JPS62219831A - Time division multiplex communication equipment - Google Patents

Time division multiplex communication equipment

Info

Publication number
JPS62219831A
JPS62219831A JP6093286A JP6093286A JPS62219831A JP S62219831 A JPS62219831 A JP S62219831A JP 6093286 A JP6093286 A JP 6093286A JP 6093286 A JP6093286 A JP 6093286A JP S62219831 A JPS62219831 A JP S62219831A
Authority
JP
Japan
Prior art keywords
circuit
signal
clock
frequency
time division
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6093286A
Other languages
Japanese (ja)
Other versions
JPH0740686B2 (en
Inventor
Kazuo Iguchi
一雄 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6093286A priority Critical patent/JPH0740686B2/en
Publication of JPS62219831A publication Critical patent/JPS62219831A/en
Publication of JPH0740686B2 publication Critical patent/JPH0740686B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To simplify a time division multiplex transmitter by incorporating a time division multiplexer and a transmission line code converter and sending superimposingly a clock signal of a speed a half of the transmission signal speed with a transmission line code so as to eliminate the block synchronizing circuit or the like at the reception side. CONSTITUTION:Channel signals CH1, CH2 are subjected to waveform shaping by flip-flops 10, 11 and bit multiplexed by using a clock f(b)/2 from a 1/2 frequency division circuit 12 by a multiplexer 13 and the result is inputted to a coding circuit 15. The circuit 15 applies partial spectrum is zero at the frequency f(b)/2. The clock f(b)/2 of the 1/2 frequency division circuit 12 is synthesized by adjusting the synthesis ratio by a level adjusting circuit 14, since the signal spectrum of PR(1, 1) is superimposed on the frequency f(b)/2 being zero, then no effect is imposed on the signals CH1, CH2. Further, a reception circuit 2 uses a band pass filter 24 via an amplifier 20 to extract the clock f(b)/2 component, which is led to a 2 multiplier circuit 26 via an amplifier limiter circuit 25, the result is decoded by a decoding circuit 21 as the clock f(b) and the result is separated multiplexedly into the PCM signal of the original signals CH1, CH2 by flip-flops 22, 23.

Description

【発明の詳細な説明】 〔概 要〕 伝送符号としてパーシャルレスポンス符号等を用いた2
チャネルディジタル信号の時分割多重通信装置であり、
送信側で信号の周波数成分が“O”となる周波数を持つ
クロックを一方のチャネルのディジタル信号に位相同期
させて重畳し、受信側でこのクロックの位相を検出して
両チャネルの多重化分離を行う。
[Detailed description of the invention] [Summary] 2 using a partial response code etc. as a transmission code
A time division multiplex communication device for channel digital signals,
On the transmitting side, a clock with a frequency where the frequency component of the signal is "O" is phase-synchronized and superimposed on the digital signal of one channel, and on the receiving side, the phase of this clock is detected to demultiplex and demultiplex both channels. conduct.

CM業上の利用分野〕 本発明は時分割多重通信装置に関し、特に2チヤネルの
高速ディジタル通信装置に関する。
Field of Application in CM Industry] The present invention relates to a time division multiplex communication device, and particularly to a two-channel high-speed digital communication device.

高速ディジタル通信、例えば高速PCM通信システム等
においては、より簡単な回路構成で一層のビットレート
の高速化が望まれている。
In high-speed digital communications, such as high-speed PCM communication systems, it is desired to further increase the bit rate with a simpler circuit configuration.

〔従来の技術〕[Conventional technology]

従来、2チヤネルのPCM信号を時分割多重化する場合
、第5図に示すように、チャネルcH1、チャネルCH
2のデータ信号に同期信号SYNを付加したワード構成
としており、受信側ではこの同期信号を用いてワード同
期をとり、それにより2チヤネルの信号を時分割多重分
離している。
Conventionally, when time-division multiplexing two-channel PCM signals, as shown in FIG.
It has a word structure in which a synchronization signal SYN is added to the two data signals, and on the receiving side, word synchronization is achieved using this synchronization signal, thereby time-division multiplexing and demultiplexing the two-channel signals.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の方式では、チャネル信号CH1、CH2と同期信
号SYNのビット数を同数とした場合、チャネル信号の
ビット数に対して50%の同期信号のビット数の増加と
なり、したがって同じデータ量を送出する場合、伝送路
に要求される信号速度は、同期信号SYNを付加しない
場合に比べて50%の速度上昇となる。反対にいえば、
同じ信号速度では同期信号の分だけ送信できるデータ量
が減ることになる。
In the conventional method, if the number of bits of channel signals CH1 and CH2 and synchronization signal SYN is the same, the number of bits of the synchronization signal increases by 50% compared to the number of bits of the channel signal, and therefore the same amount of data is sent. In this case, the signal speed required for the transmission line is increased by 50% compared to the case where the synchronization signal SYN is not added. On the contrary,
At the same signal speed, the amount of data that can be transmitted will decrease by the amount of the synchronization signal.

この同期信号によるロスを低減するため、チャネル信号
CH1、CH2のビット数を数十ビットとにし同期信号
SYNを1ビツトとしてチャネル信号に対しての同期信
号の割合を低減する方法もある。しかしながら、この場
合、多重化、多重分離回路の構成が複雑になり、また1
ビツトの同期信号の識別は容易ではないため複雑な構成
の識別回路が必要となる。特に信号速度が高速となった
場合、複雑な高速論理処理回路が必要となり、その実現
は難しい。
In order to reduce the loss due to this synchronization signal, there is a method of reducing the ratio of the synchronization signal to the channel signal by setting the number of bits of the channel signals CH1 and CH2 to several tens of bits and setting the synchronization signal SYN to one bit. However, in this case, the configuration of multiplexing and demultiplexing circuits becomes complicated, and
Since it is not easy to identify the bit synchronization signal, a complicated identification circuit is required. In particular, when the signal speed increases, a complex high-speed logic processing circuit is required, which is difficult to implement.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明の原理ブロック図である。図中、送信側
は2チヤネルのディジタル信号CH1、CH2を多重化
する多重化部101、多重化部101の出力を符号化す
る符号化回路102、および符号化回路102の出力と
クロックを加算する加算器104を含み構成される。ま
た受信側は受信信号を復号する復号化回路105、復号
化回路105の出力を2つのディジタル信号C)I1、
CH2に多重分離する多重分離部106、および受信信
号から分周クロック周波数を抽出するフィルタ107を
含み構成される。
FIG. 1 is a block diagram of the principle of the present invention. In the figure, the transmitting side includes a multiplexing section 101 that multiplexes two channels of digital signals CH1 and CH2, an encoding circuit 102 that encodes the output of the multiplexing section 101, and a clock that adds the output of the encoding circuit 102 and a clock. It is configured to include an adder 104. Also, on the receiving side, a decoding circuit 105 decodes the received signal, and the output of the decoding circuit 105 is converted into two digital signals C) I1,
It is configured to include a demultiplexer 106 that demultiplexes CH2, and a filter 107 that extracts the divided clock frequency from the received signal.

この第1図に示す本発明の時分割多重通信装置では、2
チヤネルのディジタル信号C)I1、CH2を時分割多
重して伝送するにあたり送信側ではこの伝送符号に、伝
送符号の周波数スペクトルが“O”となる周波数を持つ
クロックCLK/2を一方のチャネルのディジタル信号
に位相同期させて重畳する。
In the time division multiplex communication device of the present invention shown in FIG.
Channel digital signal C) When time-division multiplexing and transmitting I1 and CH2, the transmitting side adds a clock CLK/2 having a frequency where the frequency spectrum of the transmission code is "O" to this transmission code as the digital signal of one channel. Superimpose it in phase synchronization with the signal.

一方、受信側では重畳されたクロックCLK/2を検出
してそのクロックの位相を用いて二つのチャネルのディ
ジタル信号CH1、CH2を識別し多重分離を行う。
On the other hand, on the receiving side, the superimposed clock CLK/2 is detected, and the phase of the clock is used to identify and demultiplex the two channels of digital signals CH1 and CH2.

〔作 用〕[For production]

例えばパーシャルレスポンス符号は、第2図(a)のス
ペクトル図に示すように、−f b(nは整数r  f
bは伝送信号周波数)で表わされる周波数で信号スペク
トル成分が零となる。従ってこの周波数帯のいずれかに
、2つのチャネルを識別するための、同期信号としての
役割を持つクロックCLK/2を、一方のチャネルのデ
ィジタル信号に位相同期するように重畳させて受信側に
送出する。
For example, the partial response code is -f b (n is an integer r f
The signal spectrum component becomes zero at a frequency represented by b (transmission signal frequency). Therefore, the clock CLK/2, which serves as a synchronizing signal to identify the two channels, is superimposed on one of these frequency bands in phase synchronization with the digital signal of one channel and sent to the receiving side. do.

このようにした場合、ディジタル信号とクロックの周波
数領域が異なるため、クロックがディジタル信号を妨害
することはない。
In this case, the clock does not interfere with the digital signal because the frequency ranges of the digital signal and the clock are different.

すなわち、ディジタル信号CH1、CH2を多重化部1
01で多重化し符号化回路102で符号化した後、加算
器104に送る。クロックCLKを加算器104で符号
化回路102の出力に加算し、受信側に送出する。
That is, the digital signals CH1 and CH2 are multiplexed by the multiplexer 1.
After multiplexing with 01 and encoding with encoding circuit 102, it is sent to adder 104. The clock CLK is added to the output of the encoding circuit 102 by an adder 104 and sent to the receiving side.

受信側ではこのクロックCLKを検出し、その位相を用
いて2チヤネルのディジタル信号CHI 、 CI2を
識別し時分割多重分離を行い、それにより伝送する信号
から同期信号を除く。
The receiving side detects this clock CLK, uses its phase to identify the two channels of digital signals CHI and CI2, performs time division multiplexing and demultiplexing, and thereby removes the synchronization signal from the transmitted signal.

すなわち、受信信号を復号化回路105で復号した後、
多重分離部106に導く、また受信信号からフィルタ1
07でクロックCLKを抽出して、これを用いて多重分
離部106でディジタル信号CHI 、 CH2を識別
して多重分離する。
That is, after the received signal is decoded by the decoding circuit 105,
filter 1 from the received signal to the demultiplexer 106
07, the clock CLK is extracted, and using this, the demultiplexer 106 identifies and demultiplexes the digital signals CHI and CH2.

なお、従来用いているNRZ等の伝送路符号は、第2図
〜)のスペクトル図に示すように、伝送信号周波数f 
(b)、  2 f (b)では信号スペクトル成分か
零となるのでこの周波数成分をもつクロックを加算する
ことになる。
In addition, as shown in the spectrum diagrams in Figures 2 to 3, the conventionally used transmission line codes such as NRZ are based on the transmission signal frequency f.
In (b) and 2 f (b), the signal spectrum component is zero, so a clock having this frequency component is added.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明の一実施例としての時分割多重装置を示
すブロック図である。図中、■は送信回路、2は受信回
路である。送信回路1において、チャネル信号CH1、
CH2はPCM信号であり、その信号速度はクロックC
Kの周波数f (b)の半分である。本例では例えばf
 (b)はIMHzに選ばれる。
FIG. 3 is a block diagram showing a time division multiplexing apparatus as an embodiment of the present invention. In the figure, ■ is a transmitting circuit, and 2 is a receiving circuit. In the transmitting circuit 1, channel signals CH1,
CH2 is a PCM signal, and its signal speed is clock C
It is half of the frequency f(b) of K. In this example, f
(b) is chosen as IMHz.

チャネル信号CH1、CH2はそれぞれ波形整形用のフ
リップフロップ10.11を介してマルチプレクサ13
に入力される。
Channel signals CH1 and CH2 are sent to a multiplexer 13 via waveform shaping flip-flops 10 and 11, respectively.
is input.

クロックCKは%分周回路12および符号化回路15に
導かれる。A分周回路12の出力信号はフリップフロッ
プ10.11のクロック端子CL、マルチプレクサ13
に導かれるとともに、レベル調整回路14を介して加算
器16に導かれる。またA分周回路2の反転出力信号は
マルチプレクサ13に導かれる。
Clock CK is guided to a % frequency divider circuit 12 and an encoding circuit 15. The output signal of the A frequency dividing circuit 12 is sent to the clock terminal CL of the flip-flop 10.11 and the multiplexer 13.
and is also guided to the adder 16 via the level adjustment circuit 14. Further, the inverted output signal of the A frequency dividing circuit 2 is guided to the multiplexer 13.

マルチプレクサ13は3つのNOR回路131〜133
で構成され、チャネル信号CH1、CH2の時分割多重
化を行う。マルチプレクサ13の出力信号は符号化回路
15に入力される。
The multiplexer 13 has three NOR circuits 131 to 133.
It performs time division multiplexing of channel signals CH1 and CH2. The output signal of multiplexer 13 is input to encoding circuit 15 .

符号化回路15は、第4図の信号スペクトル図に示すよ
うに伝送信号速度(周波数f(b))の2の周波数で信
号スペクトルが零となる伝送路符号、本例では例えばパ
ーシャルレスポンスPR(L  1)すなわちデュオバ
イナリ(duobinary)符号の符号化回路である
。符号化回路15の出力信号は加算器16でレベル調整
回路14からの各周波数のクロックを重畳された後に伝
送路3を介して受信回路2に伝送される。
The encoding circuit 15 uses a transmission line code whose signal spectrum becomes zero at a frequency of 2 of the transmission signal speed (frequency f(b)) as shown in the signal spectrum diagram of FIG. 4, in this example, for example, a partial response PR ( L1), that is, a duobinary code encoding circuit. The output signal of the encoding circuit 15 is superimposed with clocks of each frequency from the level adjustment circuit 14 in an adder 16, and then transmitted to the receiving circuit 2 via the transmission line 3.

受信回路2においては、伝送路3からの入力信号は、増
幅器20で増幅された後に復号化回路21に導かれる。
In the receiving circuit 2, the input signal from the transmission line 3 is amplified by an amplifier 20 and then guided to a decoding circuit 21.

復号化回路21の出力信号は多重分離のためのフリップ
フロップ22.23に入力される。増幅器20の出力信
号はまた、通過周波数帯域f(bl/2の帯域フィルタ
24を介して増幅・リミッタ回路25に導かれる。増幅
・リミッタ回路25の出力信号は2逓倍回路26を介し
て復号化回路21に導かれるとともにフリップフロップ
22のクロック端子CKに導かれる。また増幅・リミッ
タ回路25の反転出力信号はフリップフロップ23のク
ロック端子CKに導かれる。フリップフロップ22.2
3の各出力端子からは多重分離されたチャネル信号CH
1、CH2がそれぞれ出力される。
The output signal of the decoding circuit 21 is input to flip-flops 22 and 23 for demultiplexing. The output signal of the amplifier 20 is also guided to an amplification/limiter circuit 25 via a bandpass filter 24 with a pass frequency band f (bl/2).The output signal of the amplification/limiter circuit 25 is decoded via a doubling circuit 26. It is guided to the circuit 21 and also to the clock terminal CK of the flip-flop 22.The inverted output signal of the amplification/limiter circuit 25 is also guided to the clock terminal CK of the flip-flop 23.Flip-flop 22.2
The demultiplexed channel signal CH is output from each output terminal of 3.
1 and CH2 are output, respectively.

第3図の装置の動作を以下に説明する。The operation of the apparatus shown in FIG. 3 will be explained below.

チャネル信号CH1、CH2はフリップフロップ10.
11で波形整形された後、マルチプレクサ13に入力さ
れてA分周回路12からのクロックf(b)/2を用い
て第5図(a)に示すようにビット多重化され、さらに
符号化回路15に入力される。符号化回路15はビット
多重されたチャネル信号をパーシャルレスポンスPR(
1,1)に符号化し、加算器16に送る。この符号化さ
れた信号は第4図に示すように信号スペクトルが周波数
f(b)/2で零となっている。
Channel signals CH1 and CH2 are sent to flip-flops 10.
After the waveform is shaped in step 11, it is input to the multiplexer 13, where it is bit multiplexed using the clock f(b)/2 from the A frequency divider circuit 12 as shown in FIG. 15 is input. The encoding circuit 15 converts the bit-multiplexed channel signal into a partial response PR (
1,1) and sends it to the adder 16. As shown in FIG. 4, the signal spectrum of this encoded signal becomes zero at frequency f(b)/2.

加算器16では、第5図に示すように、符号化回路15
の出力信号に、レベル調整回路14を介した2分周回路
12のクロックf(b)/2を、その例えば立上りがチ
ャネル信号CHIに位相同期するようにして合成する。
In the adder 16, as shown in FIG.
The clock f(b)/2 of the frequency divider circuit 12 via the level adjustment circuit 14 is synthesized with the output signal of the channel signal CHI so that, for example, its rising edge is phase-locked with the channel signal CHI.

その合成比はレベル調整回路14によって調整される。The synthesis ratio is adjusted by the level adjustment circuit 14.

このように合成すると、クロックf (bl / 2の
信号スペクトルは第2図に示すように、パーシャルレス
ポンスPR(1,1)の信号スペクトルが零である周波
数f(b)/2に重畳されることになり、クロックf(
bl/2がチャネル信号CH1、CH2に影響を与える
ことはない。
When synthesized in this way, the signal spectrum of the clock f (bl/2) is superimposed on the frequency f(b)/2 where the signal spectrum of the partial response PR(1,1) is zero, as shown in Figure 2. Therefore, the clock f(
bl/2 does not affect channel signals CH1 and CH2.

一方、受信回路2では、伝送路3で減衰した伝送信号を
増幅器20で増幅後、帯域フィルタ24でクロックf(
b)/2の成分を抽出し、増幅・リミッタ回路25を介
して2逓倍回路26に導き、そこで2逓倍してクロック
f (b)として復号化回路21に入力する。それによ
り復号化回路21で伝送された信号を元のビット多重信
号(信号速度f(bl)に復号する。
On the other hand, in the receiving circuit 2, the transmission signal attenuated in the transmission path 3 is amplified by the amplifier 20, and then the clock f(
b)/2 component is extracted and guided to the doubling circuit 26 via the amplification/limiter circuit 25, where it is doubled and inputted to the decoding circuit 21 as the clock f (b). Thereby, the transmitted signal is decoded by the decoding circuit 21 into the original bit multiplexed signal (signal rate f(bl)).

このビット多重信萼はフリップフロップ22.23によ
ってクロックf(b)/2の立上りおよび立下りでそれ
ぞれ打ち抜かれ、元のチャネル信号CH1、CH2のP
CM信号に多重分離される。
This bit multiplexed signal is punched out by the flip-flops 22 and 23 at the rising and falling edges of the clock f(b)/2, respectively, and the P of the original channel signals CH1 and CH2 is
It is demultiplexed into CM signals.

本発明の実施にあたっては種々の変更態様が可能である
。例えば上述の実施例ではパーシャルレスポンス符号と
してPR(1,1)を用いたが、これに限らず例えばP
R(1,0、−1)等の他のパーシャルレスポンス符号
であってもよく、要は伝送信号速度の半分の周波数で信
号スペクトルが零となる伝送符号であれば、本発明を適
用することが可能である。
Various modifications are possible in carrying out the invention. For example, in the above embodiment, PR (1, 1) is used as the partial response code, but the present invention is not limited to this, and for example, P
Other partial response codes such as R (1, 0, -1) may be used, and the present invention can be applied as long as the signal spectrum is zero at a frequency that is half the transmission signal speed. is possible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来別々に設計されていた時分割多重
装置と伝送路符号変換装置が一体化され、伝送路符号に
伝送信号速度の半分のクロック信号を重畳伝送すること
により、従来受信側で必要だったブロック同期回路等が
不要となり、それにより時分割多重化伝送装置を大幅に
簡単化することが可能となる。また従来のブロック同期
信号挿入形時分割多重方式に比べ、同じ情報量を送るの
に伝送速度の上昇をきたさない。
According to the present invention, the time division multiplexing device and the transmission line code conversion device, which were conventionally designed separately, are integrated, and by superimposing and transmitting a clock signal at half the transmission signal speed on the transmission line code, it is possible to This eliminates the need for block synchronization circuits, etc., which were required in the previous method, thereby making it possible to greatly simplify the time division multiplexing transmission device. Furthermore, compared to the conventional block synchronization signal insertion type time division multiplexing system, the transmission speed does not increase even though the same amount of information is sent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理ブロック図、第2図Tal (b
)は第1図システムの動作を説明するための図、第3図
は本発明の一実施例としての時分割多重方式を行う通信
システムのブロック図、第4図はパーシャルレスポンス
PR(1,1)の信号スペクトル図、第5図は第3図の
加算器での信号タイミング図、第6図は従来の伝送信号
のワード構成を示す図である。 CH1、CH2・−・チャネル信号 1−送信回路    2・−受信回路 10.11.22.23・−・フリップフロップ12−
’A分周回路   13・−マルチプレクサ14−・−
・レベル調整回路 15−符号化回路16−・−加算器
     20・・・増幅器21−・復号化回路   
24−・−・帯域フィルタ25−・増幅・リミッタ回路 26−・・2逓倍回路 本発明に 第 り原理図 1図 ・e−シャル・レスポンス符号のスペクトル図第4図 加算器での信号タイミング図 第5図 第2図 従来のワード構成 第6図 NRZ符号のスペクトル図 (b) 第2図
Figure 1 is a block diagram of the principle of the present invention, and Figure 2 is a block diagram of the principle of the present invention.
) is a diagram for explaining the operation of the system in FIG. 1, FIG. 3 is a block diagram of a communication system that performs a time division multiplexing method as an embodiment of the present invention, and FIG. 4 is a diagram for explaining the operation of the partial response PR (1, 1 ), FIG. 5 is a signal timing diagram at the adder of FIG. 3, and FIG. 6 is a diagram showing the word structure of a conventional transmission signal. CH1, CH2...Channel signal 1--Transmitting circuit 2--Receiving circuit 10.11.22.23...Flip-flop 12-
'A frequency dividing circuit 13・-Multiplexer 14-・-
・Level adjustment circuit 15-encoding circuit 16--adder 20...amplifier 21--decoding circuit
24--Band filter 25--Amplification/limiter circuit 26--Double multiplier circuit Principle according to the present invention Figure 1 Figure 1 Spectrum diagram of electronic response code Figure 4 Signal timing diagram in adder Figure 5 Figure 2 Conventional word structure Figure 6 Spectrum diagram of NRZ code (b) Figure 2

Claims (1)

【特許請求の範囲】 送信側にディジタル信号(CH1、CH2)の多重化を
行う多重化部(101)と、該多重化された信号につい
て一定周波数間隔で信号スペクトルが零となる符号化を
行う符号化回路(102)を設け、一方受信側に該デー
タを復号化する復号化回路(105)と該復号化された
信号を多重分離する多重分離部(106)を設け、時分
割多重伝送を行う時分割多重通信装置に於いて、 該送信側に該信号スペクトルが零となる周波数をもつク
ロック信号を該符号化回路(102)の出力に加算する
加算器(104)を設け、 受信側に、該データより該クロック信号を取り出すフィ
ルタ(107)を設けることを特徴とする時分割多重通
信装置。
[Claims] A multiplexing unit (101) that multiplexes digital signals (CH1, CH2) on the transmitting side, and encodes the multiplexed signal so that the signal spectrum becomes zero at constant frequency intervals. A coding circuit (102) is provided, and a decoding circuit (105) for decoding the data and a demultiplexing section (106) for demultiplexing the decoded signals are provided on the receiving side to perform time division multiplex transmission. In the time division multiplex communication device, an adder (104) is provided on the transmitting side for adding a clock signal having a frequency at which the signal spectrum becomes zero to the output of the encoding circuit (102), and an adder (104) is provided on the receiving side. , a time division multiplex communication device comprising a filter (107) for extracting the clock signal from the data.
JP6093286A 1986-03-20 1986-03-20 Time division multiplex communication device Expired - Lifetime JPH0740686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6093286A JPH0740686B2 (en) 1986-03-20 1986-03-20 Time division multiplex communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6093286A JPH0740686B2 (en) 1986-03-20 1986-03-20 Time division multiplex communication device

Publications (2)

Publication Number Publication Date
JPS62219831A true JPS62219831A (en) 1987-09-28
JPH0740686B2 JPH0740686B2 (en) 1995-05-01

Family

ID=13156647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6093286A Expired - Lifetime JPH0740686B2 (en) 1986-03-20 1986-03-20 Time division multiplex communication device

Country Status (1)

Country Link
JP (1) JPH0740686B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5692093B2 (en) * 2010-01-22 2015-04-01 日本電気株式会社 Data communication system and method, data transmission apparatus and method, data reception apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5692093B2 (en) * 2010-01-22 2015-04-01 日本電気株式会社 Data communication system and method, data transmission apparatus and method, data reception apparatus and method

Also Published As

Publication number Publication date
JPH0740686B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
GB1393743A (en) Narrow band digital speech communication system
JPS61501544A (en) Data and voice communication systems
US5051991A (en) Method and apparatus for efficient digital time delay compensation in compressed bandwidth signal processing
US4860286A (en) Encoding method in transmission of plurality of oversampled data channels, and apparatus for carrying out the method
KR100306938B1 (en) method and apparatus for combining serial data with a clock signal
US4087642A (en) Digital data communication system
JPH09168000A (en) Channel multiplex separating system and device therefor
JPH0648796B2 (en) Demand assign satellite communication device
JPS6410973B2 (en)
US5761209A (en) Method of transmitting digital signals, transmitter and receiver used therefor
JPS62219831A (en) Time division multiplex communication equipment
EP0197492A2 (en) A method and an apparatus for modeling bit rate justification
US6075825A (en) Timing and data recovery circuit for ultra high speed optical communication system
JP4571560B2 (en) Digital PB receiver for time division multiplex communication
JP2877890B2 (en) Channel board of PCM terminal equipment
JPS5813055B2 (en) Optical data link system using time division multiplex transmission of data and clock
JP2502712B2 (en) Data transmission equipment
JPH02206243A (en) Time division multiplex transmission system
JP3504554B2 (en) Time division multiplexed data communication system and transmitter and receiver thereof
JP2890563B2 (en) PCM speech encoding method and apparatus
SU653755A1 (en) Delta-modulation communication apparatus
JP2021064880A (en) Wired communication system
JP2707990B2 (en) Digital signal transmission method and transmitter and receiver used therefor
JP2727709B2 (en) PCM channel tandem connection method
JP2913994B2 (en) Voice compression and decompression equipment for digital electronic exchanges.