JPS6222138B2 - - Google Patents

Info

Publication number
JPS6222138B2
JPS6222138B2 JP4232077A JP4232077A JPS6222138B2 JP S6222138 B2 JPS6222138 B2 JP S6222138B2 JP 4232077 A JP4232077 A JP 4232077A JP 4232077 A JP4232077 A JP 4232077A JP S6222138 B2 JPS6222138 B2 JP S6222138B2
Authority
JP
Japan
Prior art keywords
electrode
coloring
cell
electrodes
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4232077A
Other languages
Japanese (ja)
Other versions
JPS53127755A (en
Inventor
Masatsune Kobayashi
Hiroyuki Imataki
Norya Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4232077A priority Critical patent/JPS53127755A/en
Publication of JPS53127755A publication Critical patent/JPS53127755A/en
Publication of JPS6222138B2 publication Critical patent/JPS6222138B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、エレクトロクロミツク素子の駆動法
に関する。 一般に、ある素子が通電によつて着色し、前記
通電とは逆極性にした通電、或は加熱、或はそれ
等の組合せ操作によつて消色(即ち、元の色にも
どる)するという、いわば、電気的極性に依存し
た可逆的着消色現象をエレクトロクロミー現象と
称している。 エレクトロクロミー現象を生ぜしめる機構は必
ずしも単一ではないが、多くの場合、電解質と発
色性物質との所謂酸化還元反応と見られている。
この場合、電解質と発色性物質とは必ずしも材料
的には区別されない。同一物質が発色性物質であ
り、同時に電解質となり得る場合もある。又、別
の観点からはフオトクロミー現象の場合と同じく
注入電子の色中心への注入による光吸収特性の変
化とする見方も行なわれており実際にはこれらが
組み合わされた結果としてエレクトロクロミー現
象が生じているものと理解される。 エレクトロクロミー現象は材料が本来有する色
を電気的に変化せしめるものであるから、その色
の組み合わせは多様である。又材料が光を透過し
得るか、反射又は散乱するかは材料自体の性質に
よつて決まるのではなく、むしろ層の形成方法に
よつて決まるので、表示素子として用いる場合に
は透過型又は反射型のどちらかの型も形成し得る
性質を有している。 これらの構成及び前記の多様性、更には着色或
は発色が生じてから消去せしめられるまで着色状
態が持続するという記憶性、又印加電圧値に対応
して発色色調が変移する材料も存在することなど
によつて多様な応用が考えられるため、像表示分
野を中心にして近年研究が盛んに行なわれるよう
になつて来たものである。 中でも、電流による物質の電気分解、即ち、物
質の酸化・還元反応(レドツクス反応)を基礎と
した現象を、特にエレクトロケミクロミズムと称
し、本発明は、斯かる現象に係る応用素子をその
技術対象としているものである。 なお、エレクトロケミクロミズムを応用した素
子はその特長が、所謂パツシブ・デイスプレーで
ある事、駆動電圧が低い事、メモリー特性がある
事、コントラストが良い事、視野角が広い事、カ
ラフルな表示が可能である事、等に在り、従来、
実用化されている液晶表示素子、LED表示素子
に比して有利な特性を具備しているものではあ
る。然るに、斯かるエレクトロケミクロミズムを
応用した素子に於ては、素子寿命の問題が、その
実用化への過程で、最重要課題として残されてい
る。 即ち、書込み−メモリー−消去サイクルを繰り
返した場合に生じる電極上への着色不良、又消去
不良、黄色析出物の発生、着色ムラ、色調変化な
どの発生であり、これらの不良は、表示素子とし
ての寿命を著しく縮めるものであり、製品化に対
して大きな障害となつているものである。 而して、本発明は、エレクトロケミクロミズム
に基礎をおく電気化学的セルの寿命延長を技術課
題の中心としたものである。 即ち、本発明の主目的は、書込み−メモリー−
消去サイクルの繰返し耐久性を向上させた電気化
学的セルを提供することにある。斯かる目的を達
成した本発明は、電極を設けた2枚の電気絶縁性
基板と、該2枚の電気絶縁性基板との間に配置し
た電解質層とを有するエレクトロクロミツク素子
の駆動法において、前記2枚の電気絶縁性基板に
設けた電極がともに低抵抗金属層及びその上を被
覆した膜厚200Å〜15000Åの金属酸化物層とを有
する積層電極であつて、該積層電極間に書込みス
テツプ時と消去ステツプ時とで互いに逆極性の直
流パルスを印加するエレクトロクロミツク素子の
駆動法に特徴を有している。 エレクトロケミクロミズムにその基礎を置く表
示装置としては、光透過、又は、反射性の作用電
極、その対電極と、電流の通過によつて、その酸
化・還元状態が可逆的に変化して、作用電極の外
観に検知しうる変化をもたらすことができる電気
化学的発消色物質、及び、電解質、ならびに、そ
れ等の溶媒からなる電気応答性の着消色媒体を収
容してなるセルを使用することが知られている。
これらの両電極及び電解液は、作用電極を透視で
きる手段を有する適当なハウジングに収納され
る。斯かる装置における電気化学的発消色物質
は、電子を収受、又は、付与することができ、こ
れにより、通常、スペクトルの可視領域にある高
い吸光度を有するラジカルイオンに変化し、又、
同時にこのラジカルイオンは、媒体中に存在する
アニオンと結合して作用電極上に媒体不溶性の着
色体を形成する。その一般的構成は第1図図示の
如くであり、作用電極1と対向電極2はガラス等
のセル3中に配置され、両電極は導線5,6によ
つて電源4に結線される。セル3の中には、電気
応答性の着消色媒体7が封入される。なお、図示
例とは別に、電極1,2を同一平面上に配した構
成のセルとすることもできる。 次に、斯かる装置の駆動方式は以下の如くであ
る。 即ち、先ず、作用電極が負、対向電極が正にな
るように外部から直流電圧を印加する時に生じる
作用電極に対する書込み、二番目に、外部電圧を
切り、回路を開いた場合に生じるメモリー作用
(作用電極上の書込みが持続する。)、三番目に
は、書込み時と極性を逆転し、作用電極側が正、
反対電極側が負になるように外部から直流電圧を
印加することで作用電極上の書込みの消去、と云
う三段階の駆動ステツプがある。なお、作用電極
側を正にして書込みをなす場合もある。 第2図は、代表的駆動パルス印加方式であり、
8は書込みステツプ、9はメモリーステツプ、1
0は消去ステツプを表わす。 ところで、上記に示した電極として、従来、
金、白金等の金属或は酸化スズ等の金属酸化物を
単独で使用することが提案されている。然るに、
金属を単独で用いる場合は、着消色媒体に対する
化学安定性が得難く、セルの繰返し使用中に副産
物の発生が避けられず、結果として、セルの寿命
低下につながることが多い。他方、金属酸化物を
使用する場合は、金属に較べて化学安定性が優れ
てはいるものの電気抵抗がかなり大である為に、
応答性が悪くなること、高濃度の着色が得られな
いこと、更にセルの消費電力が大となつて実用
上、不利である。これに対して、本発明では電極
構成材料に改良を施こすことによつてセルの応答
性、及び着色濃度の低下を起こすことなく、セル
の寿命延長即ち、繰返し使用耐久性の向上を可能
にしたものである。 ここで本発明電気化学的セルを構成する各要素
に就いて詳しく説明しておく。 先ず、電極の構成及びその材質は本発明に於て
特に重要である。 第3図は、本発明に係る電極の構成を概略的に
説明する模式図であり、ガラス或はプラスチツク
等の電気絶縁性基板11上に電極12を配してあ
る。電極12は、低抵抗金属層13と金属酸化物
層14とを電気的に導通にした上で積層して成つ
ている。図示例に於ては、13及び14が各1層
ずつ積層されているが、本発明に於ては斯かる態
様のみに限らず、各々、或は何れか一方を多層構
成とすることもできる。 金属酸化物層14は、蒸着、塗布、スパツタ等
公知の手法により、低抵抗金属層13上に設けら
れる。本発明に於ては低抵抗金属層13が露出し
てセルに収容される着消色媒体と直接接触するこ
とのないよう配慮すべきである。例えば、第4図
示の如く、低抵抗金属層13の端部が金属酸化物
層で完全に被覆されないで露出する場合は、その
端部を別途、着消色媒体に対して安定な電気絶縁
性物質(例えば樹脂、ガラス、金属酸化物等)に
より、マスク15するのが好ましい。ところで、
本発明者等の得た知見によれば、本発明電気化学
的セルに於ては、その応答性或は着色濃度の観点
から、電極が面積抵抗で略々50Ω以下、好ましく
は10Ω以下となるよう構成される必要のあること
が判つている。 従つて、金属に比べて電気抵抗が大である金属
酸化物層14の層厚はできる限り薄くすることが
好ましい。使用する材料により多少の差異はある
が、本発明では、略々、200Å乃至15000Åの範囲
の層厚で金属酸化物層14を設けるのが好まし
い。 低抵抗金属層13の構成材料としては、特に限
定されないが、一般には、アルミニウム、銅、
銀、バラジウム、白金、金、等が好ましく用いら
れる。又、金属酸化物層14の構成材料として
は、酸化インジウム(In2O3)、酸化スズ
(SnO2)、酸化タングステン(WO3)、酸化鉛
(PbO2)、酸化チタン(TiO2)、酸化ビスマス
(Bi2O3)等が特に好ましいものである。更に、マ
スク15は、SiO2,SiO,Al2O3、エポキシ樹脂
等により構成するのが一般的である。 金属酸化物の化学的安定性が金属単体に較べて
優れているのは良く知られた処である。しかし、
エレクトロケミクロミズムに基づく表示作用が、
電流量(電荷量)に大きく依存している為に、金
属に比して著しく大きい電気抵抗を有する金属酸
化物を単体で電極とすると、着消色過程の応答性
(レスポンス)の遅れ、着消色の不均一、印加電
圧上昇による着消色媒体の劣化等、セルの特性に
重大な不都合をもたらす。 本発明では、低抵抗金属の化学的不安定さを、
それに金属酸化物を薄く被覆することにより補な
うものであり、金属酸化物を略々200Å乃至15000
Åの膜厚で形成すれば、金属の低抵抗がほゞ生か
され、電極全体の抵抗増加をその許容範囲内に抑
えることができる。 なお、上述の条件を満足する電極のセル容器内
での配置は、装置の仕様に従つて任意に行なうこ
とができる。 次いで、本発明電気化学的セルに係る他の構成
要素に就いて説明する。 セル容器内に収容されるべき電気応答性の着消
色媒体は、電気化学的発消色物質(…レドツクス
反応性有機物質とみることもできる)、電解質を
主体とし、更に種々の添加剤を加えて、これ等を
水等の溶媒に溶解して使用するのが普通である。 本発明に於て使用する電気化学的発消色物質と
しては、特に限定されるものではなく広くレドツ
クス反応性有機物質を挙げることができる。しか
し、中でも第4級アンモニウム塩構造を有するピ
リジニウム化合物類を好例として挙げることがで
きる。その具体例として、 1,1′−ジメチル−4,4′−ビピリジニウム・ジ
ブロマイド 1,1′−ジエチル−4,4′−ビピリジニウム・ジ
ブロマイド 1,1′−ジヘプチル−4,4′−ビピリジニウム・
ジブロマイド 1,1′−ジベンジル−4,4′−ビピリジニウム・
ジブロマイド N,N′−ジ(p−シアノフエニル)−4,4′−ビ
ピリジニウム・ジクロライド 2,2′−(ジエチル)ビピリジニウム・ジクロラ
イド N,N′−ジエチル−2,7−ジアザピレニウ
ム・ジクロライド N−ベンジル−4−シアノ−ピリジニウム・ブロ
マイド 等を挙げることができる。その他、レドツクスイ
ンジケータとして用いられている下記の化合物等
も使用できる。例えば、 サフラニンT ニユートラルレツド インジゴモノスルフオニツクアシツド ジフエニール・アミン ジフエニール・アミン−P−スルフオニツクアシ
ツド p−ニトロ・ジフエニール・アミン ジフエニル・アミン−2,3′−ジカルボキシリツ
ク・アシツド ジフエニール・アミン−2,2′−ジカルボキシリ
ツク・アシツド 等を挙げることができる。 次に電解質については、臭化カリウム、塩化カ
リウム等が、代表的なものであるが、硫酸第一鉄
アンモニウム等も、良好な電解質として使用する
ことができる。 溶媒としては、一般的に水が用いられるもので
あるが、電気化学的発消色物質の種類によつて
は、水とメチル・アルコール、ジメチル・フオル
ム・アミドのような有機溶媒との混合溶媒が用い
られることもある。 更に、本発明効果を、以下の実施例に添つて説
明する。 実施例 ガラスセル中に、下表に示すとおりに構成にし
た作用電極とその対向電極とを各々の間隔が2mm
となるように配した。各電極のサイズは2mm×3
mmの矩形とした。斯かる各セル中に蒸溜水に1,
1′−ジヘプチル−4,4′−ビピリジウム・ジブロ
マイド(0.05モル濃度)と臭化カリウム(0.3規
定濃度)とを溶解した溶液を充填した。以上で得
られた各セルに対し、直流電源によつて+2V
(2sec)→OV(0.5sec)→−2V(2sec)の電位
サイクルで駆動操作を連続的に繰返した。下表に
示した数値は上記の操作で電極上に不要な析出物
が蓄積する迄の繰返しサイクル数を表わしたもの
である。 加えて、着消色のレスポンス及び着色濃度の均
一性を評価した。
The present invention relates to a method for driving an electrochromic device. In general, a certain element is colored when it is energized, and the color is erased (i.e., it returns to its original color) by energization with the polarity opposite to that of the energization, heating, or a combination of these operations. In other words, a reversible coloring/decoloring phenomenon that depends on electrical polarity is called an electrochromy phenomenon. The mechanism that causes the electrochromy phenomenon is not necessarily single, but in many cases it is considered to be a so-called redox reaction between an electrolyte and a color-forming substance.
In this case, the electrolyte and the color-forming substance are not necessarily distinguished from each other in terms of materials. In some cases, the same substance can be a color-forming substance and an electrolyte at the same time. In addition, from another perspective, it is considered that the light absorption characteristics change due to the injection of injected electrons into the color center, as in the case of photochromy phenomenon, and in reality, electrochromy phenomenon is caused by a combination of these two phenomena. It is understood that this is occurring. Since the electrochromy phenomenon electrically changes the original color of a material, the combination of colors is diverse. Furthermore, whether a material can transmit light, reflect light, or scatter light is not determined by the properties of the material itself, but rather by the method of forming the layers. It has the property of being able to form either type. In addition to these configurations and the above-mentioned diversity, there are also materials that have a memory property in which the colored state persists after coloring or development occurs until it is erased, and there are also materials whose color tone changes in response to the applied voltage value. Since various applications can be considered, research has been actively conducted in recent years, mainly in the field of image display. Among these, the phenomenon based on the electrolysis of substances by electric current, that is, the oxidation and reduction reactions (redox reactions) of substances, is particularly referred to as electrochemicomism. This is what it says. The features of devices that apply electrochemical microscopy are that they are so-called passive displays, have low driving voltage, have memory characteristics, have good contrast, have a wide viewing angle, and have colorful displays. It is possible, etc., and conventionally,
It has advantageous characteristics compared to liquid crystal display elements and LED display elements that are in practical use. However, in devices to which such electrochemistry is applied, the problem of device life remains the most important issue in the process of putting them into practical use. In other words, when the write-memory-erase cycle is repeated, coloring defects on the electrodes, erasing defects, generation of yellow precipitates, uneven coloring, color tone changes, etc. occur. This significantly shortens the lifespan of the product, and is a major obstacle to commercialization. Thus, the present invention focuses on extending the life of electrochemical cells based on electrochemochemical microscopy. That is, the main purpose of the present invention is to write-memory-
An object of the present invention is to provide an electrochemical cell with improved durability against repeated erase cycles. The present invention, which has achieved such an object, provides a method for driving an electrochromic device having two electrically insulating substrates provided with electrodes and an electrolyte layer disposed between the two electrically insulating substrates. , the electrodes provided on the two electrically insulating substrates are both laminated electrodes having a low resistance metal layer and a metal oxide layer with a thickness of 200 Å to 15000 Å coated thereon, and writing is performed between the laminated electrodes. The method of driving the electrochromic device is characterized by applying direct current pulses of opposite polarity during the step and during the erase step. Display devices based on electrochemical microscopy consist of a light-transmissive or reflective working electrode, its counter electrode, and its oxidation/reduction state reversibly changed by the passage of electric current. Using a cell containing an electro-responsive color-bleaching medium consisting of an electrochemical dye-bleaching substance and an electrolyte and a solvent thereof capable of effecting a detectable change in the appearance of the electrode. It is known.
Both electrodes and the electrolyte are housed in a suitable housing with means for seeing through the working electrode. The electrochemical color-developing material in such devices is capable of accepting or donating electrons, thereby converting it into a radical ion with high absorbance, usually in the visible region of the spectrum, and
At the same time, these radical ions combine with anions present in the medium to form a medium-insoluble colored body on the working electrode. Its general structure is as shown in FIG. 1, in which a working electrode 1 and a counter electrode 2 are arranged in a cell 3 made of glass or the like, and both electrodes are connected to a power source 4 by conducting wires 5 and 6. Inside the cell 3, an electrically responsive coloring/decoloring medium 7 is enclosed. Note that, apart from the illustrated example, a cell may also be constructed in which the electrodes 1 and 2 are arranged on the same plane. Next, the driving method of such a device is as follows. That is, first, writing to the working electrode occurs when applying a DC voltage from the outside so that the working electrode is negative and the counter electrode is positive, and second, the memory effect (that occurs when the external voltage is turned off and the circuit is opened). (The writing on the working electrode continues.), and thirdly, the polarity is reversed from when writing, so that the working electrode side is positive,
There are three driving steps in which writing on the working electrode is erased by applying a DC voltage from the outside so that the opposite electrode becomes negative. Note that writing may be performed with the working electrode side facing positive. Figure 2 shows a typical drive pulse application method,
8 is a write step, 9 is a memory step, 1
0 represents an erase step. By the way, as the electrode shown above, conventionally,
It has been proposed to use metals such as gold and platinum or metal oxides such as tin oxide alone. However,
When a metal is used alone, it is difficult to obtain chemical stability against a coloring/decoloring medium, and the generation of by-products during repeated cell use is unavoidable, resulting in a shortened cell life in many cases. On the other hand, when using metal oxides, although they have better chemical stability than metals, they have considerably higher electrical resistance.
This is disadvantageous in practical terms because the responsiveness deteriorates, high-density coloring cannot be obtained, and the power consumption of the cell increases. In contrast, in the present invention, by improving the electrode constituent materials, it is possible to extend the life of the cell, that is, improve its durability for repeated use, without causing a decrease in cell responsiveness or coloring density. This is what I did. Here, each element constituting the electrochemical cell of the present invention will be explained in detail. First, the structure of the electrode and its material are particularly important in the present invention. FIG. 3 is a schematic diagram illustrating the structure of an electrode according to the present invention, in which an electrode 12 is arranged on an electrically insulating substrate 11 made of glass or plastic. The electrode 12 is formed by laminating a low resistance metal layer 13 and a metal oxide layer 14 which are electrically connected to each other. In the illustrated example, one layer each of 13 and 14 is laminated, but the present invention is not limited to this embodiment, and each or either one may have a multilayer structure. . The metal oxide layer 14 is provided on the low-resistance metal layer 13 by a known method such as vapor deposition, coating, or sputtering. In the present invention, care should be taken to prevent the low resistance metal layer 13 from being exposed and coming into direct contact with the coloring/decoloring medium housed in the cell. For example, as shown in FIG. 4, if the end of the low-resistance metal layer 13 is exposed without being completely covered with the metal oxide layer, the end may be separately coated with an electrically insulating material that is stable against the coloring/decoloring medium. It is preferable to mask 15 with a substance (for example, resin, glass, metal oxide, etc.). by the way,
According to the knowledge obtained by the present inventors, in the electrochemical cell of the present invention, the electrode has a sheet resistance of approximately 50Ω or less, preferably 10Ω or less, from the viewpoint of its responsiveness or coloring density. It turns out that it needs to be configured like this. Therefore, it is preferable that the thickness of the metal oxide layer 14, which has higher electrical resistance than metal, be as thin as possible. In the present invention, the metal oxide layer 14 is preferably provided with a thickness in the range of approximately 200 Å to 15,000 Å, although there are some differences depending on the material used. The constituent material of the low resistance metal layer 13 is not particularly limited, but generally includes aluminum, copper,
Silver, palladium, platinum, gold, etc. are preferably used. Furthermore, the constituent materials of the metal oxide layer 14 include indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), lead oxide (PbO 2 ), titanium oxide (TiO 2 ), Bismuth oxide (Bi 2 O 3 ) and the like are particularly preferred. Further, the mask 15 is generally made of SiO 2 , SiO, Al 2 O 3 , epoxy resin, or the like. It is well known that the chemical stability of metal oxides is superior to that of simple metals. but,
The display effect based on electrochemicomism is
Because it is highly dependent on the amount of current (charge amount), if a metal oxide, which has significantly higher electrical resistance than metal, is used as an electrode, the response of the coloring/decoloring process may be delayed, and the coloring may be delayed. This causes serious problems in cell characteristics, such as uneven decoloring and deterioration of the coloring/decoloring medium due to increased applied voltage. In the present invention, the chemical instability of low resistance metals is
This is supplemented by a thin coating of metal oxide, and the thickness of the metal oxide is approximately 200 Å to 15,000 Å.
If the film is formed with a thickness of 1.5 Å, the low resistance of the metal can be effectively utilized, and the increase in resistance of the entire electrode can be suppressed within the allowable range. Note that the electrodes satisfying the above conditions can be arbitrarily arranged in the cell container according to the specifications of the device. Next, other components related to the electrochemical cell of the present invention will be explained. The electro-responsive coloring and decoloring medium to be housed in the cell container is mainly composed of an electrochemical coloring and decoloring substance (which can also be seen as a redox-reactive organic substance), an electrolyte, and further contains various additives. In addition, these are usually used after being dissolved in a solvent such as water. The electrochemical coloring/decolorizing substance used in the present invention is not particularly limited, and a wide range of redox-reactive organic substances can be mentioned. However, among them, pyridinium compounds having a quaternary ammonium salt structure can be cited as a good example. As a specific example, 1,1'-dimethyl-4,4'-bipyridinium dibromide 1,1'-diethyl-4,4'-bipyridinium dibromide 1,1'-diheptyl-4,4'-bipyridinium
dibromide 1,1'-dibenzyl-4,4'-bipyridinium
dibromide N,N'-di(p-cyanophenyl)-4,4'-bipyridinium dichloride 2,2'-(diethyl)bipyridinium dichloride N,N'-diethyl-2,7-diazapyrenium dichloride N-benzyl-4-cyano-pyridinium bromide and the like can be mentioned. In addition, the following compounds used as redox indicators can also be used. For example, Safranin T neutral red Indigo monosulfur oxide Diphenyl amine Diphenyl amine-P-sulfuronic acid p-nitro diphenyl amine Diphenyl amine-2,3'-dicarboxylic acid Diphenyl amine-2,2'-dicarboxylic acid etc. can be mentioned. Next, regarding the electrolyte, potassium bromide, potassium chloride, etc. are typical ones, but ferrous ammonium sulfate, etc. can also be used as a good electrolyte. Water is generally used as a solvent, but depending on the type of electrochemical coloring/decolorizing substance, a mixed solvent of water and an organic solvent such as methyl alcohol or dimethyl form amide may be used. is sometimes used. Furthermore, the effects of the present invention will be explained with reference to the following examples. Example A working electrode and a counter electrode configured as shown in the table below were placed in a glass cell with a spacing of 2 mm between each electrode.
It was arranged so that The size of each electrode is 2mm x 3
It was made into a rectangle of mm. 1 in distilled water in each such cell.
It was filled with a solution of 1'-diheptyl-4,4'-bipyridium dibromide (0.05 molar concentration) and potassium bromide (0.3 normal concentration). For each cell obtained above, apply +2V by DC power supply.
The driving operation was continuously repeated in a potential cycle of (2 sec) → OV (0.5 sec) → −2 V (2 sec). The numerical values shown in the table below represent the number of cycles the above operation can be repeated until unnecessary deposits accumulate on the electrode. In addition, the response of coloring and decoloring and the uniformity of coloring density were evaluated.

【表】【table】

【表】 但し、上記中のレスポンスの評価は、◎…非常
に早い、〇…早い、△…遅い、×…非常に遅い、
に従い、又、濃度均一性の評価は、◎…非常に良
い、〇…普通、△…悪い、×…非常に悪い、の規
準に従つた。 実施例10〜11,比較例5〜9 セルで用いた作用電極と対向電極を下記表の構
成のものとしたほかは、実施例1と同様の方法で
セルを作成してから、実施例1と同様の駆動を行
ない、駆動時の着消色状態及びそのレスポンスを
評価した。これらの結果を下記表に併記する。
[Table] However, the response evaluations in the above are: ◎...Very fast, 〇...Fast, △...Slow, ×...Very slow.
Accordingly, the density uniformity was evaluated according to the following criteria: ◎...Very good, 〇...Fair, △...Poor, ×...Very poor. Examples 10 to 11, Comparative Examples 5 to 9 A cell was prepared in the same manner as in Example 1, except that the working electrode and counter electrode used in the cell had the configuration shown in the table below. Driving was performed in the same manner as above, and the coloring/decoloring state during driving and its response were evaluated. These results are also listed in the table below.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、エレクトロケミクロミズムを応用し
た装置の一構成例を説明するための略示図であ
り、第2図は第1図示の装置に係る駆動方式の概
要を示す説明図、第3図及び第4図は本発明に係
る電極構成の概略を説明する模式断面図である。
図に於て、 1,2,12……電極、3……セル容器、4…
…電源、13……低抵抗金属層、14……金属酸
化物層、15……マスク。
FIG. 1 is a schematic diagram for explaining an example of the configuration of a device that applies electrochemical microscopy, FIG. 2 is an explanatory diagram showing an overview of the driving system of the device shown in FIG. and FIG. 4 are schematic cross-sectional views illustrating the outline of the electrode structure according to the present invention.
In the figure, 1, 2, 12...electrode, 3...cell container, 4...
...Power source, 13...Low resistance metal layer, 14...Metal oxide layer, 15...Mask.

Claims (1)

【特許請求の範囲】[Claims] 1 電極を設けた2枚の電気絶縁性基板と、該2
枚の電気絶縁性基板との間に配置した電解質層と
を有するエレクトロクロミツク素子の駆動法にお
いて、前記2枚の電気絶縁性基板に設けた電極
が、ともに低抵抗金属層及びその上を被覆した膜
厚200Å〜15000Åの金属酸化物層とを有する積層
電極であつて、該積層電極間に書込みステツプ時
と消去ステツプ時とで互いに逆極性の直流パルス
を印加することを特徴とするエレクトロクロミツ
ク素子の駆動法。
1 two electrically insulating substrates provided with electrodes;
In a method for driving an electrochromic device having an electrolyte layer disposed between two electrically insulating substrates, the electrodes provided on the two electrically insulating substrates are both coated with a low resistance metal layer and an electrolyte layer thereon. An electrochromic device comprising a metal oxide layer with a thickness of 200 Å to 15,000 Å, and a DC pulse of opposite polarity is applied between the laminated electrodes during a writing step and an erasing step. Driving method of Tsuku element.
JP4232077A 1977-04-13 1977-04-13 Electrochemical cell Granted JPS53127755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4232077A JPS53127755A (en) 1977-04-13 1977-04-13 Electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4232077A JPS53127755A (en) 1977-04-13 1977-04-13 Electrochemical cell

Publications (2)

Publication Number Publication Date
JPS53127755A JPS53127755A (en) 1978-11-08
JPS6222138B2 true JPS6222138B2 (en) 1987-05-15

Family

ID=12632713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4232077A Granted JPS53127755A (en) 1977-04-13 1977-04-13 Electrochemical cell

Country Status (1)

Country Link
JP (1) JPS53127755A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532818U (en) * 1978-08-18 1980-03-03

Also Published As

Publication number Publication date
JPS53127755A (en) 1978-11-08

Similar Documents

Publication Publication Date Title
JP5790403B2 (en) Electrochromic display device
WO2002052339A1 (en) Electrochromic display device and electrodeposition display device
JP2003241227A (en) Electrochemical display element and electrochemical display device
JP6696287B2 (en) Driving method of electrochromic device and electrochromic device
JP2004054221A (en) Method for driving display device
JP5648805B2 (en) Electrochromic display element
JPS5922949B2 (en) Display device drive method
JPWO2008111321A1 (en) Display element
JP2012155017A (en) Driving method of electrochromic display device and display device
US5099356A (en) Electrochromic device with an electrolyte comprising a lithium salt and a sodium salt
JPS6119996B2 (en)
JPWO2008087879A1 (en) Display element
JPS6222138B2 (en)
JP5317565B2 (en) Display device
JPS5852566B2 (en) Sanka Kangen Niyoru
JP4470451B2 (en) Method for producing electrochemical dimmer and method for producing polymer electrolyte
JP2003149687A (en) Display device and method for driving the same
JP3227762B2 (en) Electrochromic display device
JP4506171B2 (en) Electrochemical light control device and method for manufacturing the same
JPS58139129A (en) Electrochromic display element
JP2004294931A (en) Electrochemical dimmer and its manufacturing method
JPS6227115B2 (en)
JP2005189384A (en) Electrochemical light controlling device and its driving method
JP2016218364A (en) Driving method of electrochromic device
JP2004309946A (en) Electrochemical display device and its manufacturing method