JPS62219969A - Manufacture of semiconductor photodetector - Google Patents

Manufacture of semiconductor photodetector

Info

Publication number
JPS62219969A
JPS62219969A JP61062518A JP6251886A JPS62219969A JP S62219969 A JPS62219969 A JP S62219969A JP 61062518 A JP61062518 A JP 61062518A JP 6251886 A JP6251886 A JP 6251886A JP S62219969 A JPS62219969 A JP S62219969A
Authority
JP
Japan
Prior art keywords
uneven surface
polishing
layer
uneven
tco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61062518A
Other languages
Japanese (ja)
Inventor
Takashi Shibuya
澁谷 尚
Yoshizo Mikami
三上 義三
Koichi Hirose
浩一 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61062518A priority Critical patent/JPS62219969A/en
Publication of JPS62219969A publication Critical patent/JPS62219969A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve reflection characteristics and improve the production yield by a method wherein, after the uneven surface of a TCO (transmitting conductive oxide) layer is polished without substantial change of the unevenness, a semiconductor film including an optical active layer is contacted with the uneven surface and the TCO layer with the uneven surface is utilized as a light detecting electrode. CONSTITUTION:A TCO layer 2, whose average particle diameter is about 500-2,000Angstrom , is applied to the flat insulating surface of a light transmitting support substrate 1 by a method such as spray. Then etching is carried out from the exposed surface of the TCO layer 2 into the substrate 1 until the halfway of the thickness direction to give the exposed surface fine unevenness. Then the uneven surface (2 tex) of the substrate is subjected to polishing in such a manner that the unevenness is not significantly changed. Then layers of fine crystalline silicon or the like are laminated on the uneven surface whose sharp protrusions, steps and the like are relieved by optical CVD with silicon compound gas such as SiF4 to form a semiconductor film 3 of PIN junction type, P-N junction type, P-I junction type or tandem structure of those types which includes an optical active layer creating optical carriers.

Description

【発明の詳細な説明】 げ) 産業上の利用分野 本発明は光エネルギーを゛磁気エネルギーとして出力す
る太陽電池や光センサ等の半導体受光装置の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing semiconductor light receiving devices such as solar cells and optical sensors that output light energy as magnetic energy.

(c4  従来の技術□ ガラス等の透光性基板上に受光面′4糧、半導体光活性
層及び表面電極をこの順序で積ノーせしめた半導体受光
装置は例えば特公昭53−37718号公報や米国特許
第4,281,208号明細着に開示された如く既に知
られている。通常上記受光面電極として電子ビーム蒸着
法、真空蒸着法、スパッタ法、CVD法、スプレー法等
によって形成される酸化インジウムスズCITO)、酸
化スズ(SnOx)4に代表される透光性導電酸化物(
以下TC01、。
(c4 Prior art □ A semiconductor light receiving device in which a light receiving surface, a semiconductor photoactive layer, and a surface electrode are deposited in this order on a transparent substrate such as glass is disclosed in, for example, Japanese Patent Publication No. 53-37718 and the United States. This is already known as disclosed in Japanese Patent No. 4,281,208.The light-receiving surface electrode is usually formed using an oxidized film formed by electron beam evaporation, vacuum evaporation, sputtering, CVD, spraying, or the like. Transparent conductive oxides (indium tin CITO) and tin oxide (SnOx)4
TC01 below.

と称す)の単膚或いは槓ノー構造が用いられる。(referred to as ) is used.

然し乍ら、斯るTC・0から受光面電極を形成すると、
このTCOの屈折率は約2.0削後であるのに対し、そ
れと接する半導体光活性層の屈折率は上記2.0より大
きく例えばアモルファスシリコン、アモルファスシリコ
ンカーバイト、アモルファスシリコンゲルマニウム等の
アモルファスシリコン系半導体にあっては約4.0前後
であるために、支持碁板側から入射した光は上記屈折率
の差に基づき受光面電極と光活性層との界面に於いて反
射し、光電変換動作する光活性層に入射する光虚を減少
せしめる原因となっていた。
However, if the light-receiving surface electrode is formed from such TC・0,
The refractive index of this TCO is about 2.0, whereas the refractive index of the semiconductor photoactive layer in contact with it is higher than 2.0.For example, amorphous silicon such as amorphous silicon, amorphous silicon carbide, amorphous silicon germanium, etc. For system semiconductors, it is around 4.0, so the light incident from the support board side is reflected at the interface between the light-receiving surface electrode and the photoactive layer based on the difference in refractive index, resulting in photoelectric conversion. This caused a reduction in the amount of light incident on the active photoactive layer.

昭和60年春季応用物理学会予稿集第439頁29P−
U−14に開示された先行技術は、受光面電極と光活性
層との界面に於ける反射特性が、界面形状に著しく影響
される点に鑑み受光面電極の光活性層側界面を凹凸状と
なし光活性J−に入射する光朧の増大を図ることを提案
している。
1985 Spring Proceedings of the Japan Society of Applied Physics No. 439, page 29-
In the prior art disclosed in U-14, in view of the fact that the reflection characteristics at the interface between the light-receiving surface electrode and the photoactive layer are significantly affected by the shape of the interface, the surface of the light-receiving surface electrode on the photoactive layer side is made uneven. It is proposed to increase the light haze incident on the photoactive J-.

また、同様にTCO膚の表面を凹凸状とする試みが例え
ば特開昭59−123279号公報、特開昭59−16
1882号公報、特開昭59−159574号公報、及
び特開昭59−201470号公報等に見られる如く近
年盛んに研究されている。第8図は斯る凹凸状の表面を
持つTe3着が付された支持基板の反射特価と、平坦な
表面を持つTCOJmが付された支持基板の反射特性を
夫々測定したものであり、実線が凹凸表面のTCOJI
の反射特性で、破線が平坦表面のTCO鳩の反射特性を
示している。この第8図からも明らかな如く、凹凸表面
のT CO膚は約400nm〜800rL[nの略可視
光帯域の内、特に約6QQnm以上の長波長帯域に於け
る反射率の低゛ドが見られ、反射特性が改善されている
Similarly, attempts to make the surface of TCO skin uneven have been made, for example, in JP-A-59-123279 and JP-A-59-16.
It has been actively researched in recent years, as seen in Japanese Patent Application Laid-open No. 1882, Japanese Patent Application Laid-open No. 59-159574, and Japanese Patent Application Laid-Open No. 59-201470. Figure 8 shows the measured reflection characteristics of a support substrate with Te3 adhesion that has an uneven surface and a support substrate with TCOJm adhesion that has a flat surface. TCOJI on uneven surface
The broken line shows the reflection characteristics of the TCO pigeon with a flat surface. As is clear from FIG. 8, the TCO skin on the uneven surface has a low reflectance in the approximately visible light band of about 400 nm to 800 rL[n, especially in the long wavelength band of about 6 QQ nm or more. The reflection characteristics have been improved.

然し乍ら、このように凹凸表面を持つT CO/IIが
付された支持基板を、上記半導体受光装置の受光面側に
配置し、上記TCOsを受光面電極として利用すること
により、反射特性が改善されより多くの光を半導体光活
性層に導くことができる反面、平坦な700層を受光面
1極とする装置に較べ製造歩留まりが悪いと云う欠点が
ある。
However, by arranging the support substrate with the TCO/II with the uneven surface on the light-receiving surface side of the semiconductor light-receiving device and using the TCOs as the light-receiving surface electrode, the reflection characteristics can be improved. Although more light can be guided to the semiconductor photoactive layer, there is a drawback that the manufacturing yield is lower than that of a device in which a flat 700 layer is used as one light-receiving surface.

(ハ)発明が解決しようとする問題点 本発明は凹凸表面を持つTC(]−を受受光電電として
利用することによる反射特性の改善と、相反する要求の
製造歩留まりの向上を同時に解決しようとするものであ
る。
(c) Problems to be Solved by the Invention The present invention attempts to simultaneously improve the reflection characteristics by using TC(]- with an uneven surface as a photoreceptor and to improve the manufacturing yield, which are contradictory requirements. It is something to do.

に)問題点を解決するための手段 本発明は上記問題点を解決すべく、凹凸表面を持つ70
0層が付された支持基板を準備し、上記700層の凹凸
表面に対してその凹凸状態を大きく変形することなく研
磨を施した後、該凹凸表面に光活性J−を含む半導体膜
を接触せしめたことを特徴とする。
B) Means for Solving the Problems The present invention aims to solve the above-mentioned problems by using
A support substrate with a 0 layer attached is prepared, and the uneven surface of the 700 layers is polished without significantly changing the uneven state, and then a semiconductor film containing photoactive J- is contacted with the uneven surface. It is characterized by being forced.

(ホ)作用 上述の如<700層の凹凸表面に対してその凹凸状態を
大きく変形することなく研磨を施すことによって、上記
凹凸表面に局部的に発生していた急峻な突起や凸部の鋭
いエッヂや更には鋭角な断差等が緩和される。
(e) Effect By polishing the uneven surface of <700 layers as described above without significantly deforming the uneven state, sharp protrusions and convexities that were locally occurring on the uneven surface can be removed. Edges and even sharp differences are alleviated.

(へ)実施例 第1図乃至1@5図は、本発明製造方法の一実施品 至第3図はITOや5nOxに代表されるTCOt曽の
凹凸加工工程の一実施例を示している。先ず第1図の如
く、ガラス等の透光性支持基板(1)のほぼ平坦な絶縁
表面に沿って周知の電子ビーム蒸着法、真空蒸着法、ス
パッタ法、CVD法、スプレー法等によって形成された
平均粒径約5oo〜2000AのTCO層+21を被着
した電極基板を準備する。。
(F) Embodiment FIGS. 1 to 1@5 show an embodiment of the manufacturing method of the present invention, to FIG. 3 show an example of the uneven processing process of TCOt, which is typified by ITO and 5nOx. First, as shown in FIG. 1, a layer is formed along a substantially flat insulating surface of a transparent supporting substrate (1) such as glass by a well-known electron beam evaporation method, vacuum evaporation method, sputtering method, CVD method, spray method, etc. An electrode substrate is prepared on which a TCO layer +21 having an average particle size of about 50 to 2000 Å is deposited. .

上記700層(21は、例えば基板温度300℃、酸素
分圧4 X j OTorrの形成条件に基づいて゛4
子ビーム蒸着法により得られた5%の5nOxをドープ
したITOからなり、上述の如く約500〜2000A
の平均粒径を備え、膜厚的1500〜7000Aに被着
されている。
The above 700 layers (21 are, for example, 4 x
It is made of ITO doped with 5% 5nOx obtained by a beam evaporation method, and is approximately 500-2000A as described above.
The film has an average particle size of 1,500 to 7,000 Å in thickness.

第2図の工程では、上記支持基板(1)のほぼ平坦面に
沿って被着されていたTCOm(21がその露出面から
支持基板(1)に向ってエツチング処理が施される。使
用されるエツチング液としては上記ITOのTCOJI
II(2)に対してHCL:H2O:FeCl3−50
0cc :600cc: 1009のものが好適であり
、他に王水も利用可能である。斯るエツチング処理に於
いて、700層(2)はその露出面から順次エツチング
除去されるもののTCOm(21のエツチングレートの
異方性に起因して、先ず第2図に示す如くエツチングレ
ートの高い部分からエツチングが始まるために、断面台
形状となる。
In the process shown in FIG. 2, the TCOm (21) deposited along the substantially flat surface of the support substrate (1) is etched from its exposed surface toward the support substrate (1). As an etching solution, the above-mentioned ITO TCOJI is used.
HCL:H2O:FeCl3-50 for II(2)
0cc: 600cc: 1009 is suitable, and aqua regia can also be used. In such an etching process, although the 700 layer (2) is sequentially etched away from its exposed surface, due to the anisotropy of the etching rate of TCOm (21), the etching rate is high as shown in FIG. Since etching starts from that part, the cross section becomes trapezoidal.

第3図は第2図のエツチング処理が終了した状態を示し
ている。即ち、斯るエツチング処理は、TCOJII(
2)の厚み方向の途中までとし、その露出面が光起電力
装置の受光面電極として好適な微細な凹凸を持つまで行
ない、例えば高低差約1000〜5000A、凸部と凸
部の間隔約2000〜10000人のほぼ三角錐状の凹
凸表面(2tex)が付与されたTCOjm(2+が形
成される。例えば上記エツチング液、液温的25℃の条
件に於いて20〜40分程度で程度微細な凹凸表面(2
tex)が得られる。
FIG. 3 shows a state in which the etching process shown in FIG. 2 has been completed. That is, such etching treatment is performed using TCOJII (
2) until the exposed surface has fine irregularities suitable as a light-receiving surface electrode of a photovoltaic device. ~10,000 TCOjm (2+) is formed with an approximately triangular pyramid-shaped uneven surface (2tex). Uneven surface (2
tex) is obtained.

斯る凹凸表面(2tex)を備えた支持基板(1)の反
射特性は第8図に於いて実線で示した如く、可視光帯域
内の長波長側で反射率の低丁が見られ、透過率の向上が
図られている。
The reflection characteristics of the supporting substrate (1) with such an uneven surface (2 tex) are as shown by the solid line in Fig. 8, where a low reflectance is seen on the long wavelength side of the visible light band, and the transmission is low. efforts are being made to improve the ratio.

第4図の工程では、反射特性が改善された上記支持基板
(1)の凹凸表面(2tex)に対して研磨が施される
。斯る研磨工程で留意しなければならないことは、TC
O層(2]ノ凹凸表面(2t ex) (7)凹凸状態
を大きく変形させないことである。即ち、凹凸表面(2
tex)の凹凸状態が大きく変形するに至るまで、換言
するとほぼ平坦な状態にまで研磨を施すと、反射特性の
改善を図ることができない。従って、本発明にあっては
、上述の如<TCOノm (2)の研磨工程に於いて反
射特性に密接な関係のある凹凸状態を大きく変形させな
いことが肝要である。斯る、凹凸状態の変化は、使用す
る研磨材料や、研磨時間、圧力、研磨速度等の研磨条件
に依存するために、予め使用する研磨材料に応じた最適
研磨条件を実験的に求めておき、その条件に基づき行な
えば良い。
In the step shown in FIG. 4, the uneven surface (2 tex) of the support substrate (1) whose reflection characteristics have been improved is polished. What must be kept in mind in this polishing process is that TC
O layer (2) uneven surface (2t ex) (7) The uneven state should not be significantly deformed. In other words, the uneven surface (2t ex)
If polishing is performed until the uneven state of the surface (tex) is significantly deformed, in other words, until it is almost flat, the reflection characteristics cannot be improved. Therefore, in the present invention, it is important not to significantly deform the uneven state, which is closely related to the reflection characteristics, in the polishing step (2) as described above. Since such changes in the uneven state depend on the polishing material used and polishing conditions such as polishing time, pressure, and polishing speed, it is necessary to experimentally determine the optimal polishing conditions depending on the polishing material used in advance. , based on those conditions.

第6図は研磨材料として凹凸表面(2tex)に研磨粉
のように残留する危惧のない表面が発泡状態にあるポリ
ウレタン製の研磨布を使用したときの反射特性と、研磨
時間との関係を調べたものであり、同図(A)は研磨前
の反射特性、同図(B)は研磨時間10分の反射特性、
同図(C)は研磨時間30分の反射特性を夫々示してい
る。尚、研磨時間以外の研磨条件は同一であり、圧力2
1/d、回転a(速度)10(1rpmの条件で行なわ
れた。
Figure 6 shows the relationship between the reflection characteristics and polishing time when using a polyurethane polishing cloth with a foamed surface that does not pose the risk of remaining like polishing powder on an uneven surface (2 tex) as a polishing material. The figure (A) shows the reflection characteristics before polishing, and the figure (B) shows the reflection characteristics after 10 minutes of polishing.
Figure (C) shows the reflection characteristics after a polishing time of 30 minutes. The polishing conditions other than the polishing time were the same, and the pressure was 2.
1/d, rotation a (speed) 10 (1 rpm).

斯る、測定の結果、発泡ポリウレタン製の研磨布を研磨
材料とした場合、上記研磨条件の丁で10分間研磨を施
してもほとんど反射特性に影響がないものの、30分間
研磨を施すと長波長帯域に於いて反射率の上昇が認めら
れた。従りて、上記研磨材料と研磨条件のドでは、研磨
時間は30分未満が凹凸状態を大きく変形させない条件
となる。
As a result of these measurements, when polishing cloth made of foamed polyurethane was used as the polishing material, polishing with the above polishing conditions for 10 minutes had almost no effect on the reflection properties, but polishing for 30 minutes caused long wavelength An increase in reflectance was observed in the band. Therefore, with the above-mentioned polishing material and polishing conditions, the polishing time should be less than 30 minutes to prevent the uneven state from being significantly deformed.

一方、研磨時間、圧力、研磨速度等の研磨条件の関係を
調べて見ると、上述の如く圧力、研磨速度が一定のとき
、研磨時間が増せば研磨状態は進行する。同様に、研磨
時間、圧力が一定のとき研磨速度が上昇すればこれも研
磨状態が進行する。
On the other hand, when examining the relationship among polishing conditions such as polishing time, pressure, and polishing rate, it is found that as described above, when the pressure and polishing rate are constant, the polishing state progresses as the polishing time increases. Similarly, if the polishing speed increases when the polishing time and pressure are constant, the polishing state also progresses.

また、圧力上昇の場合も同じく研磨状態は進む。Furthermore, the polishing state progresses in the same way when the pressure increases.

即ち、研磨時間、圧力、研磨速度等の何れの一つをとっ
ても、他の二つの条件が一定の場合、研磨状態と比例の
関係にある。そこで、本発明者らは上記発泡ウレタン製
の研磨布を研磨材料としたときの研磨条件につき種々の
実験を施したところ、□  研磨時間約5〜25分、圧
力5〜30P/d1回転数(研磨速度)20〜l 5 
Q rpm、の範囲を見い出した。
That is, any one of polishing time, pressure, polishing speed, etc. is in a proportional relationship with the polishing state when the other two conditions are constant. Therefore, the present inventors conducted various experiments on the polishing conditions when using the foamed urethane polishing cloth as the polishing material, and found that □ Polishing time was approximately 5 to 25 minutes, pressure was 5 to 30 P/d, and the number of revolutions ( Polishing speed) 20~l 5
The range of Q rpm was found.

第5図の工程では、前記研磨工程で局部的に発生してい
た急峻な突起や凸部の鋭い工iヂ、更には鋭角な断差等
が緩和されたTCO鳩(2)の凹凸表面(2tex)に
、前記特公昭53−57718号公報や米国特許第“4
,281,208号明細優に開示された如く、5iH4
jsi2H4eSiF4等のシリコン化合物ガスを主原
料ガスとするプラズマCVD法或いは光CVD法により
、アモルファスシリコン、アモルファスシリコンカーバ
イド、アモルファスシリコンゲルマニウム、微結晶シリ
コン等を適宜各層に配置し、光キャリアを発生する光活
性層を備えたpin接合盤、pn接合型、Pi接合型、
或いはそれらのタンデム構造の膜厚5000A〜数μm
の半導体膜(3)を形成すると共に、該半導体膜(3)
上にAI!単層構造、AI!/Ti積層構造、或いはT
CO/高反射性金属(AIF 、 AI!等)積層構造
の表面電極(4)が設けられる。
In the process shown in Fig. 5, the uneven surface of the TCO pigeon (2) has been softened from the steep protrusions, sharp protrusions, and sharp differences that were locally generated in the polishing process. 2tex), the aforementioned Japanese Patent Publication No. 53-57718 and U.S. Patent No. 4
, 281, 208, 5iH4
Amorphous silicon, amorphous silicon carbide, amorphous silicon germanium, microcrystalline silicon, etc. are appropriately placed in each layer by plasma CVD or photoCVD using silicon compound gas such as jsi2H4eSiF4 as the main raw material gas, and photoactivation is performed to generate photocarriers. PIN junction board with layers, PN junction type, Pi junction type,
Or a tandem structure with a film thickness of 5000A to several μm
While forming the semiconductor film (3), the semiconductor film (3)
AI on top! Single layer structure, AI! /Ti laminated structure or T
A surface electrode (4) of a CO/highly reflective metal (AIF, AI!, etc.) laminated structure is provided.

第7図は上記TCO鳩(2)の凹凸表面(2tex)に
光活性層を含む半導体膜(3)を接触せしめ、次いで表
面電極(41を配置した半導体受光装置を、本発明製造
方法に基づき製造したときの、研磨工程に留まり(%)
との関係を調べたものである。即ち、従来のようにTC
Oノrra (21の凹凸表面(2tex)に研磨を施
さない(研磨時間0分)半導体受光装置にあっては、光
電変換効率は約9.5%のまずまずの特性を呈するもの
の、製造歩留まりが約72%と低く鮭産性の欠如を招い
ていた。それに対して上記実施例で詳述した発泡ポリウ
レタン製の研磨布を用いて、圧力20F/d、回転数1
100rpの研磨条件で研磨を施したところ、研磨時間
5分に於いて製造歩留まりは90%以上に向上し以後5
分ピッチで最高50分間研磨したサンプルに於いても、
全て歩留まりは上昇した。一方、光電変換効率りも研磨
時間10分乃至20分の間に於いて11%を越え、極め
て高い変換効率を得ることができた。斯る光電変換効率
ηの向上は凹凸表面(2tex)に直接接触し、光活性
膚により多くの光を導く窓m(pin接合型にあっては
、肉薄且つワイドバンドギャップ材料からなるP)曽)
の膜質が改善されたり、窓胸と光活性ノーとの界面に於
ける接合電界の不均一性が改良されたためであると考え
られる。
FIG. 7 shows a semiconductor light receiving device in which a semiconductor film (3) including a photoactive layer is brought into contact with the uneven surface (2 tex) of the TCO dove (2), and then a surface electrode (41) is arranged, based on the manufacturing method of the present invention. Remains in the polishing process during manufacturing (%)
This study investigated the relationship between That is, as before, TC
Onorra (21) A semiconductor photodetector device that does not polish the uneven surface (2 tex) (polishing time 0 minutes) has a photoelectric conversion efficiency of about 9.5%, which is a reasonable characteristic, but the manufacturing yield is low. The ratio was as low as about 72%, leading to a lack of salmon productivity.In contrast, using the foamed polyurethane polishing cloth detailed in the above example, the pressure was 20F/d and the number of revolutions was 1.
When polishing was performed under the polishing conditions of 100 rpm, the manufacturing yield improved to over 90% in a polishing time of 5 minutes, and after that, the manufacturing yield improved to over 90%.
Even in samples polished for up to 50 minutes at minute pitches,
Yields increased in all cases. On the other hand, the photoelectric conversion efficiency exceeded 11% during the polishing time of 10 to 20 minutes, and an extremely high conversion efficiency could be obtained. Such an improvement in photoelectric conversion efficiency η is due to the window m (in the case of a pin junction type, P made of a thin and wide bandgap material) that directly contacts the uneven surface (2 tex) and guides more light to the photoactive skin. )
This is thought to be due to improved film quality and non-uniformity of the junction electric field at the interface between the window and the photoactive layer.

(ト)発明の効果 本発明製造方法は上述の如く、TCO盾の凹凸表面に対
してその凹凸状態を大きく変形することなく研磨を施す
ことによって、上記凹凸表面に局部的に発生していた急
峻な突起や凸部の鋭いエッヂや更には鋭角な断差等が緩
和されるので、斯る凹凸表面を持つTCO+wを受光面
電極として利用することによる反射特性の改善と、相反
する要求の製造歩留まりの向上を同時に達成することが
できる。
(G) Effects of the Invention As described above, the manufacturing method of the present invention polishes the uneven surface of the TCO shield without significantly deforming the uneven state, thereby removing sharp edges locally occurring on the uneven surface. The sharp edges of protrusions and convexities, as well as sharp differences in angles, are alleviated, so the use of TCO+w with such an uneven surface as a light-receiving surface electrode improves the reflection characteristics and improves manufacturing yield, which is a conflicting requirement. can be achieved at the same time.

また、上記凹凸表面と直接接触する半導体膜の膜質改善
や、内部接合電界を改良することができ、光@変換効率
の上昇も図ることができる。
Further, it is possible to improve the film quality of the semiconductor film that is in direct contact with the uneven surface and to improve the internal junction electric field, and it is also possible to increase the light conversion efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は本発明製造方法の工程別の状態を模
式的に示す断面図、第6図(A)〜(C)は研磨工程に
於ける研磨時間と反射率との関係を示す反射特性図、第
7図は研磨時間と光電変換効率(η)及び製造歩留まり
との関係を示す特性図、第8図は凹凸表面を持つTCO
層と平坦表面を持つTCoJIil+の反射特性図、を
夫々示している。 (1)・・・支持基板、(2)・・・透光性導電酸化物
(TCO)膚、(2tex)・・・凹凸表面、(3)・
・・半導体層、(4)・・・表面電極。
Figures 1 to 5 are cross-sectional views schematically showing the state of each step of the manufacturing method of the present invention, and Figures 6 (A) to (C) show the relationship between polishing time and reflectance in the polishing process. Figure 7 is a characteristic diagram showing the relationship between polishing time, photoelectric conversion efficiency (η), and manufacturing yield, and Figure 8 is a reflection characteristic diagram showing the relationship between polishing time, photoelectric conversion efficiency (η), and manufacturing yield.
The reflection characteristics of TCoJIil+ with a layer and a flat surface are shown, respectively. (1) Support substrate, (2) Transparent conductive oxide (TCO) skin, (2tex) Uneven surface, (3)
...Semiconductor layer, (4)...Surface electrode.

Claims (3)

【特許請求の範囲】[Claims] (1)凹凸表面を持つ透光性導電酸化物層が付された支
持基板を準備し、上記透光性導電酸化物層の凹凸表面に
対してその凹凸状態を大きく変形することなく研磨を施
した後、該凹凸表面に光活性層を含む半導体膜を接触せ
しめたことを特徴とする半導体受光装置の製造方法。
(1) A supporting substrate with a transparent conductive oxide layer having an uneven surface is prepared, and the uneven surface of the transparent conductive oxide layer is polished without significantly changing the uneven state. After that, a semiconductor film including a photoactive layer is brought into contact with the uneven surface.
(2)上記導電酸化物層の凹凸表面に対する研磨工程は
、研磨布が使用されることを特徴とする特許請求の範囲
第1項記載の半導体受光装置の製造方法。
(2) The method of manufacturing a semiconductor light receiving device according to claim 1, wherein a polishing cloth is used in the step of polishing the uneven surface of the conductive oxide layer.
(3)上記研磨布の表面は発泡状態にあることを特徴と
した特許請求の範囲第2項記載の半導体受光装置の製造
方法。
(3) The method for manufacturing a semiconductor light receiving device according to claim 2, wherein the surface of the polishing cloth is in a foamed state.
JP61062518A 1986-03-20 1986-03-20 Manufacture of semiconductor photodetector Pending JPS62219969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61062518A JPS62219969A (en) 1986-03-20 1986-03-20 Manufacture of semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61062518A JPS62219969A (en) 1986-03-20 1986-03-20 Manufacture of semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPS62219969A true JPS62219969A (en) 1987-09-28

Family

ID=13202481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61062518A Pending JPS62219969A (en) 1986-03-20 1986-03-20 Manufacture of semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPS62219969A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03200374A (en) * 1989-12-27 1991-09-02 Fuji Electric Corp Res & Dev Ltd Manufacture of solar cell
US5102721A (en) * 1987-08-31 1992-04-07 Solarex Corporation Textured tin oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102721A (en) * 1987-08-31 1992-04-07 Solarex Corporation Textured tin oxide
JPH03200374A (en) * 1989-12-27 1991-09-02 Fuji Electric Corp Res & Dev Ltd Manufacture of solar cell

Similar Documents

Publication Publication Date Title
US4644091A (en) Photoelectric transducer
CA1211826A (en) Realization of a thin film solar cell with a detached reflector
JP2504378B2 (en) Method for manufacturing solar cell substrate
JP2908067B2 (en) Substrate for solar cell and solar cell
EP0234222A2 (en) Solar battery
WO1999063600A1 (en) Silicon-base thin-film photoelectric device
EP0102204A1 (en) An optically enhanced photovoltaic device
JP2001189478A (en) Semiconductor element and manufacturing method therefor
JP2000252500A (en) Silicon thin-film photoelectric conversion device
JP2013512191A (en) Super straight with surface pattern for photovoltaic
JP2003243676A (en) Thin-film photoelectric converting device
JPS61288473A (en) Photovoltaic device
US8124437B2 (en) Forming protrusions in solar cells
JP2000058892A (en) Silicon based thin film photoelectric converter
JPS62209872A (en) Photoelectric conversion element
JP2682658B2 (en) Semiconductor device
JPS62219969A (en) Manufacture of semiconductor photodetector
JP2652087B2 (en) Photovoltaic device and manufacturing method thereof
JPS61288314A (en) Working of light transmitting conducting oxide layer
JPH04133360A (en) Photovoltaic device
JP3311534B2 (en) Photovoltaic element
TW202232775A (en) Solar cell
JP2003110125A (en) Solar battery cell and its manufacturing method
JPS62247574A (en) Photovoltaic device
JP2002111017A (en) Thin film crystalline silicon solar cell