layer
monomolecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60127414A
Other languages
Japanese (ja)
Other versions
JPS61285451A (en
Inventor
Masaaki Yoshino
Eiji Ando
Kimimasa Myazaki
Kazuhisa Morimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60127414A priority Critical patent/JPS61285451A/en
Priority to US06/796,445 priority patent/US4686169A/en
Priority to DE8585114293T priority patent/DE3578739D1/en
Priority to EP85114293A priority patent/EP0182236B1/en
Publication of JPS61285451A publication Critical patent/JPS61285451A/en
Publication of JPH0434140B2 publication Critical patent/JPH0434140B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B2007/24624Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes fluorescent dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光記録媒体に与えた物理的、化学的変
化による情報を光学的に読み出す光記録再生装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical recording and reproducing device that optically reads out information resulting from physical and chemical changes imparted to an optical recording medium.

従来の技術 光記録媒体のうち、有機材料のものとしては、
染料、染料・ポリマ複合体、光重合物、ジアゾ感
光材、ホトクロミツク物質等が用いられている。
染料や染料・ポリマ複合体はこれらの材料にレー
ザ光を照射して選択的に溶融、蒸発気化、変形等
をさせて凹凸を形成して記録するものであり、い
わゆるヒートモード記録と呼ばれ、既に実用化さ
れているカルコゲナイト半導体物質と同じ用い方
である。
Conventional technology Among optical recording media, those made of organic materials include:
Dyes, dye-polymer composites, photopolymers, diazo photosensitive materials, photochromic substances, etc. are used.
Dyes and dye-polymer composites are recorded by irradiating these materials with laser light to selectively melt, evaporate, and deform them to form unevenness, which is called heat mode recording. This is the same usage as chalcogenite semiconductor materials that are already in practical use.

一方、有機ホトクロミツク材料は、その可逆性
に着目され、書き換え可能な、ホトンモード記録
として研究されている。例えばエル、エム、ララ
トン(L.M.Ralaton)、SPIE、420,186(1983)
等に報告されている。ホトクロミツク材料は溶剤
に可溶なものが多く、スピンコートにより薄膜を
形成し、デイスク構造が可能になるものとして期
待されているが、実用化はなされていない。
On the other hand, organic photochromic materials have attracted attention for their reversibility and are being studied as rewritable photon mode recording. For example, LMRalaton, SPIE, 420, 186 (1983)
etc. have been reported. Many photochromic materials are soluble in solvents, and are expected to be able to form thin films by spin coating to form disk structures, but they have not been put to practical use.

発明が解決しようとする問題点 有機ホトクロミツク材料は、光を照射するとホ
トクロミツク化合物が反応して照射前の光吸収ス
ペクトルと異なつたスペクトルを有するようにな
る。ところが、シス−トランス異性化に基づくホ
トクロミツク化合物は、溶液内ではホトクロミズ
ムを示すが、固体薄膜では全くホトクロミズムを
示さない。
Problems to be Solved by the Invention When an organic photochromic material is irradiated with light, the photochromic compound reacts and the organic photochromic material comes to have a spectrum different from the light absorption spectrum before irradiation. However, photochromic compounds based on cis-trans isomerization exhibit photochromism in solution, but do not exhibit any photochromism in solid thin films.

本発明は、固体薄膜で、シス−トランス異性化
に基づくホトクロミズムにより記録感度が高くか
つ長寿命の光記録再生装置を提供することを目的
とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical recording/reproducing device which is a solid thin film and has high recording sensitivity and long life due to photochromism based on cis-trans isomerization.

問題点を解決するための手段 上記の目的を達成するために本発明の光記録再
生装置は、基板表面に疎水性側鎖を持つたチオイ
ンジゴ誘導体の単分子累積膜を設けた光記録媒体
と光照射部と蛍光検知部とからなる。
Means for Solving the Problems In order to achieve the above object, the optical recording/reproducing device of the present invention includes an optical recording medium having a monomolecular cumulative film of a thioindigo derivative having a hydrophobic side chain on the substrate surface, and It consists of an irradiation section and a fluorescence detection section.

作 用 上記構成により、光記録媒体に光を照射する
と、光記録媒体が反応して照射前の吸収スペクト
ルと異なつた吸収スペクトルを有することにな
り、情報が記録される。この時、本発明による光
記録媒体および光記録再生装置では照射前の状態
に自然に戻らないで記録が維持できるとともに蛍
光を発生する。
Effect With the above configuration, when the optical recording medium is irradiated with light, the optical recording medium reacts and has an absorption spectrum different from the absorption spectrum before irradiation, thereby recording information. At this time, the optical recording medium and optical recording/reproducing apparatus according to the present invention can maintain recording without spontaneously returning to the state before irradiation, and generate fluorescence.

これは疎水性側鎖を持つたチオインジゴ誘導体
の単分子累積膜の分子構造による立体障害と、分
子次元で二次元平面に配向させたことによる立体
障害とがうまくバランスし、薄膜内でホトクロミ
ズムを維持したまま、熱的な逆反応は止められて
記録維持の寿命が長くなるためと考察される。
This is due to a good balance between steric hindrance due to the molecular structure of the monomolecular cumulative film of thioindigo derivatives with hydrophobic side chains and steric hindrance due to orientation in a two-dimensional plane in the molecular dimension, and photochromism within the thin film is achieved. This is thought to be because the thermal reverse reaction is stopped while the record is maintained, extending the lifespan of record keeping.

実施例 チオインジゴ類は下記に示す構造をもつた化合
物を指し、A,Bはベンゼン環、ナフタレン環な
どの縮合芳香環およびそれらの誘導体である。チ
オインジゴ類が溶液中でシス−トランスの光異性
によるホトクロミズムを示すことはよく知られて
いる。
Examples Thioindigo refers to compounds having the structure shown below, where A and B are fused aromatic rings such as a benzene ring and a naphthalene ring, and derivatives thereof. It is well known that thioindigos exhibit cis-trans photoisomerism photochromism in solution.

ベンゼン環あるいはナフタレン環などの骨格
に、疎水性側鎖として、アルキル基、アルコキシ
基、アルキルアシル基、アルキルアミド基などで
カーボン数が10以上(望ましくは14〜25)の長鎖
の側鎖をつけることによつて疎水性ホトクロミツ
ク物質とすることができ、単分子膜を形成し易く
なる。
Add a long side chain such as an alkyl group, an alkoxy group, an alkylacyl group, an alkylamido group, etc. with a carbon number of 10 or more (preferably 14 to 25) as a hydrophobic side chain to a skeleton such as a benzene ring or a naphthalene ring. By attaching it, it becomes a hydrophobic photochromic substance, making it easier to form a monomolecular film.

分子次元で二次元平面に配向した単分子膜を累
積した薄膜は、いわゆるラングミユアーブロジエ
ツト法あるいは水平付着法と呼ばれる単分子累積
法によつて基板上に形成され得る。
A thin film, which is an accumulation of monomolecular films oriented in a two-dimensional plane in the molecular dimension, can be formed on a substrate by a monomolecular accumulation method called the so-called Langmuir-Blodget method or the horizontal deposition method.

まずPHや金属イオン等を最適に調整した蒸留水
いわゆるサブフエイズで形成された気水界面上
に、疎水性側鎖を持つたチオインジゴ誘電体を最
適な溶媒に溶かして展開し、溶媒が蒸発気化した
後の展開物質によつて生じる表面圧をバリアによ
つて制御する。最適な表面圧を生じた時、いわゆ
る累積圧に達した時、サブフエイズに垂直方向ま
たは水平方向に、ガラス、金属あるいは半導体物
質等の平滑な支持基板を静かに移動させ、それら
の基板上に単分子膜を移動させる。この操作を繰
り返して単分子累積膜からなる光記録層を形成す
る。
First, a thioindigo dielectric with hydrophobic side chains was dissolved in an optimal solvent and developed on the air-water interface formed by subphases of distilled water with optimally adjusted pH and metal ions, and the solvent was evaporated. The surface pressure created by the subsequent spreading material is controlled by the barrier. When the optimum surface pressure has been achieved, the so-called cumulative pressure, a smooth support substrate, such as glass, metal or semiconductor material, is gently moved vertically or horizontally into the subphases and a single layer is placed on the substrate. Move the molecular membrane. This operation is repeated to form an optical recording layer consisting of a monomolecular cumulative film.

さらに、混合膜として、疎水性側鎖をもつたチ
オインジゴ誘導体と、単分子形成物質を混合した
ものを累積させて有機記録薄膜を形成することが
できる。単分子形成物質としては、ステアリン
酸、アラキン酸等の脂肪酸およびステアリン酸メ
チル、ステアリルアルコール等の誘導体、トリパ
ルミチン、リン脂質等が用いられる。
Further, as a mixed film, an organic recording thin film can be formed by accumulating a mixture of a thioindigo derivative having a hydrophobic side chain and a monomolecular forming substance. As monomolecular forming substances, fatty acids such as stearic acid and arachidic acid, derivatives such as methyl stearate and stearyl alcohol, tripalmitin, phospholipids, etc. are used.

こうして得られた単分子累積膜からなる光記録
層を有する光記録媒体に、適当な波長の光をあて
ることによつて化学変化をおこさせることができ
る。シス体からトランス体あるいはトランス体か
らシス体への変化は、シス体チオインジゴが蛍光
を示さないのに対して、トランス体チオインジゴ
が明瞭な蛍光を示すのでその変化は容易に検知で
きる。
A chemical change can be caused by exposing an optical recording medium having an optical recording layer made of a monomolecular cumulative film thus obtained to light of an appropriate wavelength. Changes from the cis-form to the trans-form or from the trans-form to the cis-form can be easily detected because cis-thioindigo does not exhibit fluorescence, whereas trans-thioindigo exhibits clear fluorescence.

蛍光を利用した再生のためには、蛍光を励起す
る光源および放出された蛍光に対して十分な感度
のある検出器からなる蛍光検出部を選択する必要
がある。
For regeneration using fluorescence, it is necessary to select a fluorescence detection unit consisting of a light source that excites fluorescence and a detector that is sufficiently sensitive to the emitted fluorescence.

本発明の一実施例として5位に疎水性側鎖を持
つたチオインジゴについて説明する。
As an example of the present invention, thioindigo having a hydrophobic side chain at the 5-position will be explained.

実施例 1 オクタデシルベンゼンをスルホン化してオクタ
デシルベンゼンスルホン酸とし、塩化チオニルに
よつてアシル化後、還元によつてp−オクタデシ
ルベンゼンチオールを得た。さらにモノクロル酢
酸と反応させて、チオグリコール酸とし、閉環を
行ない、5−オクタデシル、3−オキソ、1−チ
オフエンを得た。これと、3−オキソ、1−チオ
フエンとp−ニトロソジメチルアニリンと反応さ
せたものを縮合させて、下記に示す。5−オクタ
デシルチオインジゴ()を得た。
Example 1 Octadecylbenzene was sulfonated to give octadecylbenzenesulfonic acid, acylated with thionyl chloride, and then reduced to give p-octadecylbenzenethiol. Further, it was reacted with monochloroacetic acid to form thioglycolic acid, and ring closure was performed to obtain 5-octadecyl, 3-oxo, and 1-thiophene. This is condensed with a reaction product of 3-oxo, 1-thiophene and p-nitrosodimethylaniline, as shown below. 5-octadecylthioindigo () was obtained.

この化合物()を0.3×10-3Mの濃度でベン
ゼンに溶解させた。この化合物()の吸収スペ
クトルを第2図に示す。この溶液をほぼ560nmの
光を照射した後に300μの試料を18℃、PH=5.2
のサブフエイズに展開し、単分子膜を形成した。
10mm/分のバリア速度でその単分子膜を圧縮し、
約20dyne/cmの累積圧を生じた時、ガラス基板
を気水界面上の単分子膜に垂直に上下させて累積
膜を形成した。10回上下に往復させた結果、ガラ
ス板上に20層の単分子膜が累積し、第1図に示し
たような光記録媒再生装置を得た。同図におい
て、1はガラス基板であり、その表面に光記録層
2が形成されている。上記ガラスはあらかじめア
ラキン酸カドミウムで処理して疎水性にしておい
た。円内は、光記録層2の部分を拡大した図であ
り、2a〜2cは各々の単分子層を模式的に示し
たものである。光記録層2の上には保護膜3が形
成され、光記録媒体4とし、その光記録媒体4の
近くに光照射部5と蛍光検知部6を設けて光記録
再生装置とした。
This compound () was dissolved in benzene at a concentration of 0.3×10 −3 M. The absorption spectrum of this compound () is shown in FIG. After irradiating this solution with approximately 560nm light, a 300μ sample was heated at 18℃, PH = 5.2.
It expanded into subphases and formed a monolayer.
Compress the monolayer at a barrier speed of 10 mm/min,
When a cumulative pressure of about 20 dyne/cm was generated, the glass substrate was moved up and down perpendicularly to the monomolecular film on the air-water interface to form a cumulative film. As a result of reciprocating up and down 10 times, 20 layers of monomolecular film were accumulated on the glass plate, and an optical recording medium reproducing device as shown in FIG. 1 was obtained. In the figure, 1 is a glass substrate, and an optical recording layer 2 is formed on the surface thereof. The glass was previously treated with cadmium arachinate to make it hydrophobic. The inside of the circle is an enlarged view of the optical recording layer 2, and 2a to 2c schematically show each monomolecular layer. A protective film 3 was formed on the optical recording layer 2 to form an optical recording medium 4, and a light irradiation section 5 and a fluorescence detection section 6 were provided near the optical recording medium 4 to obtain an optical recording and reproducing device.

こうして得られた光記録媒体4にはほぼ560nm
の光をスポツトサイズ1μmに集束して照射を行な
い記録を行なつた。照射前にはほぼ450nmの光を
吸収していたが、照射後はその波長の光を透過し
易くなり、明らかに照射前後で光記録層2の光学
濃度の変化が認められ、光記録媒体としての機能
を備えていることがわかる。しかもホトクロミズ
ムの維持寿命は長く、溶液の場合のように自然に
もとに戻つてしまうことはなかつた。
The optical recording medium 4 thus obtained has a wavelength of approximately 560 nm.
The light was focused to a spot size of 1 μm and irradiated and recorded. Before irradiation, it absorbed approximately 450 nm light, but after irradiation, light of that wavelength became more easily transmitted, and a clear change in the optical density of the optical recording layer 2 was observed before and after irradiation, making it suitable for use as an optical recording medium. It can be seen that it has the following functions. Moreover, photochromism has a long maintenance life and does not return to its original state naturally, unlike in the case of solutions.

実施例 2 実施例1と同様にして、5−オクタデシル、3
−オキソ、1−チオフエンを得た。これとp−ニ
トロソジメチルアニリンと反応させたものと、5
−t−ブチル、3−オキソ、1−チオフエンを縮
合させて下記に示す、5−オクタデシル、5′−t
−ブチルチオインジゴ()を得た。
Example 2 In the same manner as in Example 1, 5-octadecyl, 3
-oxo,1-thiophene was obtained. This was reacted with p-nitrosodimethylaniline, and 5
-t-Butyl, 3-oxo, 1-thiophene are condensed to produce 5-octadecyl, 5'-t
-Butylthioindigo () was obtained.

この化合物()とトリパルミチンをモル比で
1:2で混合したものを0.5×10-3M濃度でクロ
ロホルムに溶解した。この溶液にほぼ550nmの光
を照射した後実施例1と同様にしてクロムメツキ
板上に単分子膜を累積した。クロムメツキ板はア
ラキン酸カドミウムをあらかじめ累積して疎水性
としておいた。累積は20層行ない光記録層を得
た。
A mixture of this compound () and tripalmitin at a molar ratio of 1:2 was dissolved in chloroform at a concentration of 0.5×10 −3 M. After irradiating this solution with light of approximately 550 nm, a monomolecular film was accumulated on a chrome plated plate in the same manner as in Example 1. The chrome plated board was made hydrophobic by accumulating cadmium arachinate in advance. Accumulation was performed for 20 layers to obtain an optical recording layer.

この光記録媒体に、ほぼ450nmの光をスポツト
サイズ1μmに集束して照射を行ない記録した。照
射前はほぼ450nmの光を透過するので反射光は強
いが、照射後は吸収が多くなるので反射光は弱ま
る。明らかに照射前後で光記録層の光学濃度の変
化が認められ、光記録媒体としての機能を備えて
いることがわかる。
This optical recording medium was irradiated with light of approximately 450 nm, focused to a spot size of 1 μm, and recorded. Before irradiation, light of approximately 450 nm is transmitted, so the reflected light is strong, but after irradiation, there is more absorption, so the reflected light becomes weaker. A clear change in the optical density of the optical recording layer before and after irradiation was observed, indicating that it has a function as an optical recording medium.

しかもホトクロミズムの維持寿命は長く、溶液
の場合のように自然に戻つてしまうことは無かつ
た。
Moreover, photochromism has a long maintenance life and does not return to its natural state as in the case of solutions.

実施例 3 実施例1と同様にして5−オクタデシル、3−
オキソ、1−チオフエンを得た。これとp−ニト
ロソジメチルアニリンと反応させたものと、1.8
−ナフタールイミドから合成した3−オキソ−1
−ナフト〔1.8−b〕チオフエンを縮合させて下
記に示す、5−オクタデシル、1−8ナフチルチ
オインジゴ()を得た。
Example 3 5-octadecyl, 3-
Oxo, 1-thiophene was obtained. This was reacted with p-nitrosodimethylaniline, and 1.8
-3-oxo-1 synthesized from naphthalimide
-Naphtho[1.8-b]thiophene was condensed to obtain 5-octadecyl, 1-8 naphthylthioindigo () shown below.

この化合物()とトリパルミチンをモル比で
1:2で混合したものを0.5×10-3M濃度でクロ
ロホルムに溶解した。この溶液にほぼ600nmの光
を照射した後実施例1と同様にして、ガラス基板
上に単分子膜を累積した。ガラス基板はアラキン
酸カドミウムをあらかじめ累積して疎水性として
おいた。累積は30層行ない光記録層を得た。
A mixture of this compound () and tripalmitin at a molar ratio of 1:2 was dissolved in chloroform at a concentration of 0.5×10 −3 M. After irradiating this solution with light of approximately 600 nm, a monomolecular film was accumulated on a glass substrate in the same manner as in Example 1. The glass substrate was made hydrophobic by accumulating cadmium arachinate in advance. Accumulation was performed for 30 layers to obtain an optical recording layer.

この光記録媒体に、ほぼ480nmの光をスポツト
サイズ1μmに集束して照射を行ない記録した。照
射前はほぼ480nmの光を吸収していたが、照射後
はその波長の光を透過し易くなり、明らかに照射
前後で光記録層の光学濃度の変化が認められ、光
記録媒体としての機能を備えていることがわか
る。しかもホトクロミズムの維持寿命は長く、溶
液の場合のように自然にもとに戻つてしまうこと
はなかつた。
This optical recording medium was irradiated with light of approximately 480 nm, focused to a spot size of 1 μm, and recorded. Before irradiation, it absorbed approximately 480 nm light, but after irradiation, light of that wavelength became more easily transmitted, and a clear change in the optical density of the optical recording layer was observed before and after irradiation, indicating that it functions as an optical recording medium. It can be seen that it is equipped with Moreover, photochromism has a long maintenance life and does not return to its original state naturally, unlike in the case of solutions.

実施例 4 実施例1で得られた光記録層の記録部ではチオ
インジガゴがシス体からトランス体へ異性化して
おり、蛍光を強く検知することができたのに対
し、非記録部ではシス体が多く、蛍光が弱く、記
録部と非記録部の区別が明瞭であり、蛍光を検知
することによつて記録を再生することが可能であ
つた。しかもホトクロミズムの維持寿命が長く、
溶液の場合のように熱のみによつて自然にもとに
戻ることはなかつた。
Example 4 In the recording part of the optical recording layer obtained in Example 1, thioindigo was isomerized from the cis form to the trans form, and fluorescence could be strongly detected, whereas in the non-recording part, the cis form was In most cases, the fluorescence was weak and the recorded and non-recorded areas could be clearly distinguished, and it was possible to reproduce the recording by detecting the fluorescence. Moreover, the maintenance life of photochromism is long,
It did not return to its original state by heat alone as in the case of a solution.

また実施例2、実施例3で得られた光記録媒体
においても実施例1と同様に蛍光を検知すること
によつて記録を生することができた。
Also, in the optical recording media obtained in Examples 2 and 3, recording could be made by detecting fluorescence in the same way as in Example 1.

発明の効果 以上述べてきたように本発明によれば、きわめ
て簡単な構成で、従来用いることができなかつた
シス−トランス異性化に基づくホトクロミツク化
合物の薄膜を光記録層として用いることが可能と
なり、記録感度が高く、かつ記録寿命の長い光記
録再生装置を提供できる。
Effects of the Invention As described above, according to the present invention, a thin film of a photochromic compound based on cis-trans isomerization, which could not be used conventionally, can be used as an optical recording layer with an extremely simple structure. It is possible to provide an optical recording/reproducing device with high recording sensitivity and long recording life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の光記録再生装置の
構成図、第2図は本発明の一実施例におけるイン
ジゴ誘導体の光照射による吸収スペクトル変化を
示す図である。 1……ガラス基板(基板)、4……光記録媒体、
5……光照射部、6……蛍光検出部。
FIG. 1 is a block diagram of an optical recording/reproducing apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing changes in absorption spectrum due to light irradiation of an indigo derivative according to an embodiment of the present invention. 1... Glass substrate (substrate), 4... Optical recording medium,
5...Light irradiation section, 6...Fluorescence detection section.

Claims (1)

【特許請求の範囲】[Claims] 1 基板の表面に疎水性側鎖を持つたチオインジ
ゴ誘導体の単分子累積膜からなる光記録層とその
光記録層の表面に保護膜を設けた光記録媒体と、
その光記録媒体の光記録層に光を照射する光照射
部と、その光照射部により光記録媒体の光記録層
に記録された光情報を読み出す蛍光検知部とを備
えた光記録再生装置。
1. An optical recording medium comprising an optical recording layer consisting of a monomolecular cumulative film of a thioindigo derivative having a hydrophobic side chain on the surface of a substrate, and a protective film provided on the surface of the optical recording layer;
An optical recording/reproducing device comprising: a light irradiation section that irradiates light onto an optical recording layer of the optical recording medium; and a fluorescence detection section that reads optical information recorded on the optical recording layer of the optical recording medium by the light irradiation section.
JP60127414A 1984-11-13 1985-06-12 Optical recording medium and optical recording and reproducing method Granted JPS61285451A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60127414A JPS61285451A (en) 1985-06-12 1985-06-12 Optical recording medium and optical recording and reproducing method
US06/796,445 US4686169A (en) 1984-11-13 1985-11-08 Optical recording medium and production of the same
DE8585114293T DE3578739D1 (en) 1984-11-13 1985-11-09 OPTICAL RECORD CARRIER.
EP85114293A EP0182236B1 (en) 1984-11-13 1985-11-09 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60127414A JPS61285451A (en) 1985-06-12 1985-06-12 Optical recording medium and optical recording and reproducing method

Publications (2)

Publication Number Publication Date
JPS61285451A JPS61285451A (en) 1986-12-16
JPH0434140B2 true JPH0434140B2 (en) 1992-06-05

Family

ID=14959373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60127414A Granted JPS61285451A (en) 1984-11-13 1985-06-12 Optical recording medium and optical recording and reproducing method

Country Status (1)

Country Link
JP (1) JPS61285451A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777028B2 (en) * 1986-01-19 1995-08-16 ソニー株式会社 Recording signal reproduction method for optical recording medium
US6071671A (en) * 1996-12-05 2000-06-06 Omd Devices Llc Fluorescent optical memory
AU2002222458A1 (en) * 2000-12-07 2002-06-18 Consellation Trid Inc Method for polarization data recording/retrieval on luminescent optical data carriers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134834A (en) * 1974-09-20 1976-03-24 Toyo Satsushi Kogyo Kk ARUMINIUMUZAIRYONITOSOOHODOKOSU HOHO
JPS60175087A (en) * 1984-02-21 1985-09-09 松下電子工業株式会社 Large-scale integrated circuit for crt display
JPS61117537A (en) * 1984-11-13 1986-06-04 Matsushita Electric Ind Co Ltd Light recording medium
JPS61175087A (en) * 1985-01-31 1986-08-06 Canon Inc Image forming and erasing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134834A (en) * 1974-09-20 1976-03-24 Toyo Satsushi Kogyo Kk ARUMINIUMUZAIRYONITOSOOHODOKOSU HOHO
JPS60175087A (en) * 1984-02-21 1985-09-09 松下電子工業株式会社 Large-scale integrated circuit for crt display
JPS61117537A (en) * 1984-11-13 1986-06-04 Matsushita Electric Ind Co Ltd Light recording medium
JPS61175087A (en) * 1985-01-31 1986-08-06 Canon Inc Image forming and erasing method

Also Published As

Publication number Publication date
JPS61285451A (en) 1986-12-16

Similar Documents

Publication Publication Date Title
EP0179436B1 (en) Optical recording medium
JPH0434140B2 (en)
EP0312339A2 (en) Optical information recording media and optical recording systems
JPS61201244A (en) Light recording method
JPH0336409B2 (en)
JPS61117538A (en) Light recording medium
JPS61128244A (en) Photorecording medium
JPS62176887A (en) Optical recording method
JP3141584B2 (en) Reversible optical recording material
JPH02308439A (en) Optical recording medium and reproducing method thereof
JPS61201243A (en) Light recording method
JPS62140886A (en) Optical recording medium
JPS61180237A (en) Recording medium
JPS62142688A (en) Optical recording method
JPS6085448A (en) Optical recordidng medium
JPS61239988A (en) Recording medium
JPS62140888A (en) Optical recording medium
JP2695264B2 (en) Optical recording and reading method
JPH0458615B2 (en)
JPS62140889A (en) Optical recording method
JPH047018B2 (en)
JPS61143190A (en) Recording medium
JPS62163050A (en) Optical recording method
JPH0259789B2 (en)
JPS62176890A (en) Optical recording method