JPS62219927A - Dry-type thin film processing device - Google Patents

Dry-type thin film processing device

Info

Publication number
JPS62219927A
JPS62219927A JP6352486A JP6352486A JPS62219927A JP S62219927 A JPS62219927 A JP S62219927A JP 6352486 A JP6352486 A JP 6352486A JP 6352486 A JP6352486 A JP 6352486A JP S62219927 A JPS62219927 A JP S62219927A
Authority
JP
Japan
Prior art keywords
magnetic field
flow path
plasma
metal container
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6352486A
Other languages
Japanese (ja)
Other versions
JPH0467775B2 (en
Inventor
Sadahiro Yaginuma
柳沼 禎浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6352486A priority Critical patent/JPS62219927A/en
Publication of JPS62219927A publication Critical patent/JPS62219927A/en
Publication of JPH0467775B2 publication Critical patent/JPH0467775B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent plasma generated inside a metallic container from climbing to an introduced tube path, by composing a flow path on which all of raw material gases, flowing from an outlet of a raw material gas-introduced tube path to the metallic container, container, cross a magnetic field. CONSTITUTION:A flow path 39a, which is connected to a flow path 37a and perforated inclinedly into a wall of a metallic container 39 to be opened inside the container, is formed. Since the inclination of the flow path 39a is formed so that a region A occupied by a figure of the flow path on the position of a container outer wall surface, which is projected in the direction of the magnetic field H generated by a magnetic field generation means, and a region B occupied by a projected figure of the flow path on the position of a container inner wall surface, do not overlap each other, the plasma generated inside the metallic container, which climbs in the upstream direction of the gas flow path, is needed to necessarily cross the magnetic field inside this inclined flow path. However, since the plasma can not cross the magnetic field to move, the region where the plasma can climb is limited to a left-end position in the region B and the plasma can not climb over this limit.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明はプラズマを用いて半導体薄膜を成長させ、ま
たは基板上の薄膜をエツチングするill!!加工装置
であつて、マイクロ波を発生する手段と、このマイクロ
波を伝達する手段と、このマイクロ波伝達手段と結合さ
れた金属容器と、この金属容器内に磁界を発生させる手
段と、前記マイクロ波と磁界の同時作用をうけて前記金
属容器内で活性な原子1分子まはたイオンが形成される
原料ガスを該容器内へ導入する原料ガス導入管路とを備
え、前記原料ガスから生じた活性な原子1分子またはイ
オンを用いて試料表面に薄膜形成またはエツチングなど
の加工をほどこす乾式1膜加工装置に関するものである
This invention uses plasma to grow a semiconductor thin film or to etch a thin film on a substrate. ! A processing device comprising means for generating microwaves, means for transmitting the microwaves, a metal container coupled with the microwave transmission means, means for generating a magnetic field in the metal container, and a means for transmitting the microwaves. a raw material gas introduction pipe for introducing into the metal container a raw material gas in which one active atomic molecule or ion is formed in the metal container under the simultaneous action of waves and a magnetic field; The present invention relates to a dry single-film processing device that processes a sample surface by forming a thin film or etching it using a single active atom molecule or ion.

【従来技術とその問題点1 この発明の属する技術分野において、最近ECRプラズ
マを用いたプロセス技術が注目されている。HCRとは
[!1ectron Cyclotron Re5on
ance(電子サイクロトロン共鳴)の略号であり、磁
場とイクロ波との共鳴効果を用いて電子を加速し、この
電子の運動エネルギを用いてガスを電離せしめプラズマ
を得るものである。マイクロ波に励振された電子は磁力
線のまわりを円運動し、その際、遠心力とローレンツ力
とがバランスする条件がECR条件と呼ばれる。遠心力
をsrω−ローレンツ力を−qrωBで表わすと、これ
らがバランスする条件はω/B=q/脂である。ここで
ωばマイクロ波の角速度、Bは磁束密度、q/■は電子
の比電荷である。マイクロ波周波数は工業用に認められ
ている2、45f;Hzが一般に用いられ、その場合0
.0875Tが共鳴磁束密度である。 EeRプラズマを応用した薄膜加工装置として例えば第
5図に示す方法が知られている。この装置では金属容器
31反応槽9を真空排気しておき、原料ガス導入管路4
からN、ガスを金属容器3へながしたところへ、マイク
ロ波をその伝達手段である導波管1と真空窓2とを介し
て金属容器3へ送り込む、金属容器3の下部には中心に
大口径の孔を持った金属板7が取り付けられており、こ
の金属板と金属容器3とで半開放のマイクロ波共振器ヲ
m成t、ている。この共振器の外部にはソレノイド6が
配置され、共振器内にEcR条件を満たす磁場が発生し
ているため、共振器内にECRプラズマが発生する。こ
のプラズマが反応槽9内へ押し出され、試料台lOへ向
かう空間内にガス人口12からシランガス (Sil+
)を送りこんで、このガスを上記プラズマにより活性化
すると、発生した活性種が被加工試料である基板11と
反応して基板表面に薄膜が形成される。 原料ガス導入管路4からhガスの代わりにエツチング用
ガスを流しこむことにより、この装置は基板のエツチン
グ加工用にも用いることができる。 なお、5は共振器3を冷却する冷却管である。 ECRプラズマは拡散磁場効果により磁束密度の疎な方
向に移動する性質があるため、装置内部の磁束密度分布
は一般に第6図に示すようなプロファイルとなるように
設叶し、プラズマがたえず基板の方向に移動するよう配
慮している。 この種の装置においてプラズマの原料ガスはプラズマの
流出口と反対の側から流入せしめるのが合理的であるが
、その場合、原料ガスの配管は従来、導波管と結合され
たプラズマ室端面に設けた孔から直接ステンレス鋼の直
管で−Hソレノイドの端部まで導いたのちバルブ、流量
針などへと導(のを常としている。(原料ガスの配管は
内部を研磨する必要からステンレス鋼が専ら用いられて
いる。)このステンレス鋼の直管内にはやはり直流磁界
が存在しており、磁束密度はガスの上流に向かって疎と
なっていく構成になっていた。 このような装置においては、原料ガスの流入路内にマイ
クロ波が進入してガス配管内においてもプラズマが発生
しうる。しかも、このプラズマはプラズマ容器内のプラ
ズマとは逆の、ガスの上流方向へさかのぼりうるため、
プラズマはガス配管の内部まで深く進入する。こうして
、ステンレス鋼からなる配管とプラズマとが接してクロ
ームなどの重金属が遊離し、基板汚染の原因となるほか
、細管で放熱効果の悪いステンレス鋼管の温度が上昇し
、ステンレス−鋼管の熱化学劣化が促進される欠点があ
った。 【発明の目的】 この発明の目的は、前記従来の欠点を除去するため、プ
ラズマ原料ガスの導入管路内にプラズマを存在せしめな
いようにしてステンレス鋼管がらの重金属の遊離を防ぎ
、かつステンレス鋼管の温度上昇による材料の熱化学劣
化を防ぐための原料ガス導入方法を提供することにある
[Prior art and its problems 1] In the technical field to which this invention pertains, process technology using ECR plasma has recently attracted attention. What is HCR [! 1ectron Cyclotron Re5on
ance (electron cyclotron resonance), which accelerates electrons using the resonance effect of a magnetic field and microwaves, and uses the kinetic energy of the electrons to ionize gas to create plasma. Electrons excited by microwaves move circularly around magnetic lines of force, and the condition where centrifugal force and Lorentz force are balanced is called the ECR condition. When the centrifugal force is represented by srω and the Lorentz force by -qrωB, the condition for their balance is ω/B=q/fat. Here, ω is the angular velocity of the microwave, B is the magnetic flux density, and q/■ is the specific charge of the electron. The microwave frequency generally used is 2.45f; Hz, which is accepted for industrial use, and in that case 0.
.. 0875T is the resonant magnetic flux density. For example, a method shown in FIG. 5 is known as a thin film processing apparatus that applies EeR plasma. In this device, the metal container 31 and reaction tank 9 are evacuated, and the raw material gas introduction pipe 4
From N, the gas flows into the metal container 3, and the microwave is sent into the metal container 3 via the waveguide 1 and the vacuum window 2, which are its transmission means. A metal plate 7 having a large diameter hole is attached, and this metal plate and the metal container 3 form a semi-open microwave resonator. A solenoid 6 is disposed outside the resonator, and a magnetic field that satisfies the EcR condition is generated within the resonator, so that ECR plasma is generated within the resonator. This plasma is pushed out into the reaction chamber 9, and the silane gas (Sil+
) is introduced and this gas is activated by the plasma, the generated active species react with the substrate 11, which is the sample to be processed, and a thin film is formed on the surface of the substrate. This apparatus can also be used for etching a substrate by flowing an etching gas instead of the h gas from the raw material gas introduction pipe 4. Note that 5 is a cooling pipe that cools the resonator 3. Since ECR plasma has the property of moving in the direction of sparse magnetic flux density due to the effect of a diffused magnetic field, the magnetic flux density distribution inside the device is generally set up to have a profile as shown in Figure 6, so that the plasma constantly moves towards the substrate. We take care to move in the same direction. In this type of device, it is rational to have the source gas for the plasma flow in from the side opposite to the plasma outlet, but in that case, the source gas piping has conventionally been connected to the end face of the plasma chamber connected to the waveguide. It is customary to lead a stainless steel straight pipe directly from the hole provided to the end of the -H solenoid, and then to the valve, flow needle, etc. (The raw material gas piping is made of stainless steel because the inside needs to be polished. ) A direct current magnetic field still exists within this stainless steel straight pipe, and the magnetic flux density becomes sparse toward the upstream side of the gas. In this case, microwaves enter the source gas inflow path and plasma can be generated in the gas piping.Furthermore, this plasma can travel upstream of the gas, which is the opposite of the plasma in the plasma container.
The plasma penetrates deep into the gas piping. In this way, heavy metals such as chromium are liberated when the stainless steel piping comes into contact with the plasma, causing contamination of the substrate, and the temperature of the stainless steel tube, which is thin and has poor heat dissipation efficiency, increases, leading to thermochemical deterioration of the stainless steel tube. The disadvantage was that it was promoted. OBJECTS OF THE INVENTION In order to eliminate the above-mentioned conventional drawbacks, an object of the present invention is to prevent the release of heavy metals from stainless steel pipes by preventing the presence of plasma in the pipeline for introducing plasma raw material gas, and to provide a stainless steel pipe. An object of the present invention is to provide a method for introducing raw material gas to prevent thermochemical deterioration of materials due to temperature rise.

【発明の要点】[Key points of the invention]

この発明は、ECRプラズマが磁界に対して直角方向の
成分を有するようには移動することができないことに着
目し、原料ガス導入管路の出口から金属容器へ向かって
流出する原料ガスがすべて少な(とも1回は磁界を横ぎ
らないかぎり金属容器内へは流入することができないよ
うな流路を構成することにより、金属容器内に生じたプ
ラズマの前記導入管路への運上を防止しようとするもの
である。 【発明の実施例] 第1図に本発明に基づいて原料ガス導入管路の出口に接
続して形成された流路の一実施例を示す。 原料ガス導入管路33の端部に固着され該管路を金属容
器39に結合するためのフランジ37の中央には該管路
の出口に接続する流路37aが形成されるとともに、こ
の流路37aに接続し、金属容器39の壁を斜めに貫通
して該容器の内側へ開口する流路39aが形成されてい
る。この流路39aの傾斜は、第2図に示すように、磁
界発生手段(第5図の符号6)によって発生した磁界H
の方向に投影した容器外壁面位置の波路の図形が占める
領域Aと、容器内壁面位置の波路の投影図形が占める領
域Bとが重ならないように設定されているから、金属容
器内に発生したプラズマがガス流路の上流方向へ遡上し
ようとすると、この斜めの流路内で必ず磁界を横切らな
ければならない、しかし、前述のように、プラズマは磁
界を横切って移動することはできないから、プラズマが
遡上できる範囲は領域Bの左端位置までであり、この範
囲を越えて遡上することはできない。 第3図は本発明に基づく流路形成の別の実施例を示す、
この実施例は、第1図の実施例における斜めの流路39
aの直径d、が原料ガス導入管路33と同一断面を有す
る流路37aの直径d・よりも小さくなり、ガス供給の
効率が低下することから、この効率低下を避けるための
流路形成の別の方法を示すものである。この実施例によ
れば、原料ガス導入管路33から流出するガスを一旦受
は容れる大容量のスペース39cが流路の一部として金
属容器39の外壁側に形成され、このスペースから斜め
方向に複数の流路39bを設けて金属容器内側へ開口さ
せ、これによりガス供給の効率低下を防止している。流
路39bの金属容器内壁面位置における磁界方向投影図
形の領域Bと原料ガス導入管路出口の投影図形の領域A
とは互いに離れているから、第1図の場合と同様、金属
容器内のプラズマは領域Bの右端位置を越えて原料ガス
導入管路方向へ進入することはできない。 第4図は本発明に基づく流路形成のさらに別の実施例を
示す、この実施例は、第1図、第3図における、原料ガ
ス導入管路33を金属容器39に結合するためのフラン
ジ37.40を省略するとともに、第1図の実施例のよ
うな、ガス供給の効率低下を伴わない、経済的な流路形
成の方法を示す、この実施例によれば、原料ガス導入管
路33の外径よりわずかに大きい内径d、を有する斜め
の孔を金属容器39の壁に設けて流路39dを形成し、
この孔に原料ガス導入管路33を挿入してこの管路を金
属容器39に気密に溶接している。この実施例において
も、流路39dの金属容器内壁面位置における磁界方向
投影図形の領域Bと原料ガス導入管路出口の投影図形の
領域AIとは互いに離れているから、金属容器内のプラ
ズマは磁界を横切らないかぎり原料ガス導入管路に到達
できず、これにより導入管路への進入が阻止される。 以上の実施例においては、原料ガス導入管路の出口位置
における投影図形と、金属容器の内壁面位置における投
影図形とが重ならない流路として斜めの直管が形成され
た場合のみを示したが、原料ガス導入管路の出口位置と
金属容器の内壁面位置との間に形成される波路において
、磁界に直角方向に切断した断面の磁界方向投影図形が
重ならない少な(とも2つの位置が流路中に存在すれば
、流路が、直角方向に曲がる流路の組合わせであっても
、あるいはパイプを曲線状に曲げて形成した流路であっ
ても、また原料ガス導入管路の出口位置における投影図
形と金属容器内壁面位置における投影図形とが重なるこ
とがあっても、金属容器内壁側開口から遡上するプラズ
マは磁界を横切らないかぎり原料ガス導入管路に到達す
ることができず、該管路内へのプラズマの進入は確実に
阻止されることになる。 【発明の効果] 以上に述べたように、本発明によれば、原料ガス導入管
路の出口と金属容器内壁面との間に、金属容器内に磁界
を発生させるための磁界発生手段により発生する磁界と
直角方向に切断した断面の該磁界方向への投影図形が重
ならない少なくとも2つの位置が存在する原料ガスの流
路を形成したので、金属容器内に発生したプラズマが磁
束密度の疎な方向に移動しようとしてこの流路を上流方
向へ遡上しようとしても、原料ガス導入管路の出口に到
達するまでには必ず磁界を横切って移動しなければなら
なくなり、一方、プラズマは磁界を横切っては移動する
ことができないから、原料ガス導入管路へのプラズマの
進入が阻止され、これにより、この管路を形成するステ
ンレス鋼管からの重金属の遊離が防止され、薄膜の汚染
が生じな(なるとともにステンレス鋼管自体の温度上昇
による熱化学劣化も防止されるという効果が得られる。
This invention focuses on the fact that ECR plasma cannot move with a component perpendicular to the magnetic field, and reduces all of the raw material gas flowing out from the outlet of the raw material gas introduction pipe toward the metal container. (By configuring a flow path that cannot flow into the metal container unless it crosses the magnetic field at least once, it is possible to prevent the plasma generated in the metal container from flowing into the introduction pipe. [Embodiment of the Invention] Fig. 1 shows an embodiment of a flow path formed by connecting to the outlet of the raw material gas introduction pipe based on the present invention. Raw material gas introduction pipe 33 A flow passage 37a connected to the outlet of the pipe is formed in the center of a flange 37 fixed to the end of the pipe to connect the pipe to the metal container 39. A flow path 39a is formed that diagonally penetrates the wall of the container 39 and opens to the inside of the container.As shown in FIG. The magnetic field H generated by code 6)
Since the area A occupied by the wave path figure on the outer wall of the container projected in the direction of the direction of the wave path is set so that the area B occupied by the projected figure of the wave path on the inner wall of the container does not overlap, When plasma tries to go upstream in the gas flow path, it must cross the magnetic field within this diagonal flow path. However, as mentioned above, plasma cannot move across the magnetic field. The range in which plasma can go up is up to the left end position of area B, and cannot go up beyond this range. FIG. 3 shows another embodiment of channel formation according to the present invention,
This embodiment is similar to the diagonal flow path 39 in the embodiment of FIG.
The diameter d of a is smaller than the diameter d of the flow path 37a having the same cross section as the raw material gas introduction pipe 33, and the efficiency of gas supply decreases. This shows another method. According to this embodiment, a large-capacity space 39c that temporarily receives the gas flowing out from the raw material gas introduction pipe 33 is formed on the outer wall side of the metal container 39 as a part of the flow path, and from this space in an oblique direction. A plurality of channels 39b are provided and opened to the inside of the metal container, thereby preventing a decrease in gas supply efficiency. Area B of the projected figure in the magnetic field direction at the inner wall surface position of the metal container of the flow path 39b and area A of the projected figure at the outlet of the raw material gas introduction pipe
and are separated from each other, the plasma in the metal container cannot go beyond the right end position of region B and enter in the direction of the raw material gas introduction pipe, as in the case of FIG. FIG. 4 shows still another embodiment of the flow path formation according to the present invention. 37.40 is omitted, and this embodiment shows an economical method of forming a flow path without reducing gas supply efficiency like the embodiment shown in FIG. A diagonal hole having an inner diameter d slightly larger than the outer diameter of the metal container 39 is provided in the wall of the metal container 39 to form a flow path 39d,
A source gas introduction pipe 33 is inserted into this hole, and this pipe is hermetically welded to the metal container 39. In this embodiment as well, since the area B of the magnetic field direction projection figure at the inner wall surface position of the metal container of the flow path 39d and the area AI of the projection figure at the outlet of the raw material gas introduction pipe are separated from each other, the plasma inside the metal container is Unless it crosses the magnetic field, it cannot reach the raw material gas introduction pipe, which prevents it from entering the introduction pipe. In the above embodiments, only the case where a diagonal straight pipe is formed as a flow path in which the projected figure at the outlet position of the raw material gas introduction pipe line and the projected figure at the inner wall surface position of the metal container do not overlap is shown. In the wave path formed between the outlet position of the raw material gas introduction pipe and the inner wall surface position of the metal container, the projected figures in the direction of the magnetic field of the cross section cut perpendicular to the magnetic field do not overlap (both the two positions are If it exists in the flow path, the flow path may be a combination of flow paths bent at right angles, or a flow path formed by bending a pipe into a curved shape, or the outlet of the raw material gas introduction pipe. Even if the projected figure at the position and the projected figure at the inner wall surface position of the metal container overlap, the plasma flowing up from the opening on the inner wall side of the metal container cannot reach the source gas introduction pipe unless it crosses the magnetic field. , plasma is reliably prevented from entering the pipe. [Effects of the Invention] As described above, according to the present invention, the outlet of the raw material gas introduction pipe and the inner wall surface of the metal container of the raw material gas, in which there are at least two positions where the projected figures in the direction of the magnetic field of a cross section cut perpendicular to the magnetic field generated by the magnetic field generating means for generating a magnetic field in the metal container do not overlap. Since the flow path has been formed, even if the plasma generated in the metal container tries to move upstream through this flow path in a direction where the magnetic flux density is sparse, it will not reach the outlet of the raw material gas introduction pipe. must move across the magnetic field, while plasma cannot move across the magnetic field, which prevents the plasma from entering the source gas introduction pipe, thereby causing the pipe to become The release of heavy metals from the stainless steel pipe to be formed is prevented, and the effect of preventing contamination of the thin film (and also preventing thermochemical deterioration of the stainless steel pipe itself due to temperature rise) can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に基づいて形成される流路の第1の実施
例を示す正面断面図、第2図は第1図の実施例における
斜めの流路の傾斜の与え方を示す説明断面図、第3図は
本発明に基づいて形成される流路の第2の実施例を示す
正面断面図、第4図は本発明に基づいて形成される流路
の第3の実施例を示す正面断面図、第5図は従来の乾式
薄膜加工装置の構成例を示す装置の縦断面図、第6図は
金属容器内プラズマを基板方向へ移動させるために装置
″−1される磁束密度分布を示す説明図である。 1:導波管(マイクロ波伝達手段)、3.31金属容器
、4.31.33:原料ガス導入管路、6:磁界発生手
段、11:基板(試料) 、37a、39a、39b+
第1図 第2図 第4図 マイクロ22−45GHz 第5図 第6図 手続補正書(自発)r゛゛ 昭和61年5月 9B 特許庁−−長−一官   −114←開二綴−殿1、事
ヂトの表示   特願昭≦/−乙袷越−ζ夕3、補正を
する者       出願人事件との関係 住  所   711;L、’a市川用++’jIA山
辺新till 1番1号名 称 +5231富士電機株
式会社 (ほか   名) 4、代 理 人 補正の内容 1、明細書第3頁第14行「では」と「金属」との間に
「例えばアルミニウム製の」を挿入する。 2、明細書第6頁第3行「管路内」を「管部」と訂正す
る。 3、同頁第11行「出口」を「出口部」と訂正する。 4、同頁第16行「管路」を「管部」と訂正する。 5、明細書第8頁第12行「出口」を「出口部」と訂正
する。 6、明細書第9頁第9行「出口」を「出口部」と訂正す
る。 7、同頁第12行「管路」を2箇所共「管路部」と訂正
する。 3、明細書第11頁第1行「口」を「口部」と訂正する
。 9、第3図および第4図を別紙の如(訂正する。
FIG. 1 is a front cross-sectional view showing a first embodiment of a flow path formed based on the present invention, and FIG. 2 is an explanatory cross-sectional view showing how to give an inclination to an oblique flow path in the embodiment of FIG. FIG. 3 is a front sectional view showing a second embodiment of a flow path formed based on the present invention, and FIG. 4 is a front sectional view showing a third embodiment of a flow path formed based on the present invention. 5 is a longitudinal sectional view of the device showing an example of the configuration of a conventional dry thin film processing device, and FIG. 6 is the magnetic flux density distribution in the device “-1” for moving the plasma inside the metal container toward the substrate. 1: Waveguide (microwave transmission means), 3.31 Metal container, 4.31.33: Raw material gas introduction pipe, 6: Magnetic field generation means, 11: Substrate (sample), 37a, 39a, 39b+
Figure 1 Figure 2 Figure 4 Micro 22-45GHz Figure 5 Figure 6 Procedural amendment (voluntary) r゛゛May 1985 9B Japan Patent Office--Director-First Official-114←Kainitsu-Den 1 , Indication of the matter Patent application Sho ≦ / - Otsubokoshi - ζ 3, Person making the amendment Address related to the applicant's case 711; L, 'a Ichikawa use ++'jIA Yamabe new till 1-1 Name +5231 Fuji Electric Co., Ltd. (and other names) 4. Contents of the agent's amendment 1. Insert ``for example, made of aluminum'' between ``de'' and ``metal'' on page 3, line 14 of the specification. 2. On page 6 of the specification, line 3, "inside the pipe" is corrected to "pipe section." 3. Correct "exit" in line 11 of the same page to "exit section." 4. In line 16 of the same page, "pipe line" is corrected to "pipe section." 5. On page 8 of the specification, line 12, "exit" is corrected to "exit section." 6. On page 9 of the specification, line 9, "exit" is corrected to "exit section." 7. In the 12th line of the same page, "pipeline" is corrected to "pipeline section" in both places. 3. Correct "mouth" in the first line of page 11 of the specification to read "mouth part." 9. Figures 3 and 4 are shown in the attached sheet (corrected).

Claims (1)

【特許請求の範囲】[Claims] 1)マイクロ波を発生する手段と、このマイクロ波を伝
達する手段と、このマイクロ波伝達手段と結合された金
属容器と、この金属容器内に磁界を発生させる手段と、
前記マイクロ波と磁界の同時作用を受けて前記金属容器
内で活性な原子、分子またはイオンが形成される原料ガ
スを該容器内へ導入する原料ガス導入管路とを備え、前
記原料ガスから生じた活性な原子、分子またはイオンを
用いて試料表面に薄膜形成またはエッチングなどの加工
をほどこす乾式薄膜加工装置において、前記原料ガス導
入管路の出口に接続して形成されて前記金属容器の内側
へ開口し、前記磁界発生手段によって発生する磁界と直
角方向に切断した断面の該磁界方向への投影図形が重な
らない少なくとも2つの位置が存在する原料ガスの流路
が設けられたことを特徴とする乾式薄膜加工装置。
1) means for generating microwaves, means for transmitting the microwaves, a metal container coupled to the microwave transmission means, and means for generating a magnetic field within the metal container;
a raw material gas introduction pipe for introducing a raw material gas into the metal container into which active atoms, molecules, or ions are formed in the metal container under the simultaneous action of the microwave and the magnetic field; In a dry thin film processing device that performs processing such as forming a thin film or etching on the surface of a sample using active atoms, molecules, or ions, the inner side of the metal container is connected to the outlet of the raw material gas introduction pipe. characterized in that a source gas flow path is provided which is open to the magnetic field generating means and has at least two positions where the projected figures of a cross section cut in a direction perpendicular to the magnetic field generated by the magnetic field generating means in the direction of the magnetic field do not overlap. Dry thin film processing equipment.
JP6352486A 1986-03-20 1986-03-20 Dry-type thin film processing device Granted JPS62219927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6352486A JPS62219927A (en) 1986-03-20 1986-03-20 Dry-type thin film processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6352486A JPS62219927A (en) 1986-03-20 1986-03-20 Dry-type thin film processing device

Publications (2)

Publication Number Publication Date
JPS62219927A true JPS62219927A (en) 1987-09-28
JPH0467775B2 JPH0467775B2 (en) 1992-10-29

Family

ID=13231692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6352486A Granted JPS62219927A (en) 1986-03-20 1986-03-20 Dry-type thin film processing device

Country Status (1)

Country Link
JP (1) JPS62219927A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179324A (en) * 1988-01-06 1989-07-17 Hitachi Ltd Microwave plasma treatment apparatus and its method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179324A (en) * 1988-01-06 1989-07-17 Hitachi Ltd Microwave plasma treatment apparatus and its method

Also Published As

Publication number Publication date
JPH0467775B2 (en) 1992-10-29

Similar Documents

Publication Publication Date Title
KR920003018B1 (en) Method and apparatus for processing with plasma and mode-transformer
KR940000384B1 (en) Treating apparatus of plasma
JPS5915982B2 (en) Electric discharge chemical reaction device
JP2003303698A (en) Ecr plasma source and ecr plasma device
JPS62219927A (en) Dry-type thin film processing device
JP2949874B2 (en) ECR plasma CVD apparatus dry cleaning method
JPS63213344A (en) Plasma processing device
JP2604746Y2 (en) Microwave plasma processing equipment
JPH02141576A (en) Plasma process device
JP3337266B2 (en) Scientific deposition equipment for electron cyclotron resonance plasma
JP2570082Y2 (en) Plasma equipment
JPH0415921A (en) Method and apparatus for activating plasma
JP2001007083A (en) Plasma treatment apparatus and method
US4922731A (en) Quartz conductive baffles for heat removal and method
JPH0434291B2 (en)
JPH0680640B2 (en) Plasma equipment
JPH07283203A (en) Surface treatment device
JP3314409B2 (en) Plasma generator
JPS63182822A (en) Microwave plasma treatment device
JPH01179324A (en) Microwave plasma treatment apparatus and its method
JP2721856B2 (en) Plasma generator
JPS62151574A (en) Plasma apparatus
JPS62152127A (en) Plasma device
JPH0364026A (en) Deposit removing device
JP2990838B2 (en) Dry etching equipment